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a b s t r a c t 

Biometric authentication has been found to be an effective method for recognizing a person’s iden- 

tity with a high confidence. In this field, the use of palmprint represents a recent trend. To make the 

palmprint-based recognition systems more user-friendly and sanitary, researchers have been investigating 

how to design such systems in a contactless manner. Though substantial effort has been devoted to this 

area, it is still not quite clear about the discriminant power of the contactless palmprint, mainly owing to 

lack of a public, large-scale, and high-quality benchmark dataset collected using a well-designed device. 

As an attempt to fill this gap, we have at first developed a highly user-friendly device for capturing high- 

quality contactless palmprint images. Then, with the developed device, a large-scale palmprint image 

dataset is established, comprising 12,0 0 0 images collected from 600 different palms in two separate ses- 

sions. To the best of our knowledge, it is the largest contactless palmprint image benchmark dataset ever 

collected. Besides, for the first time, the quality of collected images is analyzed using modern image qual- 

ity assessment metrics. Furthermore, for contactless palmprint identification, we have proposed a novel 

approach, namely CR_CompCode, which can achieve high recognition accuracy while having an extremely 

low computational complexity. To make the results fully reproducible, the collected dataset and the re- 

lated source codes are publicly available at http://sse.tongji.edu.cn/linzhang/contactlesspalm/index.htm . 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

The need for reliable user authentication techniques has signif-

cantly increased in the wake of heightened concerns about se-

urity in networking, communication, and mobility [1] . Bolstered

y the requirements of numerous applications, such as access con-

rol, aviation security, and e-banking, automatically recognizing the

dentity of a person with high confidence has become a topic of

ntense study. To address such an issue, biometric-based meth-

ds, which use unique physical or behavioral characteristics of hu-

an beings, have recently been drawing increasing attention be-

ause of their high accuracy and robustness. Actually, in the past

ecades or so, researchers have exhaustively investigated a number

f different biometric identifiers, such as fingerprints [2,3] , faces
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4–7] , irises [8–11] , palmprints [12–16] , hand geometry [17] , finger-

nuckle-print [18–20] , ear [21] , etc. 

Among the many biometric identifiers, the palmprint has re-

ently received significant attention due to its non-intrusiveness

nd ease of data collection. Palmprint refers to the skin patterns

n the inner palm surface, comprising mainly two kinds of fea-

ures, the palmar friction ridges (the ridge and valley structures

ike the fingerprint) and the palmar flexion creases (discontinuities

n the epidermal ridge patterns) [13] . As an important member of

he biometrics family, the palmprint is appealing and has various

f desired properties, such as high distinctiveness, robustness, and

igh user-friendliness, etc. Actually, the use of palmprints for per-

onal authentication can trace back to Chinese deeds of sale in the

6th century [22] . 

The first automated palmprint identification system became

vailable in the early 1950s [13] . Since then, researchers have de-

oted a great deal of effort s in improving the effectiveness and ef-

ciency of palmprint recognition systems. Currently, most devices

or capturing palmprint images are contact-based (for example,

he 2D palmprint acquisition device proposed in [12] and the 3D

http://dx.doi.org/10.1016/j.patcog.2017.04.016
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2017.04.016&domain=pdf
http://sse.tongji.edu.cn/linzhang/contactlesspalm/index.htm
mailto:cslinzhang@tongji.edu.cn
http://dx.doi.org/10.1016/j.patcog.2017.04.016


200 L. Zhang et al. / Pattern Recognition 69 (2017) 199–212 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r  

e  

o  

o  

t  

u

 

a  

e  

b  

e  

d  

s  

w  

e  

f  

 

i  

N  

a  

c  

s

 

b  

v  

m  

s  

s

 

e  

s  

s  

d  

a  

p  

M

 

f  

T  

i  

a  

b  

w  

e

 

t  

r  

t  

a  

p  

t  

h  

u  

c  

d  

s

2

 

b  

a

 

(  

s  
palmprint acquisition device proposed in [16] ), which implies that

the user needs to touch the device when his/her palmprint im-

ages are collected. When capturing palmprint images with contact-

based devices, users are asked to put their hands on a planar sur-

face and/or have fingers restricted by pegs. Obviously, such devices

have their inherent drawbacks. At first, they are not user-friendly

since the pose of user’s hand needs to be strictly constrained when

the image is captured [23] . Elderly or people with arthritis or other

diseases that limit dexterity may have difficulty placing their hands

on a flat surface (even guided by pegs) [24] . Secondly, the palm-

print remains left by former users on the sensor’s surface will pos-

sibly affect the image content or image quality of later users. That

will probably decrease the system’s accuracy. Moreover, those re-

mained prints could be copied for illegitimate purposes [24,25] .

Thirdly, when such a device is deployed in a case with a large

number of users, it will raise hygienic concerns; people are con-

cerned about placing their fingers or hands on the same sensor

where countless others have also placed theirs [23,25] . Consider-

ing these shortcomings, recently, researchers have begun investi-

gating how to build palmprint recognition systems in a contactless

manner, which is also our focus in this paper. 

The remainder of this paper is organized as follows.

Section 2 introduces related work and our contributions.

Section 3 introduces our newly designed contactless palm-

print acquisition device. Our ROI extraction scheme is presented

in Section 4 . Section 5 presents our novel approach for contactless

palmprint identification. Section 6 presents our newly established

benchmark dataset and reports the experimental results. Finally,

Section 7 concludes the paper. 

2. Related work and our contributions 

In this section, we will at first review some representative work

in the field of contactless palmprint recognition from three aspects,

the equipments designed for capturing contactless palmprint im-

ages, the collected benchmark datasets, and the matching meth-

ods. It needs to be noted that strictly speaking, the mobile palm-

print recognition (i.e., performing palmprint recognition on mobile

phones) also belongs to the field of contactless palmprint recogni-

tion. However, since that field has its own inherent characteristics

and needs to be separately investigated, it will not be discussed in

this paper. 

2.1. Contactless palmprint acquisition devices 

In [26] , Chen et al. adopted a digital camera to acquire palm-

print images against a dark background. In their system, two 3U

23-watt lights were used to provide illumination and were ar-

ranged in appropriate positions. Chen et al.’s setup is shown in

Fig. 1 (a), from which it can be seen that various hardware parts

were not integrated into a complete usable system. In addition,

with such a system, images can only be manually captured. Conse-

quently, Chen et al.’s system can only be used in lab. 

In Kumar’s palmprint acquisition device [27] , the camera, the

lens, and the fluorescent light source are enclosed in a semi-closed

box. For sample acquisition, the user can put his/her hand into the

box inside, and then the palmprint image can be captured against

a dark background (the top cover of the box). We cannot get any

further information about this device since the author did not pro-

vide drawings or photos of its internal structure. From sample im-

ages captured, it can be seen that in Kumar’s device [27] the free

space left for the hand in the box is quite limited and thus it is

highly likely that the user’s fingers may touch the walls of the box.

So, it may raise users’ hygienic concerns. In Fig. 1 (b), a sample im-

age collected by Kumar’s device is shown. 
In [28] , Hao et al. built a multispectral contactless palmprint

ecognition system, whose design is shown in Fig. 1 (c). With Hao

t al.’s system, when sample images are being captured, 6 groups

f LEDs ranging from violet to near infrared (IR) will be switched

n sequentially, and thus 6 images under different lighting condi-

ions can be collected. It is easy to know that the data acquisition

sing such a device is quite time-consuming. 

In [25,29] , Michael et al. built a low-cost contactless palmprint

cquisition device as shown in Fig. 1 (d). A 1.3 mega pixel web cam-

ra and a 9W white light bulb are mounted inside a semi-closed

ox. As shown in Fig. 1 (d), there is no top cover with Michael

t al.’s device, which may cause two problems. At first, since the

istance between the user’s palm and the camera cannot be re-

tricted, the quality of collected images may vary much. Secondly,

hen it works, its intense light may directly enter into the user’s

yes, which will inevitably make the user uncomfortable. There-

ore, this prototype system is maybe difficult to be commercialized.

In [30] , Poinsot et al. collected palmprint images using a Log-

tech QuickCam Pro 90 0 0 webcam against a green background.

either a housing nor additional lights are used in their setup. Im-

ges are captured under natural illumination. One sample image

ollected by Poinsot et al. is shown in Fig. 1 (e). Obviously, such a

ystem cannot be used in practical security-critical applications. 

In [31] , Ferrer et al. proposed a bi-spectral contactless hand

ased biometric system, which could capture palm images under

isible and IR lighting conditions simultaneously. The IR image is

ainly used to facilitate the segmentation of the visible image. As

hown in Fig. 1 (f), Ferrer et al.’s device has no housing so it has

imilar potential problems as Michael et al.’s [25,29] . 

In order to study multi-sampling hand recognition, Morales

t al. constructed a contactless palmprint acquisition device [32] as

hown in Fig. 1 (g). The design principle of this system is in-

pired by credit card readers. As shown in Fig. 1 (g), two plates

elimit the area through which the user passes his/her hand with

 vertical movement. During the transit of the hand between two

lates, sample images can be captured. With respect to the camera,

orales et al. adopted a Logitech C600 webcam. 

Quite recently, Aykut and Ekinci developed a prototype system

or contactless palmprint authentication [33] , as shown in Fig. 1 (h).

heir capturing device is a low-cost CCD camera with a DC-auto

ris lens. Using such a device, the distance between the user’s hand

nd the camera cannot be restricted, so some captured images may

e out of focus. In addition, since there are no back and forth

alls of the device’s housing, the LED light may hurt the user’s

yes. 

Main features and potential shortcomings of the existing con-

actless palmprint acquisition devices abovementioned are summa-

ized in Table 1 , following a chronological order. Having identified

he disadvantages of the existing devices, it motivates us to design

 novel one with the following characteristics. (1) All the hardware

arts are enclosed in a housing. (2) The light source cannot hurt

he user’s eyes. (3) Enough space is reserved for the user to move

is/her hand freely. (4) The distance between the camera and the

ser’s hand is constrained to make sure the palm is within the

amera’s depth of field. (5) The collected image can have a simple

ark background. Details of our novel contactless palmprint acqui-

ition device can be found in Section 3 . 

.2. Benchmark datasets publicly available 

With the developed devices, some researchers have collected

enchmark contactless palmprint datasets and made them publicly

vailable. 

In [28] , Hao et al. collected a multispectral palm image dataset

CASIA dataset [34] ). Images were taken from 200 hands in 2

eparate sessions. In each session, there were 3 samples. Each
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Fig. 1. (a) The palmprint acquisition device developed in [26] ; (b) a sample image collected in [27] ; (c) the multi-spectral palmprint acquisition device developed in [28] ; 

(d) the palmprint acquisition device developed in [25,29] ; (e) a sample image collected in [30] ; (f) the palmprint acquisition device developed in [31] ; (g) the palmprint 

acquisition device developed in [32] ; (h) the palmprint acquisition device developed in [33] . 
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ample includes 6 palm images captured under 6 different spec-

rums, 460 nm, 630 nm, 700 nm, 850 nm, 940 nm, and white

ight, respectively. So, there are altogether 720 0 (20 0 × 2 × 3 × 6)

alm images in Hao et al.’s dataset. Among them, 4800 images are

almprint images (those taken under visible spectrums) and the

ther 2400 ones are palm vein images (those taken under IR spec-

rums). Using the self-developed device, Kumar collected a con-

actless palmprint dataset (referred as IIT dataset [35] ), in which

mages were captured from 460 palms in a single session. Alto-

ether, there are 2601 images in IIT dataset. Ferrer et al. have re-

eased a contactless palmprint dataset, referred as GPDS100 dataset

36] . Palmprint images in GPDS100 dataset were acquired from 100

alms within a single session. 10 images were acquired from each

alm and thus the whole GPDS100 dataset contains 10 0 0 sam-

le images. The dataset collected by Aykut and Ekinci is referred

s KTU dataset [37] , comprising 1752 images collected from 145

ifferent palms in a single session. In Section 6.1 , information of

hese publicly available datasets along with our newly established
ataset is summarized in Table 4 . O  
.3. Matching methods 

In the field of contact-based palmprint recognition, coding-

ased methods have been demonstrated to be effective and ef-

cient, such as PalmCode [12] , CompCode [38] , RLOC [39] , OLOF

Orthogonal Line Ordinal Feature) [40] , and they are actually in-

pired by the great success of Daugman’s IrisCode [8] which was

roposed for iris recognition. Some researchers have adapted these

onventional coding-based recognition methods for contactless 

almprint recognition. For example, PalmCode is used in [30,41] ,

nd OLOF [40] is used in [27,28,31,32] . 

Having been testified in various different applications, SIFT

Scale Invariant Feature Transform) [42] is an eminent method to

xtract image features in a scale-invariant way and it has also

een exploited in the context of contactless palmprint recognition.

n [43,44] , when computing the similarity between two contact-

ess palmprint images, Morales et al. fused the matching scores

btained by matching their SIFT features and by matching their

LOFs. Such a method is referred as “SIFT+OLOF” in this paper.
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Table 1 

Summary of existing contactless palmprint acquisition devices in the literature. 

Refs. Year Main features Shortcomings 

Chen et al. [26] 2007 Two 3U 23-watt lights were used to provide illumination 

and were arranged in appropriate positions; a normal 

digital camera was used to capture the image. 

Hardware parts were not integrated into a complete usable 

system; images can only be manually captured; it can 

only be used in lab. 

Kumar [27] 2008 Hardware parts are enclosed in a semi-closed box; the 

palmprint image can be captured against a dark 

background. 

The free space left for the hand in the box is quite limited 

and thus it is highly likely that the user’s fingers may 

touch the walls of the box. So, it may raise users’ 

hygienic concerns. 

Hao et al. [28] 2008 It is a multispectral system; when sample images are being 

captured, 6 groups of LEDs will be switched on 

sequentially, and thus 6 images can be collected. 

Palmprint acquisition using such a device is quite 

time-consuming; the light may hurt the user’s eyes. 

Michael et al. [25] 2008 A 1.3 mega pixel web camera and a 9W white light bulb 

are mounted inside a semi-closed box. 

There is no top cover; the quality of collected images may 

vary much; when it works, its intense light may directly 

enter into the user’s eyes. 

Poinsot et al. [30] 2009 It collects palmprint images using a Logitech QuickCam 

Pro-90 0 0 webcam against a green background under 

natural illumination. 

Neither a housing nor additional lights are used in their 

setup; it cannot be deployed in practical applications. 

Ferrer et al. [31] 2011 It could capture palm images under visible and IR lighting 

conditions simultaneously. 

It has no housing so it has similar potential problems as 

Michael et al.’s [25] . 

Morales et al. [32] 2012 Two plates delimit the area through which the user passes 

his/her hand with a vertical movement. 

The moving speed of the user’s hand cannot be controlled 

so the quality of collected images may vary greatly. 

Aykut et al. [33] 2015 Their capturing device is a low-cost CCD camera with a 

DC-auto iris lens. 

The distance between the user’s hand and the camera 

cannot be restricted, so captured images may be out of 

focus; the LED light may hurt the user’s eyes. 
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In [45] , to deal with the potential misalignment between two

palmprint ROIs, Zhao et al. at first aligned the ROIs based on

their matched SIFT feature points and then extracted CompCodes

[38] from aligned ROIs. The final matching score is the fusion of

the SIFT matching score and the CompCode matching score. Zhao

et al.’s method [45] is referred as “SIFT+AlignedCompCode” in this

paper. In Wu et al.’s scheme [23] , an iterative RANSAC (Random

Sampling Consensus) algorithm is at first employed to remove the

mis-matched points and then local palmprint descriptors are ex-

tracted for SIFT points to further remove the mismatched points

which cannot be correctly figured out by original SIFT descriptors.

The number of final matched SIFT points is taken as the score for

decision. In Wu et al.’s latest work [46] , to solve the palmprint de-

formation problems, an iterative M-estimator sample consensus al-

gorithm based on SIFT features is devised to compute piecewise-

linear transformations to approximate the non-linear deformations

of palmprints, and then stable regions are decided using a block

growing algorithm. Palmprint feature extraction and matching are

performed over the stable regions. 

In Michael et al.’s contactless palmprint verification scheme

[25] , the feature vector is obtained by applying the LBP (Local

Binary Pattern) operator on the image’s directional gradient re-

sponses. For matching two such feature vectors, χ2 distance is

adopted as the dissimilarity metric. This approach is referred as

“LBP+ χ2 ” in our paper. In [33,47] , Ekinci and Aykut proposed a

palmprint verification algorithm with the use of kernel Fisher dis-

criminant analysis (KFD) [48] on the Gabor wavelet representations

of palm images. Each palmprint sample is finally represented as a

feature vector. To match two such feature vectors, the weighted

Euclidean distance is used. 

2.4. Our motivations and contributions 

Having investigated the literature, we find that in the field of

contactless palmprint recognition, there is still large room for fur-

ther improvement in at least three aspects. 

At first, for a biometric system, the design of the sample acqui-

sition device is of profound importance. An ideal device needs to

be highly user-friendly and the acquired images should be of high

quality. Moreover, it is also anticipated that the collected image

can have a simple background, which can greatly simplify the pro-
essing afterwards. However, these design principles are not well

eflected in existing contactless palmprint acquisition devices. 

Secondly, benchmark datasets are indispensable for researchers

o devise more sophisticated recognition algorithms. An outstand-

ng benchmark dataset is expected to comprise many classes and a

arge number of samples, collected from at least two separate ses-

ions. Unfortunately, such datasets are still lacking for contactless

almprints. 

Thirdly, though a plethora of techniques have been proposed

or palmprint matching, nearly all of them are designed for one-

o-one verification applications. When these methods are used to

olve the one-to-many identification problem, to figure out the

dentity of a given test sample, it would be necessary to match

he test sample to all the samples in the gallery set one by one.

uch a brute-force matching strategy is obviously not quite com-

utationally efficient, especially when the size of the gallery set

s extremely large. Hence, how to solve the contactless palmprint

dentification problem efficiently still requires further effort s. 

In this work, our aim is to thoroughly investigate the discrim-

nant power of the contactless palmprint and to this end, we at-

empt to fill the abovementioned research gaps to some extent.

ur contributions in this paper are summarized as follows: 

(1) We have designed and developed a novel device for captur-

ing contactless palmprint images. Our device has the follow-

ing merits: it is highly user-friendly; the acquired images are

of high quality; and the acquired image has a simple back-

ground. 

(2) Using the developed device, we have established a large-

scale contactless palmprint dataset and will make it pub-

licly available to the research community. Our dataset is

larger in scale than all the existing benchmark datasets for

contactless palmprints. Besides, the image quality of our

dataset is better than that of other datasets. Actually, a large-

scale benchmark dataset with high quality images is crucial

for exploring the discriminant capability of the contactless

palmprint. 

(3) To tackle the problem of large-scale contactless palm-

print identification, we have proposed a collaborative rep-

resentation (CR) [49] based scheme, namely CR_CompCode.

CR_CompCode is the first work attempting to make use

of CR-based classification schemes for contactless palmprint
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Fig. 2. (a) is the complete 3D CAD model of our contactless palmprint acquisition device while (b) shows its internal structure. (c) shows the lighting source and its power 

modulator used in our device. (d) One user is using the device. Our device is highly user-friendly: 1) all LEDs are enclosed in the housing, preventing them from hurting the 

user’s eyes; 2) an LCD is mounted on the top cover, from which the user can observe the camera’s video stream in real time; 3) the height of our device is about 950 mm, 

which is quite suitable for most adults; 4) enough space is reserved for the user to move his/her hand conveniently. 

 

 

 

 

3

 

t  

c  

m  

o  

t  

F  

d  

a  

o  

d  

c  

a  

h  

t  

a  

t  

h  

t  

s  

j  

t  

b  

h

 

A  

f  

g  

L  

t  

f  

t  

c  

F  

q  

t  

t  

h  

t  

h  

e  

o  

e  

w  

d  

t  

o  

s

identification. Its superiority over the competing methods

has been corroborated in experiments. To make results re-

producible, the collected dataset and related source codes

are publicly available at http://sse.tongji.edu.cn/linzhang/

contactlesspalm/index.htm . 

. Contactless palmprint acquisition device 

In order to investigate the discriminant capability of the con-

actless palmprint, we have at first devised and developed a novel

ontactless palmprint acquisition device, whose complete 3D CAD

odel is shown in Fig. 2 (a). Its internal structure can be clearly

bserved from the 3D model shown in Fig. 2 (b). Fig. 2 (c) shows

he lighting source and its power modulator used in our device.

ig. 2 (d) shows a photo of our device being used by a subject. The

evice’s metal housing comprises two parts. Its lower part encloses

 CCD camera (JAI AD-80 GE), a lens, a ring light source composed

f white LEDs, a power regulator for the light source, and an in-

ustrial computer. There is a square “imaging hole” on the top

over of the housing’s lower part, whose center is on the optical

xis of the lens. The size of the hole is 230 mm × 230 mm. The

ousing’s upper part is wedge-shaped, on which a thin LCD with a

ouch screen is mounted. The height of our device is about 950mm

nd can be comfortably used by a normal adult. For data acquisi-

ion, the user needs to present his/her hand above the “imaging

ole”. The user can move his/her hand up and down freely within

he space bounded by the housing’s upper part and he/she can ob-

erve in real-time the camera’s video stream from the LCD to ad-
ust the hand’s pose. The brightness of LEDs can be modulated by

he power modulator. We carefully adjusted the position and the

rightness of the LEDs to make the quality of collected images as

igh as possible. 

Our newly developed device has the following characteristics.

t first, as it is of high user friendliness, the user will feel com-

ortable when using it. The whole design is in accordance with er-

onomics and we pay much attention to details. For example, all

EDs are enclosed in the housing, preventing them from hurting

he user’s eyes. Moreover, an LCD is mounted on the top cover,

rom which the user can observe the camera’s video stream in real

ime. That can guide the user to adjust the hand pose and also

an help alleviate the user’s anxiety when using our equipment.

urthermore, the height of our device is about 950mm, which is

uite suitable for most adults. Secondly, as we carefully adjusted

he configurations of the camera, the lens, and the light source,

he acquired images are of high quality, meaning that they have

igh contrast and high signal-to-noise ratio. Moreover, as the dis-

ance between the camera and the user’s palm is restricted by the

ousing’s upper part, the user’s palm is always within the cam-

ra’s depth of field. Four sample palmprint images collected using

ur device are shown in Fig. 3 , from which it can be seen that

ven minute creases on the palmprints can be observed. Thirdly,

ith our device, the collected palmprint image can have a simple

ark background because it is acquired against the dark back of

he LCD. A simple background can largely reduce the complexity

f the data processing afterwards and accordingly can improve the

ystem’s robustness. 

http://sse.tongji.edu.cn/linzhang/contactlesspalm/index.htm
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Fig. 3. (a) ∼ (d) are four contactless palmprint images collected using our device. 

Fig. 4. The overall flowchart of our contactless palmprint identification system. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Illustration for the proposed ROI extraction approach. 
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Using the developed device, we have established a large-scale

contactless palmprint image dataset. Details can be found in

Section 6.1 . 

4. ROI extraction 

The pipeline of our contactless palmprint identification system

is shown in Fig. 4 . It can be seen that when the palmprint image

is ready, three major steps are followed, ROI (region of interest)

extraction, feature extraction, and classification. Our schemes for

feature extraction and classification will be presented in Section 5 .

In this section, ROI extraction is introduced. In the pipeline of

palmprint recognition, ROI extraction is the first influential step.

Since global geometric transformations exist between two palm-

print images, it is necessary and critical to align palmprint images

X

y adaptively constructing a local coordinate system for each im-

ge. With such a coordinate system, an ROI can be cropped from

he original image. The later feature extraction and matching are

ctually performed on ROIs. Our ROI extraction algorithm is moti-

ated by Zhang et al.’s idea [12] , which was originally proposed for

ontact-based palmprint images. It is highly desired that a contact-

ess palmprint ROI extraction algorithm could be robust to transla-

ion, rotation, and scale variations of palmprints. 

Given a palmprint image, we at first filter it using a low-pass

lter, and then convert it to a binary image. Based on the binary

alm mask, boundaries of two finger gaps (the gap between the

ndex and the middle fingers and the gap between the ring and

he little fingers) can be obtained. Then, we compute the tangent

ine of the two gap boundaries and denote the two tangent points

y X 1 and X 2 . The line passing through X 1 and X 2 is taken as the

-axis of the local coordinate system. The midpoint of X and X 
1 2 
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Table 2 

The algorithm of ROI extraction from a contactless palmprint image. 

Input: A palmprint image I . 

Output: The ROI sub-image R extracted from I . 

1. Low-pass filter I using a Gaussian filter and then convert it to a binary image B ; 

2. From B , extract boundaries of two finger gaps (as illustrated in Fig. 5 ); 

3. Get the tangent line of the gap boundaries and the tangent points are X 1 and X 2 ; 

4. X 1 X 2 is taken as the X-axis and the midpoint of X 1 X 2 is taken as the origin O ; 

5. A line passing through O and perpendicular to X-axis is the Y-axis; 

6. A line being c 1 ‖ X 1 X 2 ‖ far away from O and parallel to X-axis 

intersects the palm contour at passing O 1 and O 2 ; 

7. A square region S of side length c 2 ‖ O 1 O 2 ‖ , being symmetric with respect to Y-axis 

and c 2 ‖ O 1 O 2 ‖ far away from X-axis is extracted; 

8. S is normalized to the size N × N and the result is taken as R . 

Fig. 6. (a) and (b) are two contactless palmprint images collected from the same palm in two different sessions while (c) and (d) are their ROIs, respectively. 
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s regarded as the origin O . Then, a line passing through O and

erpendicular to X-axis is taken as the Y-axis. A line, which is

 1 ‖ X 1 X 2 ‖ far away from O and parallel to the X-axis can be de-

ermined. Suppose that this line intersects with the palm contour

t O 1 and O 2 . Then, a square region with the side length c 2 ‖ O 1 O 2 ‖ ,
eing symmetric with respect to the Y-axis and c 3 ‖ O 1 O 2 ‖ far way

rom the X-axis, is cropped. Finally, the cropped region is nor-

alized to the size N × N and is regarded as the ROI. c 1 , c 2 ,

 3 , and N are some parameters and are empirically determined as

 1 = 0 . 60 , c 2 = 0 . 65 , c 3 = 0 . 10 , and N = 128 . The proposed ROI ex-

raction scheme is illustrated in Fig. 5 and its pipeline is summa-

ized in Table 2 . Two palmprint images and their corresponding

OIs are shown in Fig. 6 . Fig. 6 (a) and (b) are two images collected

rom the same palm but in different sessions and there is an ap-

arent scale variation between them. However, from visual inspec-

ion, it can be seen that the two extracted ROIs are quite similar

o each other, indicating that our ROI extraction algorithm is quite

ffective. 

. CR_CompCode: a novel approach for contactless palmprint 

dentification 

To solve the one-to-many identification problem, recent stud-

es have found that the sparse representation based classification

SRC) [5] is an effective and efficient tool. Sparse representation
odes a signal y over a dictionary A such that y ≈ A α and α is a

parse coefficient vector. The sparsity of α is measured by l 0 -norm,

ounting the number of non-zero elements in α. Since the l 0 -

inimization is NP-hard, the l 1 -minimization, as the closest convex

unction to l 0 -minimization, is widely employed in sparse coding.

owever, in [49] , Zhang et al. claimed that it is the collaborative

epresentation (CR, i.e., using the gallery samples from all classes

o represent the query sample y ) but not the l 1 -norm sparsity

hat makes SRC powerful. Accordingly, they proposed to replace

he l 1 -norm sparsity regularization term in SRC framework with

n l 2 -norm regularization term and such a classification scheme

s named as CRC_RLS (collaborative representation based classifi-

ation with regularized least square). Zhang et al.’s experimental

esults on face datasets indicate that CRC_RLS could achieve com-

arable recognition accuracy as SRC; however, it runs much faster

han SRC. The reason is that for CRC_RLS, there exists a simple

losed-form solution while by contrast, solving SRC will involve a

ostly iterative optimization. 

On seeing that CRC_RLS is a quite promising classification

cheme, we propose to adapt it for contactless palmprint identifi-

ation. To use CRC_RLS, how to extract feature vectors to represent

almprint images is a critical issue. Since there exits mere mis-

lignment between two ROIs, the extracted feature vectors should

e robust to small misalignment while still being highly discrim-

native. To meet these requirements, we propose a novel feature
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Table 3 

CR_CompCode: the algorithm for contactless palmprint 

identification. 

Training phase 

Input: A gallery set containing palmprint ROIs. 

Output: The dictionary matrix A . 

1. For each sample j in the gallery set 

Extract from j a feature vector v j ; 

Normalize v j to make it have a unit l 2 -norm; 

2. Concatenate all v j s as A . 

Testing phase 

Input: A query palmprint sample and A . 

Output: Class label of the query sample. 

1. Extract the ROI from the query palmprint image. 

2. Extract the feature vector y from the ROI. 

3. Code y over A as 

x 0 = arg min 
x 

{‖ y − A x ‖ 2 2 + λ‖ x ‖ 2 2 

}
4. Compute the residuals r i ( y ) = ‖ y − A δi ( x 0 ) ‖ 2 2 . 

5. l abel ( y ) = arg min 
i 

{ r i ( y ) } . 

Table 4 

Benchmark contactless palmprint datasets. 

Datasets Number of palms Number of sessions Number of images 

CASIA [34] 200 2 4800 

IIT [35] 460 1 2601 

GPDS100 [36] 100 1 10 0 0 

KTU [37] 145 1 1752 

Our dataset 600 2 12,0 0 0 

w  

e  

p  

c  

b  

f  

r  

6

6

 

s  

s  

i  

s  

d  

m  

T  

o  

i  

t  

p  

t  

a  

a  

1

8  

s  

fi  

s  

t  

s

w  

a

 

e  
extraction scheme for contactless palmprints based on block-wise

statistics. 

Given a palmprint ROI, we at first compute its CompCode map

[38] by using a set of Gabor filters [50] . In the spatial domain, 2D

Gabor filters can be expressed as: 

G (x, y ) = exp 

(
−1 

2 

(
x 

′ 2 

σ 2 
x 

+ 

y 
′ 2 

σ 2 
y 

))
exp 

(
i 2 π f x 

′ )
(1)

where x 
′ = x cos θ + y sin θ and y 

′ = −x sin θ + y cos θ . In Eq. (1) , f

represents the frequency of the sinusoid wave, θ represents the

orientation of the normal to the parallel stripes of the Gabor func-

tion, σ x and σ y are the standard deviations of the 2D Gaussian

envelop. Denote by G R the real part of a Gabor filter. With a bank

of G R s sharing the same parameters, except the parameter for ori-

entation, the local orientation information of the image I at the po-

sition ( x, y ) can be extracted and coded. Mathematically, this com-

petitive coding process can be expressed as: 

 ompC ode (x, y ) = arg min 

j 

(
I(x, y ) ∗ G R (x, y ; θ j ) 

)
(2)

where ∗ stands for the convolution operation, θ j = jπ/J, j =
{ 0 , . . . , J − 1 } , and J represents the number of orientations. We set

J = 6 in this paper and this is in accordance with the finding made

by Lee [51] that the simple neural cells are sensitive to specific

orientations with approximate bandwidths of π /6. Hence, each el-

ement of a CompCode map is an integer between 0 ∼ 5, represent-

ing the local dominant orientation. 

CompCode maps are highly discriminative but they are sensitive

to small amount of registration errors between the probe image

and the training images. On the other hand, global statistics based

features, such as histograms, are robust to misalignments but they

are not quite discriminative. To combine the advantages of these

two kinds of feature extraction ideas, we propose to use block-wise

statistics of CompCode as features. Specifically, we uniformly parti-

tion the CompCode map into a set of p × p blocks. For each block

i , we compute from it a histogram of CompCodes, denoted by h i .

Obviously, the dimension of h i is 6 since there are totally 6 possi-

ble CompCode values. Finally, all h i s are concatenated together as

a large histogram h , which is regarded as the feature vector. 

With the proposed feature extraction scheme, given a contact-

less palmprint gallery set, we can compute a feature vector for

each sample and then we define a dictionary matrix A for the en-

tire gallery set as the concatenation of all the extracted feature

vectors: 

A = [ v 1 , 1 , v 1 , 2 , . . . , v k, n k 
] ∈ R 

m ×n (3)

where k is the number of classes in the gallery set, n k is the num-

ber of samples for class k, m is the dimension of features, and n

is the total number of gallery samples. For robust classification, we

require that m < n . 

Given a probe palmprint image, denote by y ∈ R 

m its feature

vector. Then y can be classified by the CRC_RLS model [49] , which

actually solves the following optimization problem: 

x 0 = arg min 

x 

{‖ 

y − A x ‖ 

2 
2 + λ‖ 

x ‖ 

2 
2 

}
(4)

where λ is a scalar weight. Eq. (4) has a closed-form solution as:

x 0 = 

(
A 

T A + λI 
)−1 

A 

T y (5)

where I ∈ R 

n ×n is an identity matrix. Let P = 

(
A 

T A + λI 
)−1 

A 

T .

Clearly, P is independent of y and can be pre-computed solely

based on the gallery set. When x 0 is available, we perform the

classification by evaluating which class leads to the minimum rep-

resentation error: 

ident it y ( y ) = arg min 

i 

‖ 

y − A δi ( x 0 ) ‖ 

2 
2 (6)
here δi ( x 0 ) is a new vector whose only nonzero entries are the

ntries in x 0 that are associated with class i . Since our proposed

almprint identification approach uses the concatenation of lo-

al histograms of the CompCode map as the feature and the CR-

ased framework for classification, we name it as CR_CompCode

or short. The pipeline of the algorithm CR_CompCode is summa-

ized in Table 3 and its overall flowchart is demonstrated in Fig. 7 .

. Experiments 

.1. Newly established large-scale benchmark dataset 

With the self-developed device, we have established a large-

cale contactless palmprint image dataset. As our device is

traightforward to use, the only instruction given to the subject

s that he/she needs to stretch his/her hand naturally to make

ure the finger gaps can be clearly observed on the screen. In our

ataset, images were collected from 300 volunteers, including 192

ales and 108 females. Those volunteers were staff or students of

ongji University. Among them, 235 subjects were 20 ∼ 30 years

ld and the others were 30 ∼ 50 years old. We collected samples

n two separate sessions. In each session, the subject was asked

o provide 10 images for each palm. Therefore, 40 images from 2

alms were collected from each subject. In total, the database con-

ains 12,0 0 0 images captured from 600 different palms. The aver-

ge time interval between the first and the second sessions was

bout 61 days. The maximum and minimum time intervals were

06 days and 21 days, respectively. The size of each image is 600 ×
00. When you download the dataset, there are two folders, “ses-

ion1” and “session2”. “session1” contains images collected in the

rst session while “session2” comprises images collected in the

econd session. Two images in ”session1” and ”session2” having

he same name were collected from the same palm. In each ses-

ion, ”0 0 0 01 ∼ 0 0 010” were from the first palm, ”0 0 011 ∼ 0 0 020”

ere from the second palm, and so on. In each session, 60 0 0 im-

ges were collected from 600 different palms. 

Information about the publicly available datasets and our newly

stablished one, in terms of the number of palms, the number of
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Fig. 7. Illustration for the proposed contactless palmprint identification scheme CR_CompCode. 

c  

i  

t  

i  

e  

q  

t  

p

6

 

a  

H  

s  

a  

i  

K  

t  

m  

f  

m  

b

 

p  

i  

t  

p  

t  

t  

u  

i  

t  

a  

A

 

q  

i  

N  

o

ollection sessions, and the total number of images, is summarized

n Table 4 . From Table 4 , it can be seen that no matter which cri-

erion is used, our dataset is the largest in scale. In addition, the

mage quality of our dataset is actually better than that of the

xisting ones (see Section 6.2 for more discussions about image

uality). Hence, it can serve as a better benchmark for researchers

o develop more advanced contactless palmprint recognition ap-

roaches. 

.2. Quality assessment of collected images 

It is generally accepted that the quality of sample images has

 significant impact on the performance of recognition methods.

owever, in the field of contactless palmprint recognition, no re-

earch has been conducted to quantify the quality of collected im-

ges objectively. In this experiment, we will evaluate the quality of

mages in benchmark datasets (CASIA [34] , IIT [35] , GPDS100 [36] ,

TU [37] , and our dataset) from two aspects, the sharpness and

he overall quality, using state-of-the-art IQA (image quality assess-

ent) [52] models. Specifically, we randomly selected 200 images
rom each dataset and then extracted their ROIs. Each ROI was nor-

alized to the size 256 × 256 and the quality assessment would

e conducted on the normalized ROIs afterwards. 

At first, it is generally accepted that a sharper image is more ap-

ealing for the recognition task since it may contain more discrim-

nant visual features. That motivates us to use an objective metric

o measure the sharpness of the acquired palmprint images. In this

aper, the S 3 algorithm [53] is employed to perform this task since

o the best of our knowledge it is a state-of-the-art method to au-

omatically evaluate the sharpness of a given image. The S 3 index

tilizes both spectral and spatial properties of the image. For each

mage block, it measures the slope of the magnitude spectrum and

he total spatial variation. These measures are then combined via

 weighted geometric mean to yield a perceived sharpness metric.

 higher S 3 value indicates a higher perceptual sharpness. 

In addition to the sharpness, we also care about the overall

uality of palmprint images. In order to measure the palmprint

mage’s overall quality, we resort to the IL-NIQE (Integrated Local

atural Image Quality Estimator) algorithm [54] , which is a state-

f-the-art approach in this field. IL-NIQE is a “completely blind”
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Fig. 8. (a) is the ROI of a palmprint image in the gallery set. (b) is the ROI of a test palmprint image. (a) and (b) belong to the same palm. (c) ∼ (g) are quality-distorted 

versions of (b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. The relationship between the quality index (measured by IL-NIQE) and the 

matching distance (measured by OLOF [40] ). 
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c  

fi  
IQA model. It extracts various types of NSS (Natural Scene Statis-

tics) features from a collection of pristine naturalistic images, and

uses them to learn a multivariate Gaussian model of pristine im-

ages, which then serves as a reference model against which to pre-

dict the quality of the image patches. For a given test image, its

patches are thus quality evaluated, then patch quality scores are

averaged, yielding an overall quality score. A lower IL-NIQE value

represents better image quality. Here we use an example to show

that IL-NIQE is a good metric for objectively measuring the quality

of a given palmprint image and that the image quality can really

affect matching scores. Fig. 8 (a) is the ROI of a palmprint image

in the gallery set. Fig. 8 (b) is the ROI of a test palmprint image.

Fig. 8 (a) and Fig. 8 (b) actually belong to the same palm. We then

simulated five quality-distorted versions of Fig. 8 (b) and they are

shown in Fig. 8 (c) ∼ (g). Measured by IL-NIQE, the quality indices

of Fig. 8 (b) ∼ (g) are 88.08, 91.40, 112.12, 117.23, 127.23, and 130.68,

respectively. It can be found that using IL-NIQE the quality eval-

uation results are highly consistent with human perception. We

computed the matching distances between Fig. 8 (a) and (b) ∼ (g)

with OLOF [40] and the resulting matching distances are 0.1915,

0.1925, 0.2229, 0.2306, 0.3077, and 0.3253, respectively. The rela-

tionship between the quality index and the matching distance can

be more clearly observed through the plot shown in Fig. 9 . It indi-

cates that when the quality of the palmprint image degrades a lot,

the matching error will be increased. 

Using S 3 and IL-NIQE, the sharpness and the overall quality of

images in benchmark datasets were evaluated and the obtained re-

sults are listed in Table 5 . From Table 5 , it can be seen that images

in our dataset generally have higher sharpness and better overall

t  
uality. Thus, our dataset is more suitable to be employed to ex-

loit the discriminant capability of the contactless palmprint. 

.3. Contactless palmprint identification 

Identification experiments were conducted on our collected

ontactless palmprint dataset. We took samples collected in the

rst capturing session as the gallery set and samples collected in

he second session as the probe set. With such an experimental
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Table 5 

Quality evaluation of images in benchmark contactless palmprint datasets. 

CASIA [34] IIT [35] GPDS100 [36] KTU [37] Ours 

S 3 (Sharpness) 0.0560 0.0458 0.0387 0.0390 0.0901 

IL-NIQE (Overall quality) 110.78 105.80 119.01 141.17 101.32 

Table 6 

Identification results on our contactless palmprint dataset. 

Recognition 

rate (%) 

Time cost for 1 

identification (ms) 

PalmCode [30,41] 98.08 2665.41 

OLOF [28,31] 98.82 2256.53 

LBP+ χ2 [25] 94.08 478.15 

SIFT + OLOF [43,44] 98.90 3901.79 

SIFT + AlignedCompCode [45] 99.02 24,700.22 

CR_CompCode 98.78 12.48 
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Fig. 10. CMC curves for all methods evaluated on our contactless palmprint dataset. 
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etting, the gallery set has 600 classes and for each class there are

0 samples. We use the rank-1 recognition rate as the performance

easure. In addition, the running speed of each competing method

as also evaluated. Experiments were performed on a workstation

ith an Intel i7-5960X CPU and 64G RAM. The software platform

as Matlab2015a. 

In order to demonstrate the superiority of CR_CompCode, sev-

ral state-of-the-art matching methods in the field of contact-

ess palmprint recognition were evaluated, including PalmCode

30,41] (originally proposed in [12] ), OLOF [28,31] (originally pro-

osed in [40] ), LBP+ χ2 -distance [25] , SIFT+OLOF [43,44] , and

IFT+AlignedCompCode [45] . 

For each identification method being evaluated, there are sev-

ral parameters that need to be determined. For tuning parame-

ers, we collected an extra small-scale palmprint dataset using the

ame device, which comprises 20 0 0 images collected from 100 dif-

erent palms. Images were collected in two separate sessions and

n each session 10 images were collected for each palm. For each

dentification method, the parameters were empirically tuned in a

reedy manner and the tuning criterion was that parameter values

hat could lead to a higher recognition rate would be chosen. As a

esult, key parameters used in CR_CompCode were set as follows,

x = 4 . 85 (see Eq. (1) ), σy = 9 . 31 (see Eq. (1) ), f = 0 . 071 (see Eq.

1) ), p = 14 (the side length of the CompCode block), and λ = 1 . 35

see Eq. (4) ). 

Experimental results are summarized in Table 6 . In Table 6 , we

ist the recognition rate achieved by each method. In addition, we

lso list the time cost consumed by one identification operation for

ach method. Given a test sample, the time cost for one identifica-

ion operation includes the time consumed by the feature extrac-

ion and the time consumed by matching the test feature with the

allery feature set. In Fig. 10 , the CMC (cumulative match charac-

eristic) curves for all methods evaluated on our dataset are shown.

Based on the evaluation results listed in Table 6 and Fig. 10 , we

ould have the following findings. With respect to the classifica-

ion accuracy, the proposed method CR_CompCode could achieve

omparable results with the state-of-the-art methods. Its rank-

 recognition rate is 98.78% on our benchmark dataset. Mean-

hile, CR_CompCode runs greatly faster than all the other com-

eting methods. For example, it is about 1979 times faster than

IFT+AlignedCompCode [45] . Under our experimental settings, it

osts CR_CompCode only 12.48 ms to complete one identifica-

ion operation against a gallery set comprising 60 0 0 samples from

00 classes. The low speeds of the other methods evaluated can

ainly be attributed to the brute-force matching strategy they

dopt for identification. Take SIFT+AlignedCompCode [45] as an ex-

mple. When it is used for identification, it needs to match the test
ample to all the gallery samples and then figures out the most

atched one. Meanwhile, when SIFT+AlignedCompCode matches a

air of palmprint samples, the following operations are conducted:

IFT matching, image alignment, CompCode extraction from the

est sample, and CompCode matching. That explains the low speed

f SIFT+AlignedCompCode for identification. 

Based on above discussions, we recommend using the pro-

osed CR_CompCode method for contactless palmprint identifi-

ation since such an approach can achieve a distinguished high

ecognition accuracy while having an extremely low computational

omplexity. It is quite suitable for large-scale identification appli-

ations. 

.4. Computational complexity of CR_CompCode 

In this section, we perform a computational complexity anal-

sis for CR_CompCode. Denote the time cost for one multiplica-

ion operation by t 1 , the time cost for one addition or subtrac-

ion operation by t 2 , the time cost for one comparing operation

y t 3 , and the average number of samples for one class by c . The

ime cost for computing x 0 = P y ( P ∈ R 

n ×m , y ∈ R 

m ×1 ) is n (mt 1 +
(m − 1) t 2 ) . The time cost for computing the residual for one class

see Eq. (6) ) is m ( c t 1 + (c − 1) t 2 ) + m t 2 + m t 1 + (m − 1) t 2 . The time

ost for identifying the minimum residual is (k − 1) t 3 . Thus, the

otal time cost for one identification operation by CR_CompCode is

( n + kc + k ) m t 1 + ( nm − n + kmc + km − k ) t 2 + ( k − 1 ) t 3 . 

.5. About the identification certainty 

When an identification system is deployed in practice, we need

o consider the identification certainty issue. Given a test sample t ,

ts predicted class label is i . Then, we need to decide whether we

an accept this identification result. For this purpose, we can check

hether the reconstruction residual r i ( t ) lies within the confidence

nterval [ r L , r U ] satisfying, 

 ( r L < X < r U ) = 1 − α (7) 
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Fig. 11. Distributions of R c (the set comprising reconstruction residuals of correctly 

classified samples) and R w (the set comprising reconstruction residuals of misclas- 

sified samples). 
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where α is the confidence level. If r L < r i ( t ) < r U , the probability

that the class label of t really is i is 1 − α. 

r L and r U can be empirically estimated. On our dataset, nearly

all the test samples (98.78%) can be correctly classified. Thus, in or-

der to enlarge the number of reconstruction residuals of misclassi-

fied samples, we also matched the palmprint images of the PolyU

dataset [12] against our gallery set. As expected, each sample of

the PolyU dataset was misclassified as one of the classes in our

gallery set. Denote by R c the set comprising reconstruction resid-

uals of correctly classified samples and by R w 

the set comprising

reconstruction residuals of misclassified samples. Distributions of

R c and R w 

are plotted in Fig. 11 . With R c and R w 

, r L and r U can be

estimated straightforwardly. For example, in our case, if α is set as

0.05, [ r L , r U ] is estimated as [0, 0.885]. 

7. Conclusions 

In this work, we made an attempt towards exploring the dis-

criminant capability of the contactless palmprint. To this end, we

devised and developed a novel palmprint image acquisition device,

which is highly user-friendly and can acquire high-quality palm-

print images. Using the developed device, we collected a contact-

less palmprint image dataset comprising 12,0 0 0 samples collected

from 600 different palms, which is larger in scale than all the ex-

isting benchmark datasets in this field. Moreover, the image qual-

ity of our dataset is better than that of other ones, which is cor-

roborated by using two state-of-the-art blind IQA models. In addi-

tion, we proposed a novel method, namely CR_CompCode, for con-

tactless palmprint identification. CR_CompCode can achieve a quite

high recognition accuracy while having an extremely low computa-

tional complexity. On our dataset, CR_CompCode can complete one

identification operation within 12.5 ms and its rank-1 recognition

rate is 98.78%. Our system is suitable to be deployed to large-scale

time-critical applications. 
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