
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Supplementary Material for Paper 1640
Anonymous Author(s)
Submission Id: 1640

1 PRELIMINARIES OF THE SURROUND-VIEW
SYSTEM

This section describes how to generate a surround-view from im-
ages captured by the cameras in the surround-view system.

Given the ground coordinate system 𝑂𝐺 and a surround-view
system consisting of multiple cameras, the pose of camera 𝐶𝑖 is
denoted by 𝑻𝐶𝑖𝐺 . For a point 𝑷𝐺 = [𝑋𝐺 , 𝑌𝐺 , 𝑍𝐺 , 1]𝑇 in 𝑂𝐺 , its cor-
responding pixel coordinate 𝒑𝐶𝑖

in the camera coordinate system
of 𝐶𝑖 is given by,

𝒑𝐶𝑖
=

1
𝑍𝐶𝑖

𝑲𝐶𝑖
𝑻𝐶𝑖𝐺𝑷𝐺 (1)

where 𝑍𝐶𝑖
is the depth of 𝑷𝐺 in 𝐶𝑖 ’s coordinate system, and 𝑲𝐶𝑖

is the intrinsic matrix of camera 𝐶𝑖 , which can be estimated by
Zhang’s salient work [3] and some subsequent work of others [1, 4].
It’s worth mentioning that the poses of cameras in the surround-
view system are usually determined by offline calibration. In our
solution, the scheme proposed by Shao et al. in [2] is adopted.

Consider a point𝒑𝐺 = [𝑢𝐺 , 𝑣𝐺 , 1]𝑇 on the bird’s-eye-view image.
Its corresponding point on the ground plane is denotaed by 𝑷𝐺 =

[𝑋𝐺 , 𝑌𝐺 , 𝑍𝐺 = 0]𝑇 with respect to the ground coordinate system.
The relationship between 𝒑𝐺 and 𝑷𝐺 can be represented as,

𝒑𝐺 = 𝑲𝐺𝑷𝐺 (2)

and the transformation matrix 𝑲𝐺 is defined as,

𝑲𝐺 =


1

𝑑𝑋𝐺

0 𝑊
2𝑑𝑋𝐺

0 − 1
𝑑𝑌𝐺

𝐻
2𝑑𝑌𝐺

0 0 1

 (3)

where 𝑑𝑋𝐺
and 𝑑𝑌𝐺 define the physical size of each pixel1, and𝑊

and 𝐻 are the width and height of the synthesized surround-view,
respectively. It is worth mentioning that since 𝑍𝐺 = 0, it is ignored
implicitly here. By combining Eq. 1 and Eq. 2, we can get,

𝒑𝐶𝑖
=

1
𝑍𝐶𝑖

𝑲𝐶𝑖
𝑻𝐶𝑖𝐺𝑲−1

𝐺 𝒑𝐺 (4)

Eq. 4 actually depicts the relationship of a point 𝒑𝐶𝑖
on the image

plane of camera 𝐶𝑖 and its projection 𝒑𝐺 on the surround-view.
From Eq. 4, we can generate a bird’s-eye-view image by projecting
the undistorted image of camera 𝐶𝑖 onto the ground,

𝑰𝐺𝐶𝑖
(𝒑𝐺 ) = 𝑰𝐶𝑖

(𝒑𝐶𝑖
) (5)

where 𝑰𝐶𝑖
is the undistorted fisheye image captured by camera 𝐶𝑖 ,

and 𝑰𝐺𝐶𝑖
is the ground projection of 𝑰𝐶𝑖

, namely the bird’s-eye-view
image. Then, the surround-view image can be synthesized with
appropriate stitching seams.

1More accurately, each pixel in the surround-view image corresponds to a 𝑑𝑋𝐺
×𝑑𝑌𝐺

physical area on the ground plane.

2 JACOBIANS OF THE BI-CAMERA ERROR
As mentioned in the manuscript, the bi-camera error term 𝜀𝑏𝑖𝒑𝐺 of a
point 𝒑𝐺 on the surround-view is defined as,

𝜀𝑏𝑖𝒑𝐺 =
1
|P |

∑
𝒑𝑠 ∈P

𝑰𝐶𝑖

(
𝜆
𝐶𝑖
𝒑𝐺𝑲𝐶𝑖

exp
(
𝝃∧𝐶𝑖𝐺

)
𝑲−1
𝐺 𝒑𝐺 + 𝒑𝑠

)
−𝜸𝑖 𝑗 𝑰𝐶 𝑗

(
𝜆
𝐶 𝑗

𝒑𝐺𝑲𝐶 𝑗
exp

(
𝝃∧𝐶 𝑗𝐺

)
𝑲−1
𝐺 𝒑𝐺

) (6)

where 𝑰𝐶𝑖
and 𝑰𝐶 𝑗

are undistorted images captured by 𝐶𝑖 and 𝐶 𝑗 ,
respectively. 𝑲𝐶𝑖

and 𝑲𝐶 𝑗
are intrinsics of 𝐶𝑖 and 𝐶 𝑗 , respectively.

𝝃𝐶𝑖𝐺 and 𝝃𝐶 𝑗𝐺 are poses of 𝐶𝑖 and 𝐶 𝑗 in Lie algebra form, respec-
tively. 𝑲𝐺 stands for the transformation matrix from the surround-
view coordinate system to the ground coordinate system.P is a set
that contains the relative pixel coordinates of all the utilized points
to 𝒑𝐶𝑖

, and is defined as,

P = {[𝑖, 𝑗]𝑇 |𝑖, 𝑗 = −2, 0, 2}. (7)

Then, in this section, Jacobians of the bi-camera error term to
both the camera pose and the inverse depth will be deduced in
detail.
Jacobian to the pose. The Jacobian 𝑱𝑝 of the bi-camera error term
𝜀𝑏𝑖𝒑𝐺 to camera 𝐶𝑖 ’s pose 𝝃𝐶𝑖𝐺 can be expressed as,

𝑱𝑝 =
𝜕𝜀𝑏𝑖𝒑𝐺

𝜕𝝃𝑇
𝐺𝐶𝑖

. (8)

It can be decomposed to 4 parts with the chain rule,

𝑱𝑝 =
𝜕𝜀𝑏𝑖𝒑𝐺

𝜕𝑰𝐶𝑖

·
𝜕𝑰𝐶𝑖

𝜕𝒑𝑇
𝐶𝑖

·
𝜕𝒑𝐶𝑖

𝜕𝑷𝑇
𝐶𝑖

·
𝜕𝑷𝐶𝑖

𝜕𝝃𝑇
𝐶𝑖𝐺

. (9)

Next, we discuss these 4 parts one by one.
(1) 𝜕𝜀𝑏𝑖𝒑𝐺 /𝜕𝑰𝐶𝑖

is the derivative of the error 𝜀𝑏𝑖𝒑𝐺 to pixel intensities
of image 𝑰𝐶𝑖

. Actually, from Eq. 6, it’s easy to know that this term
is equal to one,

𝜕𝜀𝑏𝑖𝒑𝐺

𝜕𝑰𝐶𝑖

= 1. (10)

(2) 𝜕𝑰𝐶𝑖
/𝜕𝒑𝑇

𝐶𝑖
is the average intensity gradient, which is generally

computed by the Sobel operator, of image 𝑰𝐶𝑖
at all the pixels in

the local window P whose center is 𝒑𝐶𝑖
. Actually, this term can

also be approximated just by the intensity gradient at 𝒑𝐶𝑖
(the

window of the Sobel operator needs to be enlarged accordingly).
Thus, 𝜕𝑰𝐶𝑖

/𝜕𝒑𝑇
𝐶𝑖

can be given as,

𝜕𝑰𝐶𝑖

𝜕𝒑𝑇
𝐶𝑖

=

[
𝜕𝑰𝐶𝑖

𝜕𝑢𝐶𝑖

𝜕𝑰𝐶𝑖

𝜕𝑣𝐶𝑖

]
Δ
=

[
∇𝑰𝑢𝐶𝑖

𝐶𝑖
∇𝑰 𝑣𝐶𝑖

𝐶𝑖

]
(11)

where 𝑢𝐶𝑖
and 𝑣𝐶𝑖

are both coordinate values of 𝒑𝐶𝑖
.

(3) 𝜕𝒑𝐶𝑖
/𝜕𝑷𝑇

𝐶𝑖
is the derivative of a pixel’s 2D coordinate to its

3D position in the camera coordinate system. From the pin-hole
1
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camera model, we have

𝜕𝒑𝐶𝑖

𝜕𝑷𝑇
𝐶𝑖

=


𝑓 𝑖𝑥
𝑍𝐶𝑖

0 − 𝑓 𝑖𝑥𝑋𝐶𝑖

𝑍 2
𝐶𝑖

0
𝑓 𝑖𝑦
𝑍𝐶𝑖

− 𝑓 𝑖𝑦𝑌𝐶𝑖

𝑍 2
𝐶𝑖

 (12)

where 𝑓 𝑖𝑥 and 𝑓 𝑖𝑦 are focal lengths of 𝐶𝑖 , and 𝑋𝐶𝑖
, 𝑌𝐶𝑖

and 𝑍𝐶𝑖
are

coordinate values in three axes of 𝑷𝐶𝑖
in 𝐶𝑖 ’s coordinate system.

(4) 𝜕𝑷𝐶𝑖
/𝜕𝝃𝑇

𝐶𝑖𝐺
is the derivative of the 3D point 𝑷𝐶𝑖

to the camera
pose 𝝃𝐶𝑖𝐺 ,

𝜕𝑷𝐶𝑖

𝜕𝝃𝑇
𝐶𝑖𝐺

=

[
𝑰3×3 −𝑷∧

𝐶𝑖

]
(13)

where 𝑰 is a 3×3 identity matrix and 𝑷∧
𝐶𝑖

is the 3×3 anti-symmetric
matrix generated from 𝑷𝐶𝑖

. Bymerging the four terms in Eqs. 10∼13,
we can get the final form of the Jacobian 𝑱𝑝 ,

𝑱𝑝 =

[
∇𝑰

𝑢𝐶𝑖
𝐶𝑖

∇𝑰
𝑣𝐶𝑖
𝐶𝑖

] 
𝑓 𝑖𝑥
𝑍𝐶𝑖

0 − 𝑓 𝑖𝑥𝑋𝐶𝑖

𝑍 2
𝐶𝑖

0
𝑓 𝑖𝑦

𝑍𝐶𝑖
− 𝑓 𝑖𝑦𝑌𝐶𝑖

𝑍 2
𝐶𝑖


[
𝑰3×3 −𝑷∧

𝐶𝑖

]
. (14)

Jacobian to the inverse depth. The Jacobian 𝑱𝑑 of the bi-camera
error term 𝜀𝑏𝑖𝒑𝐺 to point 𝒑𝐶 𝑗

’s inverse depth 𝜆
𝐶 𝑗

𝒑𝐺 can be expressed
as,

𝑱𝑑 =
𝜕𝜀𝑏𝑖𝒑𝐺

𝜕𝜆
𝐶 𝑗

𝒑𝐺

. (15)

With the chain rule, it can also be decomposed as,

𝑱𝑑 =
𝜕𝜀𝑏𝑖𝒑𝐺

𝑷𝑇
𝐶𝑖

·
𝜕𝑷𝐶𝑖

𝜕𝑷𝑇
𝐶 𝑗

·
𝜕𝑷𝐶 𝑗

𝜕𝜆
𝐶 𝑗

𝒑𝐺

. (16)

Next, these three simpler parts are discussed one by one.
(1) 𝜕𝜀𝑏𝑖𝒑𝐺 /𝜕𝑷

𝑇
𝐶𝑖

is the derivative of the error 𝜀𝑏𝑖𝒑𝐺 to 𝒑𝐺 ’s corre-
sponding 3D position 𝑷𝐶𝑖

in 𝐶𝑖 ’s camera coordinate system. This
term can be obtained by combining Eqs. 10 ∼ 12, which is given as,

𝜕𝜀𝑏𝑖𝒑𝐺

𝑷𝑇
𝐶𝑖

=

[
∇𝑰𝑢𝐶𝑖

𝐶𝑖
∇𝑰 𝑣𝐶𝑖

𝐶𝑖

] 
𝑓 𝑖𝑥
𝑍𝐶𝑖

0 − 𝑓 𝑖𝑥𝑋𝐶𝑖

𝑍 2
𝐶𝑖

0
𝑓 𝑖𝑦
𝑍𝐶𝑖

− 𝑓 𝑖𝑦𝑌𝐶𝑖

𝑍 2
𝐶𝑖

 . (17)

(2) 𝜕𝑷𝐶𝑖
/𝜕𝑷𝑇

𝐶 𝑗
is the derivative of 𝑷𝐶𝑖

’s 3D coordinate in 𝐶𝑖 ’s
coordinate system to its corresponding 3D point in 𝐶 𝑗 ’s coordinate
system. This term is given as,

𝜕𝑷𝐶𝑖

𝜕𝑷𝑇
𝐶 𝑗

= 𝑻𝐶𝑖𝐺𝑻
−1
𝐶 𝑗𝐺

= 𝑻𝐶𝑖𝐶 𝑗
. (18)

where 𝑻𝐶𝑖𝐶 𝑗
is the relative pose of 𝐶 𝑗 to 𝐶𝑖 .

(3) 𝜕𝑷𝐶 𝑗
/𝜕𝜆𝐶 𝑗

𝒑𝐺 is the derivative of a 3D point 𝑷𝐶 𝑗
to its inverse

depth. It can be expressed as,

𝜕𝑷𝐶 𝑗

𝜕𝜆
𝐶 𝑗

𝒑𝐺

= − 1

(𝜆𝐶 𝑗

𝒑𝐺 )2
𝑲−1
𝐶 𝑗

𝒑𝐶 𝑗
= − 1

(𝜆𝐶 𝑗

𝒑𝐺 )
𝑷𝐶 𝑗

. (19)

Thus, the final form of the Jacobian 𝑱𝑑 is given by,

𝑱𝑑 = − 1

(𝜆𝐶 𝑗
𝒑𝐺 )

[
∇𝑰

𝑢𝐶𝑖
𝐶𝑖

∇𝑰
𝑣𝐶𝑖
𝐶𝑖

] 
𝑓 𝑖𝑥
𝑍𝐶𝑖

0 − 𝑓 𝑖𝑥𝑋𝐶𝑖

𝑍 2
𝐶𝑖

0
𝑓 𝑖𝑦

𝑍𝐶𝑖
− 𝑓 𝑖𝑦𝑌𝐶𝑖

𝑍 2
𝐶𝑖

𝑻𝐶𝑖𝐶 𝑗
𝑷𝐶 𝑗

= − 1

(𝜆𝐶 𝑗
𝒑𝐺 )

[
∇𝑰

𝑢𝐶𝑖
𝐶𝑖

∇𝑰
𝑣𝐶𝑖
𝐶𝑖

] 
𝑓 𝑖𝑥
𝑍𝐶𝑖

0 − 𝑓 𝑖𝑥𝑋𝐶𝑖

𝑍 2
𝐶𝑖

0
𝑓 𝑖𝑦

𝑍𝐶𝑖
− 𝑓 𝑖𝑦𝑌𝐶𝑖

𝑍 2
𝐶𝑖

𝑷𝐶𝑖
.

(20)

As all derivative relationships between the bi-camera error term
and the optimized variables have been deduced, the objective func-
tion of ROECS can then be minimized with any non-linear opti-
mization scheme and thereby we can get accurate extrinsics of the
SVS.
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