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ABSTRACT
Generally, a surround-view system (SVS), which is an indispensable
component of advanced driving assistant systems (ADAS), consists
of four to six wide-angle fisheye cameras. As long as both intrinsics
and extrinsics of all cameras have been calibrated, a top-down
surround-view with the real scale can be synthesized at runtime
from fisheye images captured by these cameras. However, when
the vehicle is driving on the road, relative poses between cameras
in the SVS may change from the initial calibrated states due to
bumps or collisions. In case that extrinsics’ representations are
not adjusted accordingly, on the surround-view, obvious geometric
misalignment will appear. Currently, the researches on correcting
the extrinsics of the SVS in an online manner are quite sporadic,
and a mature and robust pipeline is still lacking. As an attempt to fill
this research gap to some extent, in this work, we present a novel
extrinsics correction pipeline designed specially for the SVS, namely
ROECS (Robust Online Extrinsics Correction of the Surround-view
system). Specifically, a “refined bi-camera error” model is firstly
designed. Then, by minimizing the overall “bi-camera error” within
a sparse and semi-direct framework, the SVS’s extrinsics can be
iteratively optimized and become accurate eventually. Besides, an
innovative three-step pixel selection strategy is also proposed. The
superior robustness and the generalization capability of ROECS are
validated by both quantitative and qualitative experimental results.
To make the results reproducible, the collected data and the source
code have been released at https://cslinzhang.github.io/ROECS/.
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1 INTRODUCTION
A surround-view system (SVS) usually consists of four to six wide-
angle fisheye cameras. These cameras are mounted on the vehicle
facing different directions, so as to realize a 360◦ perception of
the surrounding environment. By calibrating the SVS’s intrinsics
and extrinsics accurately, relative poses between cameras can be
determined and then high-quality surround-views can be synthe-
sized. The surround-view cannot only broaden the driver’s view
to eliminate blind areas, but also be employed in parking-slot de-
tection [9, 17, 26], autonomous parking [11, 18, 23, 25], pedestrian
detection [8, 14] and other related driving assistance tasks.

After being extrinsically calibrated, cameras in the SVS should be
fixed to keep extrinsics unchanged. However, collisions or bumps
may destroy the initial spatial structure of the camera system. If
the initial extrinsics are still used and not properly adjusted, in
generated surround-views, there will be observable geometric mis-
alignment. In such case, prompt correction of the SVS’s extrinsics
in an online manner is of great significance for the driving safety.
Unfortunately, thus far the research in this area is still in its infancy.
Existing schemes in this field mainly have the following limitations.

(1) Most of existing online extrinsics correction methods are de-
signed for commonmulti-camera systems like binocular cam-
eras, so that such methods usually can’t be easily extended to
make them applicable to the surround-view case due to the
particularity in the structure of the SVS. Concretely, most of
existing online extrinsics correction schemes extract feature
points in the common-view regions of different cameras, and
then match them to solve accurate extrinsics. However, in
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the SVS, common fields of views between adjacent cameras
are much narrower and more distorted than those of com-
mon binocular cameras, resulting in difficulty in resolving
high-quality feature pairs from these regions.

(2) Existing solutions which are feasible to the surround-view
case mostly require relatively ideal environments. For exam-
ple, the approaches proposed in [2, 4, 13, 21, 28] require that,
on the ground, there must be two parallel lane-lines that
can be clearly detected. Thus, they usually have noticeable
limitations in both the usability and the generalization capa-
bility. To the best of our knowledge, on the premise that the
framework is applicable to the surround-view case, Liu et
al.’s approach [20], Zhang et al.’s approach [27] and the one
proposed in this paper are the only three that have quite re-
laxed requirements for the working conditions. Specifically,
these three approaches all simply require a flat ground with
relatively rich natural textures for them to work.

Currently, online extrinsics correction solutions are rarely em-
bedded in the commercial products due to the technical immaturity.
To fill such a research gap to some extent, in this paper, we pro-
pose an online extrinsics correction pipeline for the SVS, namely
“ROECS” (Robust Online Extrinsics Correction of the Surround-view
system). Our contributions are summarized as follows:

(1) A “refined bi-camera error” model is designed. The inaccu-
racy of SVS’s extrinsics is mainlymanifested in the geometric
misalignment in bird’s-eye common-view regions of adja-
cent cameras. Inspired by this observation, for a point 𝒑𝐺 on
the surround-view, we can construct a bi-camera error term
which is actually the discrepancy of pixel values between
two corresponding pixels 𝒑𝐶𝑖

and 𝒑𝐶 𝑗
on fisheye images.

The bi-camera error term can effectively measure the degree
of the geometric misalignment on the surround-view at 𝒑𝐺
without feature matching.

(2) Based on the “refined bi-camera error” model, we present the
online extrinsics correction pipeline “ROECS”, which follows
a sparse and semi-direct framework. Each qualified point
on the surround-view can be used to construct a bi-camera
error term and by summing up all points’ terms, the overall
error of the system can be obtained. It’s worth mentioning
that we use multiple frames selected by our frame selection
strategy and stored in a local window rather than a single
frame to build the overall error, so as to improve the system’s
robustness. The frame selection strategy will be introduced
in Sect. 4.2. By iteratively minimizing the system’s overall
error with any non-linear optimization scheme, the optimal
camera poses can then be figured out.

(3) To further improve the speed and the accuracy of ROECS, we
also propose a novel pixel selection strategy, which consists
of three steps, common-view judgement, gradient screen-
ing and mismatched object elimination. Thanks to such a
selection strategy, pixels with tiny gradient moduli and “mis-
matched” pixels, which will be demonstrated in detail in Sect.
4.1, can be effectively eliminated to reduce the computational
cost and the effects of noise.

2 RELATEDWORK
The SVS, which we are going to focus on, belongs to a particular
type of multi-camera systems, which are sensors composed of at
least two cameras. In this section, we will make a brief review on
existing extrinsics correction schemes designed for multi-camera
systems.

2.1 Manmade-feature based methods
Since manmade-feature based methods often strongly rely on some
specific assumptions, relatively ideal environmental conditions are
indispensable for them. One of the earliest work in this field is Col-
lado et al.’s in [4]. To begin with, they extracted patterns from two
parallel lane-lines with the Sobel operator and the Hough transform.
Then camera poses could be estimated in an online manner with
lane-lines’ patterns. In [21], Nedevschi et al. proposed a solution
based on vanishing point estimation. In Hold et al.’s work [13], a
method of the online extrinsics calibration also using ground lane-
lines was presented. They detected lane-lines and then sampled
them with the scanning line to obtain a set of equidistant feature
points, from which the extrinsics of the camera system were de-
termined. In [28], Zhao et al. estimated multiple vanishing points
rather than a single one to calibrate cameras’ orientations. Although
most of the aforementioned manmade-feature based frameworks
perform satisfactorily in both the speed and the accuracy, none of
them are designed for the SVS. Differently, in [2], Choi et al. pro-
posed a pipeline which is specially designed for the surround-view
case. They aligned lane-line markings across images captured by
adjacent cameras and then the SVS can be extrinsically calibrated.

2.2 Natural-feature based methods
On account of the limited application scope of manmade-feature
based approaches, more and more researchers focus on substituting
manmade features in specific environments with natural features
that could be extracted in common scenes. We refer to these so-
lutions as “natural-feature based” ones. One of the earliest rele-
vant researches along this direction can be traced back to Dang et
al.’s work in [5]. They formulated a Gauss-Helmert model for the
self-recalibration task. Their model consists of three different cate-
gories of constraint equations, the bundle-adjustment constraint,
the epipolar constraint, and the trilinear constraint. Hansen et al.’s
approach in [10] is a typical natural-feature based method. They
matched feature points among different frames and then estimated
extrinsics by bundle adjustment. To guarantee the efficiency of the
scheme, features were sampled sparsely. Knorr et al. [16] established
an optimization algorithm which seats on a recursive structure. In
their approach, a sequence of frames were required for the pipeline
to converge. In [19], taking the initial offline calibration result as
the starting point, Ling and Shen minimized the epipolar error by
non-linear optimization to find accurate camera poses, and the cali-
bration accuracy was evaluated by the minimum eigenvalue of the
covariance matrix. It is worth mentioning that this method takes all
cameras as a whole and supposes that relative poses among them
are fixed and will not change.

It needs to be noted that all of the methods reviewed above are
designed for common multi-camera systems. Although the SVS
also belongs to the family of multi-camera systems, unfortunately,



these schemes usually are not directly applicable to it. As far as
we know, the only two existing natural-feature based methods
which are applicable to the SVS are Liu et al.’s method [20] and
Zhang et al.’s [27]. They all studied the online extrinsics correction
problem in depth and their works are quite relevant to ours in
this paper. In [20], Liu et al. proposed two models, the “Ground
Model” and the “Ground-Camera Model”, and both of them can
correct extrinsics by minimizing photometric errors. In [27], Zhang
et al. designed a model to construct the least-square errors on the
imaging planes of two adjacent cameras. However, the authors of
these two schemes didn’t take the interference of possible noise in
various environments into consideration.

𝜀𝜀𝒑𝒑𝐺𝐺
𝑏𝑏𝑏𝑏 = 𝑰𝑰𝐶𝐶𝑖𝑖 𝒑𝒑𝐶𝐶𝑖𝑖 − 𝑰𝑰𝐶𝐶𝑗𝑗(𝒑𝒑𝐶𝐶𝑗𝑗)

𝐶𝐶𝑏𝑏 𝐶𝐶𝑗𝑗𝒑𝒑𝐺𝐺

𝒑𝒑𝐶𝐶𝑖𝑖 𝒑𝒑𝐶𝐶𝑗𝑗

𝑰𝑰𝐶𝐶𝑖𝑖 𝑰𝑰𝐶𝐶𝑗𝑗

Figure 1: Illustration of the basic structure of the bi-camera
error model. For any qualified point selected by our pixel
selection strategy, a corresponding bi-camera error term can
be constructed.

3 REFINED BI-CAMERA ERROR MODEL
A bi-camera error term is employed to measure the photometric
discrepancy of two corresponding points on original fisheye images
captured by adjacent cameras. By minimizing the system’s overall
error, which is mainly summed up by the squares of all bi-camera
error terms, accurate extrinsics of the SVS can be obtained. Since the
final form of ROECS’s objective function is a little bit complicated,
in this section, we first analyze the basic form of the bi-camera
error model, and other necessary refinements are then introduced
incrementally. The basic structure of the bi-camera error model is
illustrated in Fig. 1.

3.1 Basic Form
Suppose that an SVS is composed of four fisheye cameras, 𝐶1, 𝐶2,
𝐶3 and 𝐶4. For a camera 𝐶𝑖 , the mapping relationship between an
observed point 𝒑𝐺 on the surround-view coordinate system and a
corresponding point 𝒑𝐶𝑖

on the undistorted image 𝑰𝐶𝑖
is given by,

𝒑𝐶𝑖
=

1
𝑍𝐶𝑖

𝑲𝐶𝑖
𝑻𝐶𝑖𝐺𝑲−1

𝐺 𝒑𝐺 (1)

where 𝑲𝐶𝑖
is the intrinsic matrix of𝐶𝑖 . The extrinsics of𝐶𝑖 , denoted

by 𝑻𝐶𝑖𝐺 , is the pose matrix of camera𝐶𝑖 with respect to the ground
coordinate system. 𝑍𝐶𝑖

is the depth of 𝒑𝐺 in𝐶𝑖 ’s coordinate system.
𝑲𝐺 is the transform matrix from the ground coordinate system to
the surround-view one. For more details about the imaging process
of the SVS, please refer to the supplementary material.

If 𝒑𝐺 can be seen by both𝐶𝑖 and𝐶 𝑗 , its projections 𝒑𝐶𝑖
and 𝒑𝐶 𝑗

on undistorted images 𝑰𝐶𝑖
and 𝑰𝐶 𝑗

can then be obtained using Eq.

𝐈𝐈

𝐈𝐈𝐈𝐈 𝐈𝐈𝐈𝐈𝐈𝐈

𝐈𝐈𝐈𝐈

Figure 2: The surround-view image and common-view re-
gions on the surround-view. There are four common-view
regions marked on the figure as the Roman numericals I, II,
III and IV.

1. For 𝒑𝐺 , we define its corresponding bi-camera error term 𝜀𝑏𝑖𝒑𝐺 as,

𝜀𝑏𝑖𝒑𝐺 = 𝑰𝐶𝑖

(
𝒑𝐶𝑖

)
− 𝑰𝐶 𝑗

(
𝒑𝐶 𝑗

)
. (2)

By combining Eq. 1 and Eq. 2, we have obtained the basic form
of the bi-camera error term. To minimize the error under the non-
linear optimization framework effectively, we introduce the “Lie
algebra representation” [12] and the “inverse depth” [3] to refor-
mulate the bi-camera error as,

𝜀𝑏𝑖𝒑𝐺 =𝑰𝐶𝑖

(
𝜆
𝐶𝑖
𝒑𝐺𝑲𝐶𝑖

exp
(
𝝃∧𝐶𝑖𝐺

)
𝑲−1
𝐺 𝒑𝐺

)
− 𝑰𝐶 𝑗

(
𝜆
𝐶 𝑗

𝒑𝐺𝑲𝐶 𝑗
exp

(
𝝃∧𝐶 𝑗𝐺

)
𝑲−1
𝐺 𝒑𝐺

) (3)

where 𝝃𝐶𝑖𝐺 and 𝝃𝐶 𝑗𝐺 are Lie algebra forms of 𝐶𝑖 ’s pose and 𝐶 𝑗 ’s,
respectively. 𝜆𝐶𝑖

𝒑𝐺 is the inverse depth of 𝒑𝐶𝑖
’s corresponding 3D

point 𝑷𝐶𝑖
in 𝐶𝑖 ’s coordinate system and 𝜆

𝐶 𝑗

𝒑𝐺 is that of 𝒑𝐶 𝑗
’s. It’s

worth mentioning that 𝜆𝐶𝑖
𝒑𝐺 and 𝜆𝐶 𝑗

𝒑𝐺 are not independent of each
other and their relationship can be expressed as,

𝜆
𝐶𝑖
𝒑𝐺 =

1

[𝑻𝐶𝑖𝐶 𝑗
(𝜆𝐶 𝑗

𝒑𝐺 )−1𝑲
−1
𝐶 𝑗

𝒑𝐶 𝑗
]3

(4)

where the symbol [∗]3 stands for the coordinate value in the Z axis
of the point, and 𝑻𝐶𝑖𝐶 𝑗

is the relative pose between 𝐶𝑖 and 𝐶 𝑗 .

3.2 Necessary Refinements
To guarantee the performance of the optimization, we made some
refinements on the basic form of the bi-camera error model. Specifi-
cally, we introduce an exposure time factor and propose to compute
the error on multiple pixels rather than a single one.
Exposure correction. Because of the inevitable discrepancies be-
tween different cameras’ internal constructions in the SVS, for a
same point 𝒑𝐺 on the ground, corresponding imaging pixel values
𝑰𝐶𝑖

(
𝒑𝐶𝑖

)
and 𝑰𝐶 𝑗

(
𝒑𝐶 𝑗

)
won’t be precisely the same, even if extrin-

sics are absolutely accurate. Actually, for an image of a physical
object, except for the properties of the object itself, the correspond-
ing pixel value is also determined by the exposure time, the vignette



and the non-linear response function of the camera [6]. Based on
our experience, the exposure time is the most important factor
among them. To this end, we define a factor 𝜸𝑖 𝑗 as the ratio of
exposure time of 𝐶𝑖 and 𝐶 𝑗 ,

𝜸𝑖 𝑗 =
𝑡𝑖

𝑡 𝑗
(5)

where 𝑡𝑖 is 𝐶𝑖 ’s exposure time and 𝑡 𝑗 is that of 𝐶 𝑗 ’s. Accordingly,
the bi-camera error term (Eq. 3) can be further reformulated as,

𝜀𝑏𝑖𝒑𝐺 =𝑰𝐶𝑖

(
𝜆
𝐶𝑖
𝒑𝐺𝑲𝐶𝑖

exp
(
𝝃∧𝐶𝑖𝐺

)
𝑲−1
𝐺 𝒑𝐺

)
−𝜸𝑖 𝑗 𝑰𝐶 𝑗

(
𝜆
𝐶 𝑗

𝒑𝐺𝑲𝐶 𝑗
exp

(
𝝃∧𝐶 𝑗𝐺

)
𝑲−1
𝐺 𝒑𝐺

)
.

(6)

Actually, the exposure time of a camera can be obtained directly
with the photometric calibration pipeline introduced in [7]. How-
ever, such a pipeline is quite cubersome. Instead, we offer a simple
scheme for approximation, with which the factor 𝜸𝑖 𝑗 can be fitted
as,

𝛾𝑖 𝑗 =

∑
𝒑𝐺 ∈O𝑖 𝑗

𝑰𝐺𝐶𝑖
(𝒑𝐺 )∑

𝒑𝐺 ∈O𝑖 𝑗
𝑰𝐺𝐶 𝑗

(𝒑𝐺 )
(7)

where 𝑰𝐺𝐶𝑖
and 𝑰𝐺𝐶 𝑗

are bird’s-eye view images of camera 𝐶𝑖 and
𝐶 𝑗 , respectively. O𝑖 𝑗 is the set of all pixels in the common-view
region of𝐶𝑖 and𝐶 𝑗 on bird’s-eye views. In sum, there are four such
regions on the surround-view as illustrated in Fig. 2.
Computing the error on multiple pixels. In most cases, the
function of the pixel intensity of an image won’t be absolutely
smooth. Constructing the error term with a single pixel, the op-
timization may easily fall into the local optimum due to the non-
smoothness of the image. Therefore, to improve the robustness,
rather than computing the error with just one pixel pair 𝒑𝐶 𝑗

and
𝒑𝐶𝑖

, we construct the error term with 𝒑𝐶 𝑗
and nine points on 𝐼𝐶𝑖

near 𝒑𝐶𝑖
,

𝜀𝑏𝑖𝒑𝐺 =
1
|P |

∑
𝒑𝑠 ∈P

𝑰𝐶𝑖

(
𝜆
𝐶𝑖
𝒑𝐺𝑲𝐶𝑖

exp
(
𝝃∧𝐶𝑖𝐺

)
𝑲−1
𝐺 𝒑𝐺 + 𝒑𝑠

)
−𝜸𝑖 𝑗 𝑰𝐶 𝑗

(
𝜆
𝐶 𝑗

𝒑𝐺𝑲𝐶 𝑗
exp

(
𝝃∧𝐶 𝑗𝐺

)
𝑲−1
𝐺 𝒑𝐺

) (8)

where P is a set that contains the relative pixel coordinates of all
the utilized points to 𝒑𝐶𝑖

, and is defined as,

P = {[𝑖, 𝑗]𝑇 |𝑖, 𝑗 = −2, 0, 2}. (9)

3.3 Objective Function and Jacobians
In this subsection, we mainly introduce the form of ROECS’s ob-
jective function in the optimization. We consider 𝐶𝑖 as the target
camera and 𝐶 𝑗 as the reference one. During the optimization, to
keep the optimal solution unique, only 𝐶𝑖 ’s pose 𝝃𝐶𝑖𝐺 and 𝑷𝐶 𝑗

’s

inverse depth 𝜆𝐶 𝑗

𝒑𝐺 are optimized, while both 𝝃𝐶 𝑗𝐺 and 𝒑𝐶 𝑗
are fixed.

It’s worth mentioning that 𝒑𝐺 is not fixed, but changes with 𝜆
𝐶 𝑗

𝒑𝐺 .
In a single frame, for each qualified point chosen by the pixel

selection strategy discussed in Sect. 4.1, a bi-camera error term can
be built. To improve the robustness of the pipeline, we utilize pixels
from multiple frames, which are selected by our frame selection
strategy discussed in Sect. 4.2, rather than a single one during
optimization. Besides, there is also a prior knowledge that most
of qualified pixels should be from the ground. So for each point

𝒑𝐺 , we also introduce a prior error term 𝜀
𝑝𝑟𝑖𝑜𝑟
𝒑𝐺 to the overall error

to prevent the inverse depth 𝜆
𝐶 𝑗

𝒑𝐺 from drastic changes. The prior
error term 𝜀

𝑝𝑟𝑖𝑜𝑟
𝒑𝐺 is defined as,

𝜀
𝑝𝑟𝑖𝑜𝑟
𝒑𝐺 = 𝛼 (𝜆𝐶 𝑗

𝒑𝐺 − 𝜆
𝐶 𝑗 ∗
𝒑𝐺 ) (10)

where 𝛼 is an empirical value that controls how confident the point
is on the ground. The prior inverse depth 𝜆

𝐶 𝑗 ∗
𝒑𝐺 is defined as,

𝜆
𝐶 𝑗 ∗
𝒑𝐺 =

1[
𝑷𝐶 𝑗

]
3

=
1[

exp
(
𝝃∧
𝐶 𝑗𝐺

)
𝑲−1
𝐺

𝑷𝐺
]
3

(11)

By summing up the squares of all bi-camera error terms and
prior error terms, the final objective function of the system can be
established and the optimal pose 𝝃 ∗

𝐶𝑖𝐺
of camera 𝐶𝑖 is given by,

𝝃 ∗𝐶𝑖𝐺
= argmin

𝝃𝐶𝑖𝐺
,𝝀𝐶𝑗

∑
(𝑖, 𝑗) ∈A

∑
𝑓 ∈F

∑
𝒑𝐺 ∈N 𝒊𝒋

𝜌ℎ ((𝜀𝑏𝑖𝒑𝐺 )
2) + (𝜀𝑝𝑟𝑖𝑜𝑟𝒑𝐺 )2 (12)

where 𝜌ℎ is the Huber kernel function,A is the set of all adjacent
camera pairs, F is the set of frames involved in the optimization,
N𝑖 𝑗 is the set of all qualified points in the common-view region of
𝐶𝑖 and 𝐶 𝑗 , and 𝝀𝐶 𝑗 is the inverse depth values to be optimized.

To minimize the objective function, the derivative relationships
between the error terms and optimized variables, which consist of
camera poses and the inverse depth of each point, need to be deter-
mined. Since the form of the prior error term is straightforward, we
only offer the Jacobians of the bi-camera error term. The Jacobian
𝑱𝑝 of the bi-camera error term 𝜀𝑏𝑖𝒑𝐺 to 𝐶𝑖 ’s pose 𝝃𝐶𝑖𝐺 is given by,

𝑱𝑝 =

[
∇𝑰

𝑢𝐶𝑖
𝐶𝑖

∇𝑰
𝑣𝐶𝑖
𝐶𝑖

] 
𝑓 𝑖𝑥
𝑍𝐶𝑖

0 − 𝑓 𝑖𝑥𝑋𝐶𝑖

𝑍 2
𝐶𝑖

0
𝑓 𝑖𝑦

𝑍𝐶𝑖
− 𝑓 𝑖𝑦𝑌𝐶𝑖

𝑍 2
𝐶𝑖


[
𝑰3×3 −𝑷∧

𝐶𝑖

]
(13)

and the Jacobian 𝑱𝑑 of the bi-camera error term 𝜀𝑏𝑖𝒑𝐺 to point 𝒑𝐶 𝑗
’s

inverse depth 𝜆
𝐶 𝑗

𝒑𝐺 is given by,

𝑱𝑑 = − 1

(𝜆𝐶 𝑗
𝒑𝐺 )

[
∇𝑰

𝑢𝐶𝑖
𝐶𝑖

∇𝑰
𝑣𝐶𝑖
𝐶𝑖

] 
𝑓 𝑖𝑥
𝑍𝐶𝑖

0 − 𝑓 𝑖𝑥𝑋𝐶𝑖

𝑍 2
𝐶𝑖

0
𝑓 𝑖𝑦

𝑍𝐶𝑖
− 𝑓 𝑖𝑦𝑌𝐶𝑖

𝑍 2
𝐶𝑖

𝑷𝐶𝑖
(14)

where ∇𝑰𝑢𝐶𝑖

𝐶𝑖
and ∇𝑰 𝑣𝐶𝑖

𝐶𝑖
are intensity gradients of 𝑰𝐶𝑖

at 𝒑𝐶𝑖
, 𝑓 𝑖𝑥 and

𝑓 𝑖𝑦 are focal lengths of 𝐶𝑖 , 𝑋𝐶𝑖
, 𝑌𝐶𝑖

and 𝑍𝐶𝑖
are coordinate values

in three axes of 𝑷𝐶𝑖
in 𝐶𝑖 ’s coordinate system.

4 PIXEL SELECTION AND FRAME
SELECTION STRATEGIES

4.1 Pixel Selection Strategy
To improve the speed and the robustness of the system, the pipeline
we proposed follows a sparse semi-direct framework. That is to
say, pixels which meet specific requirements rather than all pixels
are chosen to establish the overall error. The selected pixels on the
surround-view should meet three requirements:

a) The pixel must be in the field of view of at least two cameras.
b) The pixel should have enough intensity gradient modulus.
c) The pixel should be taken from the flat ground.



(a) (b)

Figure 3: Typical examples of mismatched objects. The
pedestrians in (a) and the curb in (b) are both typical mis-
matched objects, and they are marked in surround-views on
the left. Enlarged areas on the right in each group from top
to bottom are captured from the front-view and the right-
view, respectively. It can be seen that there are obvious par-
allaxes between observations of mismatched objects on ad-
jacent bird’s-eye views.

With the requirements above, a novel pixel selection strategy is
proposed. Take a pair of adjacent cameras𝐶𝑖 and𝐶 𝑗 as an example.
A set of pixelsN𝑖 𝑗 are selected out by the strategy. For any pixel
𝒑 in N𝑖 𝑗 , it must pass a three-step check, involving common-view
judgement, gradient screening, and mismatched object elimination.
Common-view Judgement. This is the first and simplest but most
important rule. Common-view judgement implies that the pixel
must be in the common-view region between adjacent cameras. To
describe the criterion, the point 𝒑 should be in the common-view
region O𝑖 𝑗 of 𝐶𝑖 and 𝐶 𝑗 ,

𝒑 ∈ O𝑖 𝑗 (15)

Gradient Screening. Gradient screening is an approach that se-
lects pixels with high gradient moduli while abandons those with
low ones. For the consideration of the discrepancy in both overall
pixel intensities and contrast between different images, a single
constant threshold won’t be always appropriate. Thus, we use a
dynamic threshold to select pixels. Concretely, this criterion is
formulated as,

𝐺𝑖 (𝒑) > 𝐺𝑚𝑒𝑎𝑛 + 𝜎𝑔 (16)
where 𝐺𝑚𝑒𝑎𝑛 is the mean intensity gradient modulus of all pixels
in O𝑖 𝑗 over the surround-view and 𝜎𝑔 is the associated standard
deviation.
Mismatched Object Elimination. In reality, some objects with
non-negligible heights, such as lawns, curbs or pedestrians, may
appear on the surround-view, as illustrated in Fig. 3. For the conve-
nience of statements, such objects are referred to as “mismatched
objects”. Pixels frommismatched objects are accordingly referred to
as “mismatched pixels”, and other pixels are referred to as “ground
pixels”. The existence of mismatched pixels has a destructive ef-
fect on the performance of the system since it breaks the premise
of the establishment of the bi-camera error model. Therefore, we
design such a “mismatched object elimination” approach to cull mis-
matched pixels. Such a step consists of two sub-steps, homography
alignment and color matching.

The first sub-step is homography alignment. Since the vehicle is
travelling on the flat ground, we can resolve a homography matrix
to estimate the motion. For two consecutive frames 𝑰 𝑡

𝐺𝐶𝑖
and 𝑰 𝑡+1

𝐺𝐶𝑖
,

we extract ORB features [22] over them and then match these fea-
tures using the Hamming distance. After that, a homographymatrix
𝑯 𝑡+1
𝑡 is estimated via the “4-point” method. For the consideration

of the robustness, the estimation seats on a RANSAC framework.
It’s worth mentioning that, in this sub-step, ORB feature points are
used, so our method is “semi-direct” rather than “direct”.

The second sub-step is color matching. After the homography
alignment, we warp 𝑰 𝑡+1

𝐺𝐶𝑖
by 𝑯 𝑡+1

𝑡 to generate 𝑰 𝑡
′

𝐺𝐶𝑖
. For any point

𝒑 on 𝑰 𝑡
′

𝐺𝐶𝑖
, there should be,

𝑰 𝑡
′

𝐺𝐶𝑖
(𝒑) = 𝑰 𝑡+1𝐺𝐶𝑖

(𝑯 𝑡+1
𝑡 𝒑). (17)

Since color information is more discriminative than gray-scale
information, the “mismatched object elimination” step is conducted
based on color images rather than gray-scale ones. Ideally, for any
ground pixel 𝒑, it should satisfy,

𝑰 𝑡
′

𝐺𝐶𝑖
(𝒑) = 𝑰 𝑡𝐺𝐶𝑖

(𝒑) . (18)

However, mismatched pixels are from physical objects that are not
in the same plane with the ground. Thus, for a mismatched pixel
𝒑, 𝑯 𝑡+1

𝑡 can’t provide a correct motion estimation, and there will
be obvious differences between 𝑰 𝑡

′

𝐺𝐶𝑖
(𝒑) and 𝑰 𝑡

𝐺𝐶𝑖
(𝒑). To measure

this discrepancy in quantity, we first propose a coefficient, namely
“color ratio”, and then use the standard deviation of 𝒑’s color ratios
in different channels as the measurement of its corresponding color
discrepancy. To simplify notations, we use 𝑰𝑡 to represent 𝑰 𝑡𝐺𝐶𝑖

, and

use 𝑰𝑡 ′ to represent 𝑰
𝑡
′

𝐺𝐶𝑖
. Besides, let 𝑰𝑐𝑡 and 𝑰𝑐

𝑡
′ be the channel map

of 𝑰𝑡 and 𝑰𝑡 ′ of channel 𝑐 , respectively. The color ratio 𝑟𝑐 (𝒑) of
point 𝒑 is defined as,

𝑟𝑐 (𝒑) =
𝑰𝑐
𝑡
′ (𝒑)

𝑰𝑐𝑡 (𝒑) . (19)

Then as aforementioned, we use the standard deviation of 𝒑’s color
ratios in different channels as the measurement of its color discrep-
ancy. It’s worth mentioning that to improve the robustness, the
color discrepancy is computed in a local window P𝒑 at 𝒑,

𝐷𝑐𝑜𝑙𝑜𝑟 (𝒑) =
1

|P𝒑 |
∑

𝒑𝑤 ∈P𝒑

√∑𝑛𝑐
𝑐=1

(
𝑟𝑐 (𝒑𝑤) − 𝑟𝜇 (𝒑𝑤)

)2
𝑛𝑐

(20)

where 𝑛𝑐 is the number of channels (normally 3) and 𝑟𝜇 is the
average of 𝒑𝑤 ’s color ratios in all channels. For any 𝒑 ∈ N𝑖 𝑗 , it
must satisfy,

𝐷𝑐𝑜𝑙𝑜𝑟 (𝒑) < 𝐷𝑚𝑒𝑎𝑛 − 𝜎𝑑 (21)

where 𝐷𝑚𝑒𝑎𝑛 is the average color discrepancy of all the points in
O𝑖 𝑗 and 𝜎𝑑 is the associated standard deviation.

4.2 Frame Selection Strategy
To keep the richness of textures and the uniformity of their dis-
tribution, we use multiple frames stored in a local window rather
than a single one to build the overall error and then activate the
optimization. The candidate frame that can be added to the local
window must satisfy following three criteria:
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Figure 4: The overall pipeline of ROECS. Each qualified pixel 𝒑𝐺 on the surround-view can be used to construct a bi-camera
error term. By minimizing the overall error of the system, which is composed of error terms from all frames in the local
window, with the non-linear optimization, extrinsics can be iteratively optimized.

a) In chronological order, there should be at least five frames
between the candidate frame and the last one in the window.

b) There should be enough features in the candidate frame.
In our implementations, 6000 qualified pixels are required
under the 1080p resolution. For lower resolutions, such a
threshold can also be turned down accordingly.

c) The ground should be relatively flat, and there cannot be too
many mismatched objects in the field of the surround-view.

The first two constraints are straightforward, so here we just
explain how to formulate the third constraint, which is “the ground
should be relatively flat”. In fact, when the ground is flat, the vehicle
is approximately moving parallel to the imaging plane of the SVS, so
the estimated homography matrix should be close to the isometric
matrix. Thus, we utilize a heuristic determinant based method
to check the isometry of the transform matrix. The homography
matrix 𝑯 𝑡+1

𝑡 mentioned in Sect. 4.1 can be expressed as,

𝑯 𝑡+1
𝑡 =

[
𝑨2×2 𝒕
𝒖 1

]
. (22)

If 𝑯 𝑡+1
𝑡 is an isometric transform matrix, 𝑨2×2 should be an or-

thonormal matrix. Thus, we use the determinant of 𝑨2×2 to check
the flatness of the ground. For a candidate frame, its corresponding
matrix 𝑯 𝑡+1

𝑡 should satisfy,

(𝐷𝑒𝑡 (𝑨2×2) − 1)2 < 𝜃 (23)

where 𝜃 is a threshold. In our implementations, 𝜃 is set to 0.2.

5 OVERALL PIPELINE OF ROECS
In Sects. 3 ∼ 4, we have presented details about our online extrinsics
correction approach ROECS. To provide the reader with a clear and
overall understanding of our work, more about its overall pipeline,
which is illustrated in Fig. 4, are demonstrated in this section.

The pipeline of ROECS mainly consists of three phases. The
first is the data preprocessing. While the vehicle is travelling on

the road, the SVS will continuously capture images and synthesize
surround-views. Fisheye images captured by different cameras at
time 𝑡 are noted as a group of images,𝐺𝑡 . When ROECS is activated,
for each time the SVS acquires the image group 𝐺𝑡 , the step a) and
the step c) in the frame selection approach discussed in Sect. 4.2 are
firstly performed. If𝐺𝑡 can meet these two steps’ requirements, we
then select pixels on𝐺𝑡 by the pixel selection strategy introduced in
Sect. 4.1 to find all qualified pixels. Finally, the step b) of the frame
selection introduced in Sect. 4.2 is conducted to ensure that features
are enough. After 𝐺𝑡 passes the frame selection, both 𝐺𝑡 and the
related pixel selection results are stored in the local window. Once
the number of image groups in the local window reaches the preset
threshold 𝑛, operations in the subsequent two phases in ROECS’
pipeline will be executed.

The second phase of ROECS is the establishment of the optimiza-
tion structure. Suppose 𝐼 𝑖𝑡 is one of the images in group 𝐺𝑡 , which
is stored in the local window. Each qualified pixel on 𝐼 𝑖𝑡 is projected
onto adjacent cameras’ views to construct a bi-camera error term.
For all frames in the local window, such bi-camera error terms and
corresponding prior error ones can be built, and by summing up
all terms, the overall error of the system is obtained.

Once the first two phases of ROECS have been performed, the
optimization can then be conducted, which is also the last phase.
As the overall error is of a least-square form, it can be minimized
by any nonlinear optimization scheme, like the steepest descent
[1], the Gauss-Newton method [24] and the Levenberg-Marquardt
(LM) method [15]. To achieve a rather better performance, in our
implementation, we adopted the LM scheme.

6 EXPERIMENTAL RESULTS
6.1 Experiment Setup
To validate the performance of our proposed pipeline ROECS, we
performed experiments on an electric car equipped with an SVS,
which consists of four Leopard LI-OV10640-490-GMSL cameras.
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Figure 5: Comparison of surround-views before and after extrinsics correction by ROECS in various environments. From (a) to
(d), four pairs of images belong to four groups of the collected data mentioned in Sect. 6.1, respectively. For each pair, the left
surround-view is synthesized with inaccurate extrinsics while the right one is the result using extrinsics recovered by ROECS.

The resolution, the field-of-view, and the acquisition frequency of
cameras are 1920 × 1080, 190 degrees and 30 FPS, respectively.

We collected four groups of surround-views (groups A, B, C and
D), and for each group, there are one hundred frames. From A∼D,
each group of frames corresponds to a specific environmental con-
dition, which are characterized by (A) with rich textures, (B) with
relatively rich textures, (C) with sparse textures, and (D) with obvi-
ous mismatched objects, respectively. All experiments mentioned
in this section were conducted based on these data. It should be
noted that for all groups, cameras’ poses were changed moderately
from the state of initial offline calibration.

6.2 Qualitative Experimental Results

Table 1: Qualitative comparison with related methods

Method Method type Prior SVS Feature type
Collado et al. [4] Manmade-feature × × Ground lanes

Nedevschi et al. [21] Manmade-feature
√ × Ground lanes

Hold et al. [13] Manmade-feature × × Ground lanes
Zhao et al. [28] Manmade-feature × √

Ground lane
Choi et al. [2] Manmade-feature × √

Ground lane
Dang et al. [5] Natural-feature

√ × Feature point
Hansen et al. [10] Natural-feature × × Feature point
Knorr et al. [16] Natural-feature

√ × Feature point
Ling and Shen [19] Natural-feature

√ × Feature point
Liu et al. [20] Natural-feature

√ √
Dense pixels

Zhang et al. [27] Natural-feature
√ √

Sparse pixels
𝑹𝑶𝑬𝑪𝑺 Natural-feature

√ √
Sparse pixels

Traits of Methods. From those four aspects shown in Table 1, we
compared all methods discussed in Sect. 2 and also our ROECS to
demonstrate their characteristics more clearly. 1) Is this method
manmade-feature based or natural-feature based? 2) Does it reuse
the prior information from the offline calibration? 3) Without com-
plex extensions, can it be applicable to the SVS? 4) What kind of
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Figure 6: (a)∼(d) are average photometric errors along with
the correction evolvement of compared schemes over all
surround-views corresponding to groups A∼D, respectively.

features does it rely on? It can be seen that only Liu et al.’s method
[20], Zhang et al.’s one [27] and ROECS can both correct extrin-
sics with natural features and be applicable to the SVS. Actually,
compared with Liu et al.’s method [20] and Zhang et al.’s one [27],
ROECS performs much better in terms of the robustness and the
generalization capability.
Typical Samples. In order to qualitatively demonstrate the supe-
riority of ROECS in terms of the correction effect, for each of the
four groups of data aforementioned, we select a typical sample and
show surround-views synthesized with both inaccurate extrinsics
and corrected extrinsics recovered via ROECS, respectively, in Fig.
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Figure 7: Results of pairwise comparison user study. (a)
shows the pairwise comparison result between ROECS and
Liu et al.’s work [20], while (b) shows the result between
ROECS and Zhang et al.’s method [27].
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Figure 8: The photometric errors of both “dense approaches”
and “sparse approaches” alongwith the optimization evolve-
ment. (a) to (d) are the results achieved on groups A∼Dof the
collected data, respectively.

5. It can be seen that the geometric misalignment in surround-
views has been eliminated evidently by ROECS’s correction, which
qualitatively corroborates the effectiveness of ROECS.

6.3 Quantitative Experimental Results
As mentioned in Sect. 2, among all natural-feature based methods,
only Liu et al.’s work [20], Zhang et al.’s work [27] and ours can be
applicable to the surround-view case. Thus, in this subsection, we
mainly quantitatively compare ROECS with its two rivals.
Effectiveness and Robustness. In this experiment, with each
group of data we collected, we tried to optimize the system’s ex-
trinsics with Liu et al.’s scheme [20], Zhang et al.’s scheme [27] and
ROECS, respectively. For each examined approach, the trends of
errors along with the optimization evolvement are shown in Fig. 6.
For reference, we also offered an “offline baseline”, which was the
average photometric error over all surround-views generated by
undisturbed offline calibrated extrinsics. From the results reported,
it can be found that, in most cases, ROECS performs much better
than its competitors.

Table 2: Time cost analysis of ROECS

Sparsity Resolution Time cost Pixel number
Dense 1080p 2.8236s/iter 216000/frame
Sparse 1080p 0.2331s/iter 13476/frame
Dense 900p 1.8638s/iter 150968/frame
Sparse 900p 0.1613s/iter 9073/frame
Dense 720p 1.1332s/iter 96480/frame
Sparse 720p 0.0942s/iter 5896/frame

Pairwise Comparison User Studies. Eight volunteers were in-
vited to perform pairwise comparison among the correction results
of Liu et al.’s scheme [20], Zhang et al.’s scheme [27] and ROECS.
For each pairwise comparison, the subject had three options, “left
better”, “right better”, or “no preference”. The results of the user
study are summarized in charts shown in Fig. 7. Each color bar is
the average percentage of the image version favored over all eight
subjects. From the results, it is obvious that the participants over-
whelmingly selected the corrected results of our scheme. This user
study demonstrates that in most cases, ROECS can effectively cor-
rect the geometric misalignment, and its performance is far beyond
that of its counterparts.
Ablation Study of the Pixel Selection Strategy. Actually, with-
out the pixel selection, the optimization in ROECS becomes a dense
direct approach rather than the sparse one. In short, we call the
optimization approach of our method with and without the pixel
selection as the “sparse approach” and the “dense approach”, respec-
tively. Two factors were mainly considered in the evaluation of the
pixel selection strategy, the speed and the accuracy. For the speed,
we recorded time costs of both “sparse approaches” and “dense
approaches” under different resolutions in Table 2. With respect to
the accuracy, the photometric errors along with the optimization
evolvement of both the “sparse approach” and the “dense approach”
are illustrated in Fig. 8. From the experimental results, it can be
corroborated that both the speed and the accuracy can be enhanced
considerably by integrating our proposed pixel selection strategy.

7 CONCLUSION
In this paper, we studied a practical problem, online correction
of cameras’ extrinsics for the surround-view system, emerging
from the field of ADAS, and proposed a novel solution namely
ROECS. ROECS follows a sparse and semi-direct framework and
fuses the prior information inherited from the offline calibration.
With ROECS, byminimizing the system’s overall error overmultiple
frames chosen by our frame selection strategy, cameras’ extrinsics
can be optimized effectively. One eminent feature of ROECS is that,
thanks to our novel frame selection and pixel selection strategy,
proper frames and pixels can be automatically selected to activate
the optimization. Experimental results corroborated ROECS’s supe-
riority over the state-of-the-art competitors in this area.
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