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Vision-Based Parking-Slot Detection:
A DCNN-Based Approach and a
Large-Scale Benchmark Dataset
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Abstract— In the automobile industry, recent years have
witnessed a growing interest in developing self-parking systems.
For such systems, how to accurately and efficiently detect and
localize the parking slots defined by regular line segments near
the vehicle is a key and still unresolved issue. In fact, kinds of
unfavorable factors, such as the diversity of ground materials,
changes in illumination conditions, and unpredictable shadows
caused by nearby trees, make the vision-based parking-slot
detection much harder than it looks. In this paper, we attempt
to solve this issue to some extent and our contributions are
twofold. First, we propose a novel deep convolutional neural
network (DCNN)-based parking-slot detection approach, namely,
DeepPS, which takes the surround-view image as the input.
There are two key steps in DeepPS, identifying all the marking
points on the input image and classifying local image patterns
formed by pairs of marking points. We formulate both of
them as learning problems, which can be solved naturally
by modern DCNN models. Second, to facilitate the study of
vision-based parking-slot detection, a large-scale labeled dataset
is established. This dataset is the largest in this field, comprising
12 165 surround-view images collected from typical indoor and
outdoor parking sites. For each image, the marking points and
parking slots are carefully labeled. The efficacy and efficiency
of DeepPS have been corroborated on our collected dataset.
To make our results fully reproducible, all the relevant source
codes and the dataset have been made publicly available at
https://cslinzhang.github.io/deepps/.

Index Terms— Self-parking systems, parking-slot detection,
deep convolutional neural networks.

I. INTRODUCTION

FOR many drivers, especially the novices, finding and
navigating a vehicle into a suitable parking-spot is a

great challenge [1]. The main reason is that the driver cannot
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see around the vehicle or determine the size and shape of
the parking space. This has been leading many research
institutions and vehicle manufacturers to devote great efforts
on the development of self-parking systems. Actually, a self-
parking system can be regarded as a special type of unmanned
driving system. The workflow of a typical self-parking sys-
tem is roughly as follows. When approaching the parking
area, the vehicle switches to the low-speed unmanned mode
and automatically travels along a predetermined track. When
working in unmanned mode, the vehicle may need to rely
on high-definition maps, GPS signals, or SLAM (Simulta-
neous Localization and Mapping) [2] technology for self-
positioning. During traveling, the vehicle searches for available
parking-slots around, or attempts to identify and locate the
parking-slot assigned to it by the parking-slot management
system. Once an appropriate parking-slot is detected and
positioned, the vehicle will switch to the automatic parking
mode, plan the parking path, and eventually park the vehicle
to the designated parking-slot.

There are many key issues that need to be addressed when
building a self-parking system. How to quickly and accurately
detect and locate the parking-slots around the vehicle is just
one of them.

The remainder of this paper is organized as follows.
Section II introduces the related work and our contributions.
Section III presents our DCNN-based parking-slot detection
approach, DeepPS. Experimental results are presented in
Section IV. Finally, Section V concludes the paper.

II. RELATED WORK AND OUR CONTRIBUTIONS

A. Vision-Based Parking-Slot Detection:
Algorithms and Datasets

The methods for perceiving available parking spaces dur-
ing vehicle travel can be categorized into two groups,
the free-space-based ones and the vision-based ones.
A free-space-based approach designates a target parking posi-
tion by recognizing an appropriate vacant space between adja-
cent vehicles. This is the most widely used approach as it can
be implemented using various range-finding sensors, such as
ultrasonic sensors [3]–[8], laser scanners [9]–[11], short-range
radars [12]–[14], structured light [15], depth cameras [16],
stereo cameras [17]–[22]. The free-space-based approach has
an inherent drawback that it must rely on vehicles that have
already been properly parked as a reference. In other words,
this kind of approaches cannot work in an open area with no
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Fig. 1. The high-level structure of a typical vision-based parking-slot
detection system. It usually comprises two modules, surround-view synthesis
and parking-slot detection from the surround-view. When a parking-slot is
detected, its position with respect to the vehicle-centered coordinate system
will be passed to the decision module.

vehicles around. In addition, its accuracy highly depends on
the positions and poses of adjacent vehicles.

The working principle of a vision-based approach is funda-
mentally different from that of a method based on free-space.
The goal of a vision-based approach is to identify and locate
the parking-slots defined by parking line segments painted on
the ground. Apparently, the performance of such approaches
does not depend on the existence or poses of adjacent vehicles.
Moreover, in most cases, parking line segments can provide
more accurate parking information than “free-space.” Mean-
while, most car manufacturers have started to produce vehicles
equipped with wide FOV (field of view) imaging sensors,
usually used in an AVM (around view monitoring) system. For
these reasons, the vision-based approach has begun to draw a
lot of attention recently in the field of parking spot detection,
which is also our focus in this paper.

Fig. 1 shows the high-level structure of a typical
vision-based parking-slot detection system, which usually
comprises two independent modules, surround-view syn-
thesis and parking-slot detection from the surround-view.
The surround-view camera system normally consists of
four to six wide-angle cameras mounted around the vehi-
cle, each facing a different direction. Based on these
wide-angle images, the surround-view synthesis module can
generate a 360◦ surround-view image around the vehicle.
In the literature, there are already mature solutions for cal-
ibrating wide-angle cameras [23], [24] and constructing a
surround-view system [25], [26]. The parking-slot detection
module takes the surround-view image as the input, detects
the parking-slots, and finally sends their physical positions
with respect to the vehicle-centered coordinate system to
the decision module for further process. Representative work
on vision-based parking-slot detection will be reviewed as
follows.

The research in this area begins with Xu et al.’s pioneer
work [27]. Xu et al. [27] claimed that the colors of parking
lines are quite uniform and different from the background

and thus they trained a neural network to segment parking
lines. Then, they estimated two perpendicular lines as the
parking-slot contour. The drawback of this simple model is that
the type (perpendicular or parallel) of the parking-slot cannot
be obtained and it cannot deal with slanted parking-slots either.
Jung et al. presented a one-touch method that recognizes the
line segments of a parking-slot by checking the directional
gradient based on a manually provided point inside the tar-
get parking-slot. In view of this method can only handle a
single type of parking-slot, Jung et al. [29] extended it to a
two-touch method. This method can recognize various types
of parking-slot-markings based on two points with respect to
a parking-slot entrance-line provided by the driver. Du and
Tan [30] developed a reverse parking system. In order to
detect the parking-slot, a ridge detector is applied on the image
first and then medial axes of the slot lines are obtained after
the steps of noise filtering, connected components labeling,
and removal of components with a small number of pixels.
However, their system relies on human drivers to identify an
empty parking-slot first before initiating the parking process.
To sum up, the apparent shortcoming of the methods proposed
in [28]–[30] is that they are not fully automated, hereby
limiting their usability in practice.

Fully automated approaches are developed along two
main streams, the line-based ones and the corner-based
ones, according to the primitive visual features they extract.
Jung et al. [31] assumed that parking-lines consist of lines
with a fixed width and recognized them by applying peak-pair
detection and clustering in Hough space [32]. Separating
parking-line segments were at last recognized by a T-shaped
template matching. Based on similar ideas as Jung et al’s
work [31], Wang et al. [25] proposed to detect parking-line
segments in Radon space [33] as they considered that Radon
transform has a better noise-tolerance ability and is more
robust than Hough transform. One potential drawback of
the methods in [25] and [31] is their sensitiveness to
the parking-line width. After obtaining the edge map of the
surround-view image, Hamada et al. [34] made use of the
probabilistic Hough transform [35] to extract all line seg-
ments and then they inferred the valid parking-slots based
on some geometric constraints. Suhr and Jung [36] designed
a parking-slot detection approach specially for underground
and indoor environments. In their approach, the guide line
is detected first and then the separating lines are detected.
To detect the guide line, they utilized the RANSAC (RANdom
SAmpling Consensus) [32] algorithm for robust line fitting
from edge pixels and to detect the separating lines, they
used the distance transform based chamfer matching [37].
The main limitations of Suhr and Jung’s method are twofold:
1) it can only detect perpendicular parking-slots but cannot
detect parallel ones; 2) it requires that the guide line of the
parking-slots should be visible. Lee and Seo [38] proposed
the so-called “cone-hat” filter for line-marking extraction and
then the extracted line features were assigned to parking-line
segments via entropy-based clustering. After that, the sequen-
tial RANSAC algorithm [39] was utilized to fit parking-lines
from clusters. At last, parking-slot candidates were gener-
ated and then validated by a Bayesian network model [40].
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Different from line-based ones, a few other parking-slot
detection methods are based on corners and among them
Suhr and Jung’s work is a representative one [41], [42]. The
method proposed in [41] and [42] detects corners via the
Harris corner detector [43] first and then generates junc-
tions by combining these corners; finally, parking-slots are
inferred from junction pairs. Thus, the success rate of this
method highly depends on the robustness of the Harris corner
detector.

Quite recently, in [26], we introduced the machine learn-
ing theory into the field of parking-slot detection. Specif-
ically, based on boosting decision trees, we trained a
marking-point detector. When the marking-points are avail-
able, valid parking-slots are inferred through some predefined
geometric rules.

As a commonsense, to design and validate parking-slot
detection algorithms, a large-scale public benchmark dataset is
indispensable. Unfortunately, the vast majority of researchers
in this field did not publish the datasets they collected, which
undoubtedly hinders the development of this field. To the
best of our knowledge, the dataset established in [26] is the
only public one in this field, which comprises 8,600 labeled
surround-view images.

B. Deep Convolutional Neural Networks

As our proposed parking-slot detection approach, DeepPS
(Refer to Sect. III for details), is based on deep convolutional
neural networks (DCNN), we give a brief review about the
development of DCNN in this section.

As we all know, we are witnessing a rapid, revolutionary
change in the computer vision community, mainly caused by
DCNN. DCNN is actually a kind of representation learning
methods that allow a machine to be fed with raw data
and to automatically discover the representations needed for
classification or detection [44]. Recently, DCNN has pulled
away from competing methods due to the availability of larger
labeled datasets, better models and training algorithms, and
the availability of GPU computing to enable investigation of
larger and deeper models. The development of DCNN traces
back to the late 1980s [45] and since 2012, more powerful
and popular DCNN architectures have been proposed in the
literature, such as AlexNet [46], GoogLeNet [47], VGG [48],
and ResNet [49], just to name a few.

DCNN-based approaches have recently been substantially
improving upon the state-of-the-art in several areas, such as
image classification, object detection, face recognition, image
restoration, etc. Among them, the development of the filed
of object detection is quite relevant to our work. Applying
DCNN in solving the task of object detection begins with
Girshick et al.’s groundbreaking work, R-CNN [50]. R-CNN
is actually a multi-stage detection framework. Given an input
image, it first uses an object proposal algorithm to find
bounding-boxes that include objects with high probability.
Then, a standard DCNN is applied as a feature extractor to
each proposed bounding-box and finally a classifier decides
the object class inside the box. Following the framework
of R-CNN, many researchers proposed their modifications

to improve R-CNN’s performance and some representative
approaches along this direction are Fast-RCNN [51], Faster-
RCNN [52], HyperNet [53], etc. R-CNN and all its variants
highly depend on object proposals. Hence, the performance of
the object proposal algorithm becomes the bottleneck. Quite
recently, some researchers have begun to challenge the neces-
sity of an object proposal algorithm in DCNN-based object
detection systems and they formulated the object detection as a
regression problem to spatially separated bounding-boxes and
associated class probabilities. Representatives of such methods
include Yolo [54], SSD [55], and YoloV2 [56]. Experimental
results from different research groups indicate that this kind of
methods can get bounding-boxes as accurate as R-CNN like
methods but run much faster. As a result, in our parking-slot
detection approach, DeepPS, YoloV2 is adopted for detecting
marking-points (Refer to Sect. III-A for details).

C. Our Motivations and Contributions

Through the literature survey, we find that in the field of
vision-based parking-slot detection, we need to continue to
devote efforts in at least two aspects.

First, the performance of parking-slot detection algorithms
still needs to be further improved. In fact, vision-based
parking-slot detection is a mission full of challenge. Kinds
of adverse factors make it more formidable than it looks.
In Fig. 2, eight typical surround-view images containing
parking-slots collected by us are shown, from which it can
be seen that the visual context of parking-slots varies greatly.
The causes that can be attributed to this diversity may include
diverse ground materials, various parking-slot types (perpen-
dicular, parallel, or slanted), different parking-line colors,
incompleteness of the parking-lines, changes in illumination
conditions, shadows caused by nearby trees or buildings, etc.
Existing solutions are either based on low-level features (e.g.,
edges, lines, or corners) or are based on elementary machine
learning theories (e.g., AdaBoost used in [26]). Under simple
and ideal conditions, they can lead to acceptable performance.
However, when the visual scenes become complicated and
non-ideal, the performance of these methods is often unsat-
isfactory due to their inherent limitations. Therefore, how to
design a parking-slot detection algorithm that can cope with
practical complex conditions and also can achieve a high
precision-recall rate is still a challenging task.

Second, large-scale public datasets are quite rare in this
field. To design parking-slot detection algorithms and also to
objectively compare their performance, a public large-scale
benchmark dataset covering a variety of real scenarios is indis-
pensable. Unfortunately, thus far the only publicly available
dataset in this field is the one established in [26].

In this work, we attempt to fill the aforementioned research
gaps to some extent and our major contributions are summa-
rized as follows.

(1) Upon seeing that DCNN has achieved great suc-
cesses in various vision-related fields, we attempt to
devise a DCNN-based parking-slot detection approach and
we name it as DeepPS (short for “deep parking-slot”).
Given a surround-view image, DeepPS first detects all the



ZHANG et al.: DCNN-BASED APPROACH AND A LARGE-SCALE BENCHMARK DATASET 5353

Fig. 2. Eight typical surround-view images are shown here to demonstrate that the visual patterns of parking-slots can vary much in real cases. The
parking-slots in (a), (b), (c), and (d) are “perpendicular,” the ones in (e), (f), and (g) are “parallel,” and the ones in (h) are “slanted.” (a) and (b) were taken
from indoor parking sites while the others were taken from outdoor parking sites. Parking lines in (b) are yellow while the ones in the other images are white.
(e) is taken on a rainy day. (f) is taken under the street light at night. In (g), the strong shadow caused by nearby trees covers the parking lines. Observable
damages to parking lines exist in (d) and (e). Ground materials are different from each other in these images.

Fig. 3. (a) and (b) are two surround-view images with marking-points marked
by yellow circles.

marking-points on it using a pre-trained marking-point detec-
tor based on YoloV2 [56]. A marking-point pattern refers
to a local image patch centered at a cross-point of two
parking-line segments. Examples of marking-points marked by
yellow circles are shown in Fig. 3. Given a pair of detected
marking-points p1 and p2, DeepPS will then decide whether
they can form a valid entrance-line and if “yes,” DeepPS
will also need to decide the type of this parking-slot. This
task can be fulfilled via classifying the local image pattern
defined by p1 and p2 using a standard pre-trained DCNN
model. To our knowledge, our work is the first to apply
deep learning techniques to parking-slot detection. DeepPS
can deal with nearly all the commonly seen types of parking-
slots. Its performance has been intensively evaluated on our

established dataset. Actually, DeepPS has been equipped on
SAIC Roewe E50 electric cars [57].

(2) To facilitate the study of vision-based parking-slot detec-
tion, we extend the dataset established in [26] to an even larger
one. The new dataset comprises 12,165 surround-view images,
covering a wide variety of real cases, and all the images
are manually labeled with care. This dataset can serve as a
benchmark and be employed for training and validating new
parking-slot detection algorithms. Please refer to Sect. IV-A
for more details about this dataset.

The differences between the current work and our pre-
vious work in [26] are summarized as follows. In [26],
we trained a marking-point detector based on ACF (Aggregate
Channel Features) + Boosting Decision Trees. When the
marking-points are ready, valid parking-slots are inferred
through some predefined geometric rules. In this work, we for-
mulate the parking-slot detection problem as two sub-problems
(marking-point detection and local image pattern classifica-
tion), both of which can be efficiently solved by DCNNs.
In addition, a larger benchmark dataset is established in this
work.

To make the results reported in this paper fully reproducible,
the collected dataset and all the relevant source codes are
publicly available at https://cslinzhang.github.io/deepps/.

III. DEEPPS: A DCNN-BASED APPROACH

In this section, our proposed parking-slot detection approach
DeepPS will be presented in detail. DeepPS takes a
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Fig. 4. Ideal parking-slot models that DeepPS can deal with.
(a), (b), and (c) show ideal models for perpendicular, parallel, and slanted
parking-slots, respectively. Marking-points are marked with yellow circles.
Examples of the entrance-lines and the separating-lines are also marked out.

surround-view image as the input and can deal with almost
all the commonly seen types of parking-slots composed of
“T-shaped” or “L-shaped” marking-points. In Fig. 4, ideal
parking-slot models that DeepPS can cope with are shown.
Fig. 4(a), 4(b), and 4(c) show ideal models for perpendicular,
parallel, and slanted parking-slots, respectively. In Fig. 4, all
the marking-points are marked with yellow circles. Besides,
examples of the entrance-line (a virtual line linking the
two marking-points of a valid parking-slot) and examples
of the separating-line (a parking-line separating two adjacent
parking-slots) are also marked out.

To detect parking-slots, three major steps are taken by
DeepPS, including marking-point detection, local image pat-
tern classification, and parking-slot inference. Details are intro-
duced in the following subsections.

A. Marking-Point Detection

At the testing stage, given a surround-view image, DeepPS
first detects from it all the marking-points. For this purpose,

Fig. 5. To make the marking-point detector rotation invariant, when preparing
training samples, each original labeled image was rotated to generate a set of
its rotated versions. (a) is an original labeled image and (b) is generated by
rotating (a) 30 degrees. Marking-points are indicated as purple points and the
associated bounding-boxes are shown as yellow squares.

we need to train a marking-point detector D offline before-
hand. Through the literature survey, we find that YoloV2 [56]
is a state-of-the-art general-purpose object detector based on
DCNN. It can achieve quite high detection accuracy and
also can run extremely fast. In addition, the YoloV2 frame-
work is straightforward to configure and extend. Hence, our
marking-point detector is based on YoloV2.

To train the detector, we need to prepare training sam-
ples. At the training sample preparation stage, on a given
surround-view image, the positions of all its marking-points
were manually marked. For each marking-point pi , a square
box of the fixed size p × p centered on pi is regarded as the
ground-truth bounding-box of pi .

It is highly desired that the trained marking-point detector
could have the property of rotation invariance. To achieve
this goal, we augmented the training set by rotating each
original labeled image to generate a number of its rotated
versions. Specifically, from each original labeled image I,
we could obtain its J rotated versions

{
I j

}J−1
j=0 , where I j

is generated by rotating I with 360
J · j degrees. Of course,

the labeled coordinates of marking-points were rotated in the
same way. Such an idea for data augmentation is illustrated
by an example shown in Fig. 5. Fig. 5(a) is an original
labeled image while Fig. 5(b) is generated by rotating Fig. 5(a)
30 degrees. Marking-points are indicated as purple points and
the associated bounding-boxes are shown as yellow squares.

In implementation, the YoloV2-based marking-point detec-
tor D was fine-tuned from the model trained on VOC dataset,
which was provided by the authors of YoloV2. For fine-tuning,
the mini-batch size was set to 64; and the learning rate started
from 0.0001 and was divided by 10 every 50000 iterations.
We used a weight decay of 0.0005 and a momentum of 0.9.

The trained marking-point detector performs quite well at
the testing stage. In Sect. IV-C, we will quantitatively evaluate
its performance.

B. Local Image Pattern Classification

After applying the marking-point detector D on the test
image, points with confidence scores greater than δ1 will
be considered as marking-points. Suppose that p1 and p2
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Fig. 6. The distance between p1 and p2 satisfies the distance constraint for
being an entrance-line of a parallel parking-slot; however, actually, p1 and p2
cannot form a valid entrance-line.

are two detected marking-points. We need to validate that
whether they can form a valid entrance-line. First, if −−→p1p2
can be a valid entrance-line candidate, the distance between
p1 and p2 should satisfy some constraints. If −−→p1p2 is an
entrance-line candidate for a parallel parking-slot, it needs to
satisfy t1 < ‖p1p2‖ < t2; if −−→p1p2 is an entrance-line candidate
for a perpendicular or a slanted parking-slot, it should satisfy
t3 < ‖p1p2‖ < t4. Parameters t1, t2, t3, and t4 are set based on
the priori knowledge about the entrance-line lengths of various
types of parking-slots.

Then, we need to further process the marking-point pairs
satisfying the distance constraints. First, for a pair of marking-
points, although it can satisfy the distance constraints, it is
highly possible that they still cannot form a valid entrance-
line. For example, in Fig. 6, the distance between p1 and p2
satisfies the distance constraint for being an entrance-line of a
parallel parking-slot; however, it is obvious that −−→p1p2 is not a
valid entrance-line because it passes through another marking-
point. In addition, suppose that −−→p1p2 is a valid entrance-line.
We need to determine whether the associated parking-slot
is on its clockwise side or on its anticlockwise side and to
determine whether this parking-slot is right-angled or slanted.1

All these issues can be solved through classifying the local
image pattern defined by p1 and p2 into one of the predefined
classes.

As illustrated in Fig. 7(a), the local image pattern defined
by two marking-points p1 and p2

2 on a surround-view image
is extracted as follows. At first, a local coordinate system is
established, which takes the mid-point of p1 and p2 as its
origin, and −−→p1p2 as its X-axis. Its Y-axis can be consequently
determined. In this coordinate system, we define a rectangular
region R, which is symmetric both to the X-axis and the
Y-axis. For R, its side length along the X-axis is set as
‖p1p2‖ + �x and its side length along the Y-axis is set
as �y. We extract the image region covered by R from the

1If a parking-slot is right-angled, its entrance-line and its separating-
line yare perpendicular to each other; if it is slanted, its entrance-line and
separating-line are not perpendicular.

2It is supposed that the distance between these two marking-points satisfies
the distance constraints for being a valid entrance-line ycandidate.

Fig. 7. (a) demonstrates how to extract the local image pattern defined by two
marking-points p1 and p2. (b) ∼ (h) are representative local image patterns
belonging to the classes “right-angled anticlockwise,” “slanted anticlockwise
with an acute parking angle,” “slanted anticlockwise with an obtuse parking
angle,” “right-angled clockwise,” “slanted clockwise with an obtuse parking
angle,” “slanted clockwise with an acute parking angle,” and “invalid,”
respectively.

surround-view image, normalize it to the size w×h, and regard
the resultant image patch as the local image pattern defined
by p1 and p2.

At the training stage, based on label data, we can obtain
a set C comprising all the local image patterns defined by
pairs of marking-points. According to the characteristics of
the associated parking-slots, we categorize the samples in C

into 7 classes, “right-angled anticlockwise,”3 “slanted anti-
clockwise with an acute parking angle,”4 “slanted anticlock-
wise with an obtuse parking angle,” “right-angled clockwise,”
“slanted clockwise with an obtuse parking angle,” “slanted
clockwise with an acute parking angle,” and “invalid.” Rep-
resentative exemplars belonging to these classes are shown
in Fig. 7(b) ∼ (h), respectively. When constructing C,
we encountered a practical problem, class imbalance, meaning
that a specific class has a very small number of instances
relative to other classes. In our case, the root cause of this
issue is that in our collected dataset the number of slanted
parking-slots is much smaller than that of the right-angled
ones. To solve this problem, we adopted SMOTE [58] to
over-sample the minority classes.

3It means that the associated parking-slot is right-angled and is on the
anticlockwise side of −−→p1p2.

4For a slanted parking-slot, the parking-angle is defined as the angle between
the entrance-line −−→p1p2 and its separating-line.
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Fig. 8. Our customized DCNN structure for local image pattern classification.

From C, we can train a classification model M to predict
the class label of an unseen local image pattern extracted from
a test surround-view image. With respect to the classification
model, DCNN is a natural choice. However, based on the
following considerations, we do not directly make use of
the existing public DCNN architectures (such as AlexNet,
GoogLeNet, ResNet, etc.).

1) With the current system configurations, the size of the
image samples in C is 48 × 192 (more details about
parameter settings can be found in Sect. IV-B), much
smaller than the required sizes of popular public DCNN
architectures.5 Of course, we can upsample images in C

to make them meet the requirements of public DCNN
models; however, obviously, that is not the most efficient
way.

2) Nearly all the popular public DCNN structures
are designed for the image classification task of
ImageNet [59]. The ImageNet classification task has
1000 classes while our classification task has only
7 classes. Moreover, the content complexity of local
image patterns in C is much lower than the gen-
eral images in ImageNet. For these reasons, we think
that a small-scale network can be qualified for our
task. Compared with the popular large-scale networks,
a small-scale network has more advantages in terms of
computing speed, storage space requirement, and so on.

Therefore, taking AlexNet [46] as a template, a customized
DCNN architecture is designed to solve our classification task.
As shown in Fig. 8, our network takes a grayscale 48 × 192
image as the input and the output layer has 7 nodes, corre-
sponding to the 7 classes of local image patterns. In Fig. 8,
“conv” means it is a convolution layer, “ReLU” means it is
a rectified linear unit [60] layer, “max-pool” means it is a
max pooling layer, “BN” means it is a batch normalization
layer, and “FC” means it is a fully connection layer. For each
“conv,” “max-pool,” and “FC” layer, its parameter settings and
the dimension of its output (feature map of this layer) are
presented in Table I. “kernel: [kernel_h, kernel_w]” specifies
height and width of each filter, “pad: [pad_h, pad_w]” specifies
the number of pixels to add to each side of the input, “stride:
[stride_h, stride_w]” specifies the intervals at which to apply
the filters to the input, and “num_output” specifies the number
of filters.

5Most modern public DCNN models require that the input image should
be of the size 227 × 227 × 3, or 224 × 224 × 3.

TABLE I

PARAMETER SETTINGS AND THE OUTPUT DIMENSION FOR

EACH LAYER OF OUR DCNN DESIGNED FOR LOCAL

IMAGE PATTERN CLASSIFICATION

The customized DCNN model was firstly trained on Ima-
geNet 2012 classification dataset and then was fine-tuned for
our specific task. For fine-tuning, the mini-batch size was set
to 256; and the learning rate started from 0.002 and was
divided by 2 every 5000 iterations. We used a weight decay
of 0.0005 and a momentum of 0.9.

C. Parking-Slot Inference

In self-parking systems, a parking-slot is generally consid-
ered to be a parallelogram and is usually represented by the
coordinates of its four vertices. In most cases, the two non-
marking-point vertices are not visible and their coordinates can
be obtained only through inference. To this end, we need to
assume that the “depth” of the parking-slots is known before-
hand as a priori knowledge. As illustrated in Fig. 9, the depth
of the perpendicular, parallel, and slanted parking-slots is
assumed to be d1, d2, and d3, respectively.

Suppose that p1 and p2 are two detected marking-points and
that the local image pattern defined by p1 and p2 is classified
as “right-angled clockwise” or “right-angled anticlockwise.”
If this is the case, the coordinates of the two non-marking-
point vertices p3 and p4 can be easily computed. For example,
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Fig. 9. To infer the positions of non-marking-point vertices, the “depth” of
the parking-slot needs to be known as a priori knowledge. As illustrated in
(a), (b), and (c), the depth values for the perpendicular, parallel, and slanted
parking-slots are set as d1, d2, and d3, respectively. In (c), α is the parking
angle that needs to be estimated and to do so, two image patches centered
on p1 and p2 are extracted for template-matching as shown on the right
part of (c). Several examples of ideal “T-shaped” templates corresponding to
different parking angles are shown in (d).

in Fig. 9(a), the local image pattern defined by p1 and p2 is
“right-angled clockwise” and the length

∥
∥−−→p1p2

∥
∥ indicates that

this parking-slot should be a perpendicular one (not a parallel
one) and accordingly its “depth” is d1. As a consequence, its
p3 and p4 are inferred as,

p3 =
⎡

⎣
cos

π

2
sin

π

2
− sin

π

2
cos

π

2

⎤

⎦
−−→p1p2∥

∥−−→p1p2
∥
∥ · d1 + p2

p4 =
⎡

⎣
cos

π

2
sin

π

2
− sin

π

2
cos

π

2

⎤

⎦
−−→p1p2∥

∥−−→p1p2
∥
∥ · d1 + p1 (1)

When the local image pattern defined by two marking-points
p1 and p2 is classified as “slanted,” the problem will become
a little more complicated as we will need to estimate the
parking angle as illustrated in Fig. 9(c). In Fig. 9(c), the local
image pattern defined by p1 and p2 is classified as “slanted
anticlockwise with an acute parking angle”; to estimate the
positions of the two non-marking-point vertices, the park-
ing angle α needs to be estimated. To solve this issue,

a template-matching based strategy is used. A set of ideal
“T-shaped” templates

{
Tθ j

}M
j=1

as illustrated in Fig. 9(d) are
prepared offline, where θ j is the angle between the two lines
of the template j and M is the total number of templates.
Each template is of the size s × s and is zero-mean. At the
testing stage, two s × s image patches I1 and I2 centered
at p1 and p2, respectively, are extracted. I1 and I2 are both
symmetric to −−→p1p2. Then, the parking-angle α can be naturally
estimated as,

α = arg max
θ j

{
I1 ∗ Tθ j + I2 ∗ Tθ j

}
, j = 1, . . . , M (2)

where “*” denotes the correlation operation. Having computed
the parking angle, the coordinates of the two non-marking-
point vertices can be computed straightforwardly. For example,
in Fig. 9(c), the coordinates of p3 and p4 can be expressed as,

p3 =
[

cos α − sin α
sin α cos α

] −−→p1p2∥
∥−−→p1p2

∥
∥ · d3 + p2

p4 =
[

cos α − sin α
sin α cos α

] −−→p1p2∥∥−−→p1p2
∥∥ · d3 + p1 (3)

D. Overall Pipeline

In Sect. III-A ∼ III-C, we have presented details about
our DCNN-based parking-slot detection approach DeepPS.
In order to enable the reader to have a clear and overall under-
standing of our work, the pipeline of DeepPS is summarized
in Table II.

IV. EXPERIMENTAL RESULTS

A. Benchmark Dataset

In order to provide a reasonable evaluation platform for
parking-slot detection algorithms, we have established and
released a large-scale benchmark dataset, which is publicly
available at https://cslinzhang.github.io/deepps/.

Surround-view images in this dataset were collected
from typical indoor and outdoor parking sites using our
self-developed AVM system equipped on a SAIC Roewe
E50 electric car [57]. The spatial resolution of each surround-
view image is 600 × 600, corresponding to a 10m × 10m flat
physical region, i.e., the length of 1 pixel on the surround-
view image corresponds to 1.67cm on the physical ground.
It is worth noting that through the offline calibration, we can
get the transformation matrix from the surround-view image
coordinate system to the vehicle-centered world coordinate
system. Consequently, when a parking-slot is detected on the
surround-view, its coordinates in the world coordinate system
can be automatically determined.

In [26], we released a parking-slot dataset, the only publicly
available one in this field, and in this paper it is referred
to as Tongji Parking-slot Dataset 1.0 (ps1.0 for short). The
newly established dataset is referred to as Tongji Parking-slot
Dataset 2.0 (ps2.0 for short). Information of these two datasets
regarding their scales and imaging conditions is summarized
in Table III. Based on Table III, it can be seen that from
the perspectives of the number of samples, the variety of
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TABLE II

OVERALL PIPELINE OF DEEPPS

TABLE III

INFORMATION ABOUT THE DATASETS USED

FOR PARKING-SLOT DETECTION

parking-slot types, and the diversity of imaging conditions,
ps2.0 is much better than ps1.0 and thus the following exper-
iments were all conducted on ps2.0.

TABLE IV

SAMPLE NUMBERS OF SUBSETS IN PS2.0

TABLE V

SETTINGS FOR HYPERPARAMETERS OF DEEPPS

In addition, in order to test the algorithm’s performance
under different imaging conditions, we partition the test set of
ps2.0 into six subsets, “indoor parking-lot,” “outdoor normal
daylight,” “outdoor rainy,” “outdoor shadow,” “outdoor street
light,” and “slanted.” The sample numbers of these subsets are
listed in Table IV.

B. Settings for Hyperparameters of DeepPS

In our proposed parking-slot detection approach DeepPS,
there are some hyperparameters that need to be determined.
It needs to be noted that the open-source YoloV2 framework
(used in DeepPS to detect marking-points) requires that the
input image should be of the size 416 × 416. Thus, for
convenience, when training and testing DeepPS, all the images
were resized to 416 × 416. All the other hyperparameters
were empirically set to be compatible to this resolution and
they (except for the ones relevant to DCNN used for local
image pattern classification that are presented in Table I)
are summarized in Table V. The physical meanings of these
parameters can be understood by the context in Sect. III.
“p” is the side length of the bounding-box of a marking-
point; “J” indicates the number of rotated versions gen-
erated from one original image for data augmentation for
training the marking-point detector; “δ1” is the threshold for
determining a marking-point; “d1,” “d2,” and “d3” are the
“depth” values of the perpendicular, parallel, and slanted
parking-slots, respectively; “(t1, t2)” is the length range of
entrance-lines for parallel parking-slots; “(t3, t4)” is the length
range of entrance-lines for perpendicular or slanted parking-
slots; the size of the local region determined by a pair of
marking-points p1 and p2 is ‖p1p2‖ + �x by �y; “ω × h”
is the size of the normalized local image pattern; “M” is
the number of templates prepared for estimating the parking
angle of a slanted parking-slot and each template is of the
size “s × s.”
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Fig. 10. Marking-point detection results by different methods. (a) shows
the results of YoloV2 and classical detectors while (b) shows the results of
DCNN-based detectors.

C. Marking-Point Detection

In our parking-slot detection scheme, marking-point detec-
tion is a crucial step. To complete this task, we proposed
a YoloV2-based approach in DeepPS. In this experiment, its
performance will be evaluated and compared with several other
classical methods in the field of object detection, VJ [61],
HoG+SVM [62], HoG+LBP [63], PLS [64], MultiFtr [65],
Roerei [66], and ACF+Boosting [26]. In addition, another
two popular DCNN-based detectors, Faster-RCNN [52] and
SSD [55], were also evaluated. Evaluations were conducted
on the test set of ps2.0.

For a ground-truth marking-point gi , if there is a detected
marking point di satisfying ‖gi − di‖ < δ2, where δ2 is a
predefined threshold, we deem that gi is correctly detected
and di is a true positive. In this experiment, δ2 was set as 10.
To compare various detectors, we plot miss rate against false
positives per image (FPPI) using log-log plots by varying
the threshold on detection confidence. The plots are shown
in Fig. 10. As recommended in [67], we use the log-average
miss rate (LAMR) to summarize detector performance, com-
puted by averaging miss rate at nine FPPI rates evenly spaced
in log-space in the range 10−2 to 100. LAMR achieved by
different methods are also shown on Fig. 10.

In addition to the detection rate, the localization error is
another important indicator for measuring the performance of

TABLE VI

LOCALIZATION ERRORS OF MARKING-POINT DETECTORS

TABLE VII

TIME COST FOR DETECTING MARKING-POINTS

FROM ONE IMAGE BY DEEP MODELS

a marking-point detector as it will have a direct impact on the
success rate of parking. Denote by g′

i a detected true positive
and by gi its corresponding ground-truth. The localization
error for g′

i is ei = ∥∥g′
i − gi

∥∥. We use the mean and
the standard deviation of {ei }P

i=1 (where P is the number
of detected true positives) as the localization error of the
examined marking-point detector. The localization errors of
all the marking-point detectors evaluated are summarized
in Table VI.

From the results shown in Fig. 10 and in Table VI,
it can be seen that for the task of marking-point detection,
DCNN-based detectors (YoloV2, SSD, and Faster-RCNN)
can achieve much higher accuracy than classical methods
in the field of object detection. Particularly, YoloV2 and
SSD perform the best and their performance is comparable.
In Table VII, the time costs (achieved on Nvidia TitanX GPU)
for detecting marking-points from one image by the three deep
models are presented. From Table VII, it can be seen that
YoloV2 runs the fastest. Thus, in DeepPS, YoloV2 is finally
adopted for marking-point detection.

D. Local Image Pattern Classification

In DeepPS, when the marking-points are detected, we need
to classify each local image pattern defined by a pair
of marking-points as one of the seven predefined classes.
To achieve this goal, a DCNN structure is customized as shown
in Fig. 8, which is actually a highly simplified version of
AlexNet [46]. In this experiment, we will report the perfor-
mance of our customized DCNN, in terms of the classification
accuracy and the time cost for one prediction operation. As a
comparison, we also tested the performance of AlexNet [46],
VGG-16 [48], ResNet-50 [49], and SqueezeNet [68]. It needs
to be noted that when being tested, all these DCNN models
were running on GPU (Nvidia TitanX).



5360 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 11, NOVEMBER 2018

TABLE VIII

PERFORMANCE FOR LOCAL IMAGE PATTERN CLASSIFICATION

TABLE IX

PARAMETER SETTINGS OF ALEXNET

The test set was composed of all the local image patterns
defined by marking-point pairs, which satisfy the distance
constraints for being valid entrance-line candidates, from the
test set of ps2.0. The results are presented in Table VIII.

From Table VIII, it can be seen that our customized DCNN
can achieve comparable accuracy with the other popular large
deep models. However, the customized DCNN consumes
much less time to complete one prediction operation, making
it more suitable for the time-critical self-parking system. The
reason why our customized DCNN is faster than AlexNet is
that our customized network is elaborately tailored based on
the original AlexNet, in order to better fit our application.
Table I and Table IX show the parameter settings for key
layers of our customized DCNN and AlexNet, respectively.
From them, it can be straightforward to understand why the
customized DCNN runs faster than AlexNet. In fact, there are
three major differences that can explain why the customized
DCNN is faster than AlexNet. First, our customized DCNN is
two layers shallower than AlexNet. A convolution layer and
a fully-connected layer are removed. Second, compared with
AlexNet, roughly corresponding layers in customized DCNN
have low-resolution inputs. Third, we reduce the number of

TABLE X

PERFORMANCE EVALUATION OF PARKING-SLOT DETECTION
METHODS ON THE ENTIRE TEST SET OF PS2.0

kernels used in convolution layers and also the numbers of
output units of the fully-connected layers.

E. Parking-Slot Detection

In this experiment, the parking-slot detection performance
of DeepPS was evaluated. Besides, the performance of several
state-of-the-art methods in this field, including Jung et al.’s
method [31], Wang et al.’s method [25], Hamda et al.’s
method [34], Suhr and Jung’s method [41], and our previous
work PSD_L [26] was also evaluated for comparison.

The experiments were conducted on the test set of
ps2.0 dataset. Precision-recall rates were used as the perfor-
mance measure, which are defined as,

precision = true posi tives

true posi tives + f alse posi tives

recall = true posi tives

true posi tives + f alse negatives
(4)

Each labeled parking-slot is represented as PSi ={
pi

1, pi
2, pi

3, pi
4

}
, where pi

1, pi
2, pi

3, and pi
4 are the coordi-

nates of the four vertices. pi
1 and pi

2 are the coordinates
of the two vertices forming the entrance-line and the four
vertices are arranged in a clockwise manner. Suppose that
PSd = {

pd
1 , pd

2 , pd
3 , pd

4

}
is a detected parking-slot and PSl ={

pl
1, pl

2, pl
3, pl

4

}
is a labeled ground-truth. If pd

j matches with
pl

j , j = 1 ∼ 4, PSd is regarded as a true positive.6 If PSd does
not match with any ground-truth parking-slot, PSd is a false
positive. If PSl does not match with any detected parking-slot,
PSl is a false negative.

We adjusted the parameters of all the competing methods to
make their precision rates greater than 98% on the entire test
set of ps2.0. The results are summarized in Table X. From
Table X, it can be observed that when operating at a high
precision rate, DeepPS performs much better than the other
competitors. DeepPS’s recall-rate is 98.89% while PSD_L is
the runner-up whose recall-rate is 84.64%.

In order to roughly know the algorithms’ performance under
different imaging conditions, we also evaluated them on each
sub test-set of ps2.0 and the results of two best performing
methods DeepPS and PSD_L are given in Table XI.

From the results presented in Tables X and XI, we can draw
a number of conclusions.

1) The classical methods [25], [31], [34], [41] cannot
achieve satisfied results. The root cause is that they are

6If
∥∥
∥pd

j − pl
j

∥∥
∥ < δ3, we say pd

j matches with pl
j . We set δ3 as 12 in our

experiments.
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TABLE XI

EVALUATION RESULTS OF PSD_L AND DEEPPS ON SUBSETS OF PS2.0

based on primitive visual features (edges, lines, or cor-
ners) and are not robust to complicated scenes and
various imaging conditions.

2) PSD_L exhibits clear performance advantages over its
counterparts depending on low-level visual features. The
better performance should be attributed to the machine
learning (ACF + Boosting) based marking-point detec-
tion scheme used in PSD_L.

3) In all cases, the performance of DeepPS surpass that
of PSD_L by a large margin. Compared with PSD_L,
the superior performance of DeepPS is mainly for two
reasons. First, for detecting marking-points, DeepPS
adopts a state-of-the-art DCNN-based object detection
framework YoloV2, rather than ACF + Boosting as
used in PSD_L. The results shown in Fig. 10 and
Table VI clearly demonstrate that the YoloV2-based
framework works much better than the ACF+Boosting-
based scheme in terms of the detection accuracy and the
localization accuracy. Second, to determine the validity
and the type of an entrance-line, PSD_L uses a compli-
cated rule-based scheme while DeepPS formulates it as
a local image pattern classification problem which can
be more concisely and robustly solved by a standard
DCNN model.

In Fig. 11, 6 surround-view images are shown with marked
parking-slots detected by DeepPS. Actually, they are repre-
sentatives chosen from six subsets of the ps2.0 test set. The
results shown in Fig. 11 once again corroborate the capability
of DeepPS in detecting different types of parking-slots under
various imaging conditions. More demo videos can be found
at https://cslinzhang.github.io/deepps/.

F. Failure Cases of DeepPS

DeepPS currently is not perfect. When the imaging condi-
tions are poor (e.g., there are strong shadows caused by nearby
trees), sometimes it will miss a true candidate (false negative).
There are two main reasons for missing true candidates. First,
the confidence score of a true marking-point is lower than
the predefined threshold. Second, the local image pattern
classification model may misclassify a valid entrance-line
candidate as “invalid.”

Compared with false negatives, in a practical self-parking
system, false positives actually are more annoying. Occasion-
ally, DeepPS may return a false positive. The root reason is
that the DCNN model may (although quite rare) misclassify
with a high confidence score the local image pattern defined

Fig. 11. 6 typical images with marked parking-slots detected by DeepPS.
(a) ∼ (f) belong to the subsets “indoor parking-lot,” “outdoor normal daylight,”
“outdoor rainy,” “outdoor shadow,” “outdoor street light,” and “slanted,”
respectively.

by two marking-points. Four examples of false positives
detected by DeepPS are shown in Fig. 12. In Fig. 12(a),
the “right-angled clockwise” entrance-line is misclassified
as “right-angled anticlockwise.” In Fig. 12(b), the “slanted”
entrance-line is misclassified as “right-angled.” In Fig. 12(c),
the “right-angled anticlockwise” local image pattern defined
by p1 and p2 is misclassified as “right-angled clockwise.”
In Fig. 12(d), the “invalid” local image pattern is misclassified
as “right-angled clockwise.” Actually, misclassifying images
with high confidences is a known shortcoming of DCNN [69],
and in the future we may adopt strategies (e.g., DeepFool [70])
for creating adversarial training samples to solve this issue.

G. Analysis of Performance Improvement

As compared with PSD_L [26], the novelty of DeepPS lies
largely in two directions. First, we replace the ACF+Boosting
Decision Tree based marking-point detector used in PSD_L
with a YoloV2-based one. Second, for inferring parking-slots
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Fig. 12. Four examples of false positives detected by DeepPS. (a) The
“right-angled clockwise” local image pattern defined by p1 and p2 is
misclassified as “right-angled anticlockwise.” (b) The “slanted” local image
pattern is misclassified as “right-angled.” (c) The “right-angled anticlock-
wise” local image pattern defined by p1 and p2 is misclassified as “right-
angled clockwise.” (d) The “invalid” local image pattern is misclassified as
“right-angled clockwise.”

TABLE XII

ANALYSIS OF PERFORMANCE IMPROVEMENT

from marking-points, PSD_L uses line-based template match-
ing while DeepPS resorts to the local image pattern clas-
sification. Here we explain and demonstrate the perfor-
mance improvement afforded by each new aspect of DeepPS.
Denote by PSD_LYolo the model which replaces the PSD_L’s
marking-point detector with the YoloV2-based one. Denote
by PSD_LLIP the model which replaces the PSD_L’s
marking-point inferring strategy with the local image pattern
classification based one. Their performances are reported
in Table XII. We also present the performance of PSD_L
and DeepPS in Table XII for comparison. From the results
presented in Table XII, it can be seen that the appropriate
strategies for marking-point detection and for parking-slot
inference can both boost the final performance.

H. Running Speed of DeepPS

DeepPS was implemented in C++. Experiments were
conducted on a workstation with a 2.4GHZ Intel Xeon
E5-2630V3 CPU, an Nvidia Titan X GPU card, and

Fig. 13. (a) ∼ (d) are four representative image samples in extraTestSet,
which was established to evaluate the generalization capability of DeepPS in
practice.

32GB RAM. The average time for DeepPS to process one
image frame is about 23ms, including the time for synthesizing
the surround-view.

I. DeepPS’s Generalization Capability in Practice

In this experiment, the generalization capability of DeepPS
(trained on ps2.0) in practice was validated. Specifically,
1000 more surround-view images were collected from sev-
eral parking-sites using a Roewe E50 car equipped with
our vision-based parking-slot detection system. We denote
this image set by extraTestSet. It needs to be noted that
parking-sites that appear in extraTestSet do not appear in
ps2.0. Four representative image samples selected from extraT-
estSet are shown in Fig. 13. We labeled images in extraTestSet
and then the performance of DeepPS trained on ps2.0 was
evaluated on extraTestSet. The achieved precision rate and
recall rate are 98.43% and 91.95%, respectively. The results
demonstrate that the DeepPS model trained on ps2.0 has a
satisfied generalization capability.

V. CONCLUSION AND FUTURE WORK

Vision-based parking-slot detection is a crucial issue
encountered when building a self-parking system. It is
challenging and still unresolved. To conquer it, in this
paper, we proposed a DCNN-based solution, DeepPS.
Another contribution is that we collected and labeled a
large-scale parking-slot image dataset ps2.0, which comprises
12,165 surround-view images and is the largest one in this
field. Extensive experiments conducted on ps2.0 indicate that
DeepPS could surpass all its competitors by a large margin.
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Specifically, on the entire test set of ps2.0, DeepPS could
achieve a recall rate as high as 98.89% while its precision
rate is 99.54%. Furthermore, DeepPS can process one frame
within 23ms, making it competent for time-critical self-parking
systems. Actually, DeepPS has already been deployed on
SAIC Roewe E50 electric cars. In the future, we will continue
enlarging our dataset to make it a better benchmark in this
field.
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