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Abstract

Although Coordinate-MLP-based implicit neural represen-
tations have excelled in representing radiance fields, 3D
shapes, and images, their application to audio signals re-
mains underexplored. To fill this gap, we investigate ex-
isting implicit neural representations, from which we ex-
tract 3 types of positional encoding and 16 commonly
used activation functions. Through combinatorial design,
we establish the first benchmark for Coordinate-MLPs in
audio signal representations. Our benchmark reveals that
Coordinate-MLPs require complex hyperparameter tuning
and frequency-dependent initialization, limiting their robust-
ness. To address these issues, we propose Fourier-ASR, a
novel framework based on the Fourier series theorem and the
Kolmogorov-Arnold representation theorem. Fourier-ASR
introduces Fourier Kolmogorov-Arnold Networks (Fourier-
KAN), which leverage periodicity and strong nonlinear-
ity to represent audio signals, eliminating the need for
additional positional encoding. Furthermore, a Frequency-
adaptive Learning Strategy (FaLS) is proposed to enhance the
convergence of Fourier-KAN by capturing high-frequency
components and preventing overfitting of low-frequency sig-
nals. Extensive experiments conducted on natural speech
and music datasets reveal that: (1) well-designed positional
encoding and activation functions in Coordinate-MLPs can
effectively improve audio representation quality; and (2)
Fourier-ASR can robustly represent complex audio signals
without extensive hyperparameter tuning. Looking ahead, the
continuity and infinite resolution of implicit audio represen-
tations make our research highly promising for tasks such as
audio compression, synthesis, and generation.

Code and Appendix — https://github.com/lif314/NeAF

Introduction
Implicit Neural Representations (INRs) provide an innova-
tive approach to signal parameterization by representing ar-
bitrary discrete signals as continuous functions. These func-
tions map the domain of the signal (coordinates, e.g., times-
tamps in audio) to the corresponding content at those coor-
dinates (such as the amplitude of an audio signal). Typically,
these functions are approximated using neural networks, and
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since current neural networks are primarily constructed us-
ing multilayer perceptrons (MLPs), these types of INRs are
referred to as Coordinate-MLPs.

Compared to traditional discrete signal representation
schemes, INRs offer continuous implicit representation that
decouples from spatial resolution and allows for infinite res-
olution. Therefore, the storage required for parameterized
signals is independent of spatial resolution, allowing these
signals to be sampled at any desired resolution. Owing to
these advantages, Coordinate-MLPs have been successfully
applied to various modalities of data, including neural ra-
diance fields (Mildenhall et al. 2020), 3D occupancy grids
(Mescheder et al. 2019), Signed Distance Functions (Park
et al. 2019), images (Sitzmann et al. 2020), 2D computed
tomography, and 3D magnetic resonance imaging (Tancik
et al. 2020; Saragadam et al. 2023; Kazerouni et al. 2024).

Regarding audio signals, continuous representations offer
the advantages of infinite resolution, enabling natural gener-
ation, efficient compression, and smooth processing. How-
ever, the representation of continuous audio signals using
Coordinate-MLPs poses profound challenges due to the high
noise, high frequency, nonlinearity, and local periodicity in-
herent in audio signals. According to the Weber-Fechner
law, even relatively small reconstruction errors in audio sig-
nals can become perceptible due to the logarithmic nature of
human auditory perception, thereby imposing high demands
on the quality of audio reconstruction. Moreover, the simple
combination of linear transformations and nonlinear activa-
tion functions in MLP networks makes it difficult to capture
the periodicity and high-frequency components of audio sig-
nals. Through a comprehensive review, we find that till now
only SIREN (Sitzmann et al. 2020) has attempted to repre-
sent audio signals using sinusoidal activation functions and
provided a simple comparison with ReLU-MLPs, yet no fur-
ther investigations have been conducted.

To fill the gap, we establish, to our knowledge, the first
open-source benchmarking framework to fully explore the
potential and limitations of Coordinate-MLPs in continuous
audio signal representations. Specifically, since the perfor-
mance of a Coordinate-MLP is primarily determined by the
choice of the activation function and optional positional en-
coding, we identify 3 types of positional encoding mappings
and 16 commonly used activation functions from existing



① Positional encoding is parameter-sensitive. ② Activation functions are parameter-sensitive.

③ Activation functions lack periodicity. ④ Activation functions require positional encoding.

(a) Benchmark of Coordinate-MLPs in Audio Signal Representations.

② Fourier-ASR is parameter-insensitive and robust.

① Fourier-ASR is more interpretable.

(b) Fourier-ASR.
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Figure 1: Properties of Coordinate-MLPs and Fourier-ASR. Validations are in the appendix (Appendix A).

Coordinate-MLP methods. This results in 48 possible net-
work configurations for audio signal representation, which
we evaluate on speech and music datasets to assess their per-
formance.

As shown in Fig. 1(a), our benchmark reveals the fol-
lowing findings. (1) Most activation functions, except those
with strong linearity (e.g., Gaussian) or periodicity (e.g.,
Sine), are unable to effectively represent audio signals. (2)
Although some activation functions, such as Gaussian and
Sine, are proposed to overcome spectral bias and the te-
dious parameter tuning associated with positional encoding,
positional encoding remains indispensable for representing
audio signals. It efficiently maps time coordinates to high-
dimensional spaces, allowing the network to capture high-
frequency components in audio signals. (3) Due to the lo-
cal periodicity of audio signals, periodic activation func-
tions (e.g., Sine) significantly outperform other activation
functions in representational capacity. Moreover, incorpo-
rating Fourier feature-based positional encoding can further
enhance their ability. (4) While Sine-type activation func-
tions are effective at representing audio signals due to their
periodic nature, they unfortunately require hyperparameter-
sensitive positional encodings and frequency-dependent ini-
tialization schemes, which negatively impact their robust-
ness and generalization capabilities.

The aforementioned issues of Coordinate-MLPs funda-
mentally arise from the inadequate nonlinearity and lack of
periodicity inherent in MLPs. As illustrated in Fig. 1(b), to
enhance the nonlinear and periodic representational capa-
bilities of neural networks, we propose a novel implicit au-
dio representation framework, Fourier-ASR, based on the
Fourier series theorem and the Kolmogorov-Arnold rep-
resentation theorem. Firstly, we introduce a Kolmogorov-
Arnold Network (Fourier-KAN) that utilizes Fourier basis
functions to represent audio signals. This network implic-

itly decomposes any complex audio signal into a series of
locally periodic Fourier series. Unlike MLPs, Fourier-KAN
does not require additional positional encoding or activa-
tion functions, thereby avoiding cumbersome hyperparame-
ter tuning. Furthermore, due to the use of Fourier basis func-
tions, it more effectively captures the high-frequency com-
ponents and local periodicity of signals. Secondly, to accel-
erate the convergence of Fourier-KAN, we introduce a Fre-
quency Adaptive Learning Strategy (FaLS). FaLS employs
an inverted frequency pyramid configuration to capture sig-
nals at various frequencies and utilizes a frequency-adaptive
weight initialization scheme based on forward propagation
theory to mitigate issues of gradient explosion or vanish-
ing, thereby expediting convergence. Experimental results
demonstrate that Fourier-ASR not only offers enhanced in-
terpretability but is also robust to hyperparameter variations,
effectively representing complex audio signals.

In summary, our contributions are summarized as follows:

• We introduce the first benchmark for Coordinate-MLPs
in audio representation, incorporating 3 types of posi-
tional encodings and 16 commonly used activation func-
tions. Our benchmark provides an in-depth analysis of
the impact of positional encoding and activation func-
tions on the representation of continuous audio signals.

• To avoid spectral bias from positional encoding and
complex parameter tuning of activation functions, we
propose a novel audio signal representation framework,
Fourier-ASR, based on the Fourier series theorem and
the Kolmogorov-Arnold theorem. Fourier-ASR includes
Fourier Kolmogorov-Arnold Networks (Fourier-KAN)
and a Frequency-adaptive Learning Strategy (FaLS). Due
to the periodicity and strong nonlinearity of Fourier basis
functions, Fourier-ASR effectively represents audio sig-
nals and provides enhanced interpretability.



• As shown in Fig. 1, extensive experiments conducted on
speech and music datasets reveal that (1) careful tun-
ing of positional encoding and activation function pa-
rameters can significantly enhance the representational
capacity of Coordinate-MLPs for audio signals; and (2)
Fourier-ASR can robustly represent audio signals with-
out requiring cumbersome parameter tuning.

Related Work
Coordinate-MLPs. The usage of Coordinate-MLPs dif-
fers significantly from that of traditional MLPs in two
main aspects: (a) traditional MLPs typically operate on
high-dimensional inputs, such as images, sounds, or 3D
shapes; (b) traditional MLPs are primarily employed as
classification heads, where the decision boundaries need
not be smooth. In contrast, Coordinate-MLPs encode sig-
nals into weights, where the input is low-dimensional co-
ordinates and the output must maintain smoothness. The
success of NeRF (Mildenhall et al. 2020) demonstrates
that Coordinate-MLPs, when trained with a limited num-
ber of perspective images, can reconstruct photometric pro-
jections from any angle and at any resolution. This break-
through spurs the application of Coordinate-MLPs in nu-
merous fields, including radiance field reconstruction (Bar-
ron et al. 2022; Chen et al. 2022; Müller et al. 2022), 3D
shape representation (Wang et al. 2021; Yu et al. 2022; Yariv
et al. 2023), 2D image regression (Tancik et al. 2020; Sara-
gadam et al. 2023; Lindell et al. 2022; Ramasinghe and
Lucey 2022), audio signal regression (Sitzmann et al. 2020;
Kazerouni et al. 2024), and inverse rendering problems in
2D CT and 3D MRI (Tancik et al. 2020).

Positional Encoding. Positional encoding facilitates the
learning of high-frequency representations in radiance
fields, images, and 3D shapes. NeRF (Mildenhall et al.
2020) improves the ability of ReLU-MLPs to capture high-
frequency signals by mapping the input coordinates to a
high-dimensional Fourier space. Building upon NeRF, FFN
(Tancik et al. 2020) incorporates Gaussian noise to improve
the robustness of ReLU-MLPs. Although positional encod-
ings enable MLPs to represent high-frequency components,
selecting the appropriate frequency scale is crucial and often
involves cumbersome parameter tuning. Specifically, when
the signal bandwidth is excessively increased, Coordinate-
MLPs tend to produce noisy signal interpolations (Ramas-
inghe, MacDonald, and Lucey 2022; Hertz et al. 2021).

Activation Functions. The nonlinear representation capa-
bility of Coordinate-MLPs primarily arises from activation
functions. In the field of INRs, various activation functions
have been employed to approximate different types of sig-
nals. ReLU is frequently employed as the activation func-
tion in NeRF-related studies due to its simplicity and ef-
fective initialization scheme (Mildenhall et al. 2020; Bar-
ron et al. 2022; Yu et al. 2021; Chen et al. 2022). How-
ever, ReLU struggles to capture high-frequency information
in radiance fields, necessitating additional positional encod-
ing. To avoid the cumbersome parameter tuning associated
with positional encoding, GARF (Chng et al. 2022) uses the
Gaussian activation function, which can effectively capture

high-frequency information but fails to capture periodic sig-
nals and tends to overfit both noise and signal equally. To
address these issues, WIRE (Saragadam et al. 2023) utilizes
the complex Gabor wavelet activation function to improve
the robustness. SIREN (Sitzmann et al. 2020) employs the
sine activation function to capture signal periodicity, though
it is sensitive to initialization schemes, limiting its general-
ization to audio reconstruction tasks. Building on SIREN,
INCODE (Kazerouni et al. 2024) makes the parameters of
the sine activation functions learnable, thereby reducing the
parameter sensitivity to some extent, but it still relies on the
frequency-aware initialization scheme.

Method
Problem Formulation
As illustrated in Fig. 2(a), natural audio signals are contin-
uous functions of time, representing the variation in ampli-
tude of sound signals over time. To convert this continuous
signal into a digital format for storage and processing, the
signal is discretely sampled, resulting in a discrete signal
a(t) with respect to the time coordinate t. However, in fields
such as audio super-resolution, synthesis, and compression,
researchers aim to leverage implicit neural representation
techniques to preserve the continuity and differentiability of
the signal as much as possible. Specifically, by receiving a
discrete time coordinate t, a neural network regresses the
amplitude f(t) corresponding to t, thereby encoding the au-
dio signal within the network weights. We refer to this rep-
resentation as the Neural Amplitude Fields (NeAF). Opti-
mization is performed by fitting f(t) to the sampled wave-
form a(t) using an MSE loss function,

L =

∫
∥⨿a(f(t))− a(t)∥2 dt, (1)

where ⨿a samples f(t) at the waveform measurement loca-
tions. Given that NeAF is independent of spatial resolution,
audio can be processed at any desired resolution.

Benchmark of Coordinate-MLP-based NeAF
As depicted in Fig. 2(b), to represent arbitrary complex au-
dio signals, a k-layer Coordinate-MLP f : R → R is em-
ployed, which takes the time coordinate t ∈ R as input and
outputs the amplitude f(t) ∈ R. Thus, f(t) can be defined
through the following recursive relations,

z(1) = γ(t)

z(i+1) = σ
(
W(i)z(i) + b(i)

)
, i = 1, . . . , k − 1

f(t) = W(k)z(k) + b(k),

(2)

where γ(·) denotes an optional positional encoding function
that maps the input coordinate t to a higher-dimensional
space, σ(·) represents the element-wise applied nonlinear
activation function, W(i) ∈ Rdi+1×di and b(i) ∈ Rdi+1

denote the weights and biases of the i-th layer, respectively,
while z(i) ∈ Rdi represents the hidden units of the i-th layer.

Following the architecture of Coordinate-MLPs, we con-
duct an extensive review of implicit neural representations
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Figure 2: (a) The problem definition of implicit audio representations; (b) The audio representation framework based on
Coordinate-MLPs; (c) Fourier-ASR, a novel audio signal representation framework based on Fourier-KAN.

and identify 3 types of positional encoding and 16 poten-
tial activation functions. Specifically, as shown in Table 1,
the three positional encoding schemes are identity map-
ping (Identity), NeRF Fourier features (NeFF) (Milden-
hall et al. 2020), and random Fourier features (RFF) (Tan-
cik et al. 2020). The primary activation functions include
ReLU, Gaussian (Chng et al. 2022), Laplacian (Ramasinghe
and Lucey 2022), Sine (Sitzmann et al. 2020), Incode-Sine
(Kazerouni et al. 2024), and Gabor-Wavelet (Saragadam
et al. 2023), among others (details are provided in Table 2).

PE (P) γ ∈ P Parameter
Identity γ(t) = t -
NeFF γ(t) = [cos(2Lπt), sin(2Lπt)]T [L]

RFF
γ(t) = [cos(2πbLt), sin(2πbLt)]

T,
bL ∼ N (0, σ2)

[σ, L]

Activations (A) σ ∈ A
ReLU σ(x) = max(0, x) -

Gaussian σ(x) = e
−x2

2a2 [a]

Laplacian σ(x) = e
−|x|

a [a]
Sine σ(x) = sin(ωx) [ω]

Incode-Sine σ(x) = a sin(bωx+ c) + d a, b, c, d, [ω]
· · · · · · · · ·

Table 1: The nonlinear mappings in Coordinate-MLPs. Note
that a denotes a learnable parameter, while [a] denotes a hy-
perparameter.

It is noteworthy that Gaussian, Sine, and Incode-Sine ac-
tivation functions are proposed to eliminate the dependence
on positional encoding in radiance fields and image repre-
sentations. However, high-dimensional positional encoding
mappings may be beneficial for learning high-frequency fea-
tures in audio signals and their structural variations at differ-
ent time scales. Therefore, in our benchmark, we apply po-
sitional encoding mappings to all three activation functions.

Based on Table 1, the Coordinate-MLPs used for bench-
marking audio signal representations can be expressed as
follows,

f(t) = (Wn ◦ σn−1 · · ·σ1 ◦W1)(γ(t)),

γ(·) ∈ P, σi(·) ∈ A,
(3)

where t denotes the input time coordinate normalized to the
interval [0, 1], P represents the set of positional encodings,
and A denotes the set of activation functions.

Fourier-ASR
Our benchmark indicates that only through carefully de-
signed positional encoding and activation functions can
some Coordinate-MLPs effectively represent audio signals.
However, their flexibility and generality are reduced due to
complex parameter tuning and high sensitivity to initializa-
tion. To address this issue, as shown in Fig. 2(c), drawing
from the Fourier series theorem and the Kolmogorov-Arnold
representation theorem, we introduce a novel framework for
audio signal representation, Fourier-ASR, which incorpo-
rates Fourier Kolmogorov-Arnold Networks (Fourier-KAN)
and a Frequency-adaptive Learning Strategy (FaLS).

Fourier Kolmogorov-Arnold Networks (Fourier-KAN).
Unlike Coordinate-MLPs based on the Universal Approxi-
mation Theorem (Hornik, Stinchcombe, and White 1989),
which use combinations of linear transformations and non-
linearities, Fourier-ASR follows the Kolmogorov-Arnold
Representation Theorem (Kolmogorov 1956; Arnold 1957)
to represent any continuous function as a finite composition
of single-variable functions and addition. For a continuous
signal f(t), this simplifies to,

f(t) =

2∑
q=0

Φq (ϕq(t)) , (4)

where Φq : R → R and ϕq : [0, 1] → R denote the outer and
inner functions, respectively. To enhance the capacity and



learnability of this representation, we employ the KAN (Liu
et al. 2024) approach to extend the network to an arbitrary
number of layers.

Assumption 1 Local Periodicity Assumption. For a com-
plex non-stationary signal f(t), there exists a sufficiently
small time interval ϵ > 0 where f(t) can be approximated
by a periodic function p(t):

∃ϵ > 0, ∀t, |t| < ϵ : f(t) ≈ p(t)

where p(t) is a periodic function with period T , satisfying
p(t+ T ) = p(t).

Theorem 1 Fourier Series Theorem. Any periodic signal
p(t) with period T can be represented as an infinite series
of sine and cosine functions,

p(t) =
a0
2

+
∞∑

n=1

(
an cos

(
2πnt

T

)
+ bn sin

(
2πnt

T

))
where a0, an, and bn are the Fourier coefficients.

Specifically, consider a neural network with a shape of
[n0, n1, · · · , nL], where nl denotes the number of neurons
on the l-th layer of the computational graph. For the i-th
node on the l-th layer, denoted by (l, i), the activation value
of this neuron is tl,i. Between the l-th and (l + 1)-th lay-
ers, there are nl×nl+1 non-linear basis functions. Based on
Assumption 1 and Theorem 1, any audio signal within short
time intervals can be approximated as combinations of co-
sine and sine functions. Therefore, unlike using B-Splines in
KAN (Liu et al. 2024), we employ Fourier basis functions as
the non-linear units connecting neurons (l, i) and (l + 1, j),

ϕl,j,i(tl,i) = al,i cos(ωtl,i) + bl,i sin(ωtl,i) + cl,i,

l = 0, · · · , L− 1, i = 1, · · · , nl, j = 1, · · · , nl+1,
(5)

where al,i, bl,i are learnable Fourier coefficients, cl,i is a
learnable bias term, and ω is a frequency hyperparameter.
Then, the activation value tl+1,j of the (l + 1, j) neuron is
simply the sum of all incoming post-activations,

tl+1,j =

nl∑
i=1

ϕl,j,i (tl,i) , j = 1, · · · , nl+1. (6)

For the l-th Fourier KAN layer, by rewriting Eq. 6 under the
matrix form, we can have,

tl+1 =


ϕl,1,1(·) · · · ϕl,1,nl

(·)
ϕl,2,1(·) · · · ϕl,2,nl

(·)
...

...
...

ϕl,nl+1,1(·) · · · ϕl,nl+1,nl
(·)


︸ ︷︷ ︸

Φl

tl.

where Φl is the transition matrix between the Fourier layers.
In summary, Fourier-ASR employs Fourier-KAN to de-

rive continuous representations from discrete audio signals
as,

f(t) = (ΦL ◦ΦL−1 · · ·Φl · · · ◦Φ1)(t). (7)

Compared to the Coordinate-MLPs (Eq. 3), our Fourier-
KAN leverages Fourier basis functions to achieve not only
enhanced nonlinear representation capabilities but also the
ability to capture local periodicity in audio signals.

Frequency-adaptive Learning Strategy (FaLS). Due to
the varying frequency distributions of audio signals across
different time scales, a fixed frequency hyperparameter (ω in
Eq. 5) can lead Fourier-KAN to predominantly learn specific
frequency components, thereby hindering convergence. To
address this issue, we propose a Frequency-adaptive Learn-
ing Strategy (FaLS). Specifically, we assign basis functions
with varying frequency thresholds to different Fourier-KAN
layers. Then, a Fourier-KAN can be represented as,

z(0) = t

z(l+1) =

Ωl∑
ω=1

[
a(l,ω) cos(ωz(l)) + b(l,ω) sin(ωz(l))

]
+ c(l)

f(t) = z(nL)
(
· · ·

(
z(l)

(
· · · (z(0))

)))
, l = n0, . . . , nL,

where a(l,ω) and b(l,ω) ∈ Rdl+1×dl denote the Fourier coef-
ficient weights for the l-th layer at frequency ω, c(l) ∈ Rdl+1

is the bias term of the l-th layer, z(l) ∈ Rdl denotes the hid-
den units of the l-th layer, and Ωl is a hyperparameter indi-
cating the maximum frequency threshold for the l-th layer.

Parameter initialization. Following the principles of
Xavier (Glorot and Bengio 2010) and Kaiming’s work (He
et al. 2015), we derive the initialization scheme for the
Fourier-KAN. Specifically, in the forward propagation pro-
cess at layer l of the Fourier-KAN, the symmetry of the
Fourier basis functions ensures that the expected values of
both the input and the output are zeros, i.e., E[z(l)] =
E[z(l+1)] = 0. According to Kaiming initialization (He
et al. 2015), we make the following assumptions: (1) the ex-
pected values of the Fourier parameters a(l,ω) and b(l,ω) are
both zeros, and the bias term cl is omitted; (2) the variances
of the input z(l) and the output z(l+1) are both ones. Thereby,
we can determine the variance of the output at layer l as,

V ar[z(l+1)] =

Ωl∑
ω=1

(cos2(ωz(l))V ar[a(l,ω)]

+ sin2(ωz(l))V ar[b(l,ω)]).

Assuming that the variances of the Fourier coefficients are
equal, we can have,

V ar[a(l)] = V ar[b(l)] =
1

Ωl
. (8)

Thus, each independent Fourier coefficient a(l)i (and b
(l)
i ) is

initialized using the following normal distribution,

a
(l)
i , b

(l)
i ∼ N (0,

1

Ωld
(l)
in

), (9)

where d(l)in denotes the dimensionality of the input to layer l.
Inverted pyramid frequency setting. Given the depth

L and width of a Fourier-KAN, the hyperparameters



Activation σ(·) Equation Parameter PE γ(·) Bach (7s) Counting (7s) Blues (30s) Avg.
SNR ↑ LSD ↓ SNR ↑ LSD ↓ SNR ↑ LSD ↓ SNR ↑ LSD ↓

PReLU

{
x, if x > 0

ax, otherwise
[a]

Identity 0.00 4.724 0.00 4.630 0.00 7.031 0.00 5.462
RFF 13.42 1.010 3.38 1.437 2.50 2.035 6.43 1.494
NeFF 17.50 1.133 7.88 1.575 5.20 1.539 10.19 1.416

ReLU max(0, x)
Identity 0.00 4.623 -7.66 4.546 0.00 6.774 -2.55 5.314

RFF 15.62 0.978 4.93 1.400 3.23 1.862 7.93 1.413
NeFF 22.29 1.129 9.57 1.538 7.64 1.324 13.17 1.330

Gaussian e
−x2

2a2 [a]
Identity 6.35 1.130 0.74 2.165 0.68 3.059 2.59 2.118

RFF 20.85 2.046 12.14 3.195 11.80 1.346 14.93 2.196
NeFF 19.68 2.127 9.20 3.438 7.74 1.597 12.21 2.387

Laplacian e
−|x|

a [a]
Identity 12.04 0.932 1.34 1.561 1.37 2.434 4.92 1.642

RFF 15.57 2.386 10.97 2.632 14.74 1.112 13.76 2.043
NeFF 15.26 2.434 8.67 3.191 8.16 1.526 10.70 2.384

Sine sin(ωx) [ω]
Identity 13.36 0.838 7.96 1.660 7.47 1.722 9.59 1.407

RFF 39.02 0.582 13.06 1.412 16.57 1.156 22.88 1.050
NeFF 42.39 0.537 33.58 0.914 22.02 0.696 32.66 0.716

Incode-Sine a sin(bωx+ c) + d [ω], a, b, c, d
Identity 15.98 0.778 8.16 1.611 0.01 3.865 8.05 2.085

RFF 38.10 0.595 12.86 1.559 15.13 1.241 22.03 1.132
NeFF 41.40 0.556 32.24 1.038 21.33 0.763 31.99 0.786

Table 2: Benchmark leaderboard of Coordinate-MLPs. For different positional encodings (Identity, RFF, NeFF), the best
results are bold for first and underlined for second. Note that “a” denotes a learnable parameter, while “[a]” denotes a hyperpa-
rameter. The benchmarking results for the remaining 10 activation functions are provided in the appendix (Appendix D).

[Ω0, · · · ,Ωl,ΩL] dictate the number of Fourier basis func-
tions and the tendency to learn frequency components in
each layer. With the same network capacity, a larger Ω en-
hances the frequency resolution, improving the network’s
ability to capture audio signal periodicity and fluctuations.
Similar to the role of positional encoding in Coordinate-
MLPs, an inverted pyramid frequency setting is benefi-
cial for the Fourier-KAN in capturing high-frequency in-
formation, thereby accelerating convergence. For instance,
a 3-layer Fourier-KAN with Ω set to [64, 5, 3] outperforms
[8, 8, 8], which may lead to convergence issues.

Experiments
Experimental Setup
Datasets. GTZAN music dataset (Tzanetakis and Cook
2002) includes 1000 thirty-second music clips across ten
genres. CSTR VCTK speech corpus (Yamagishi, Veaux,
and MacDonald 2019) consists of voice recordings from 110
speakers with diverse accents, each speaking approximately
400 sentences. For the benchmark, we used two 7-second
clips provided by SIREN (Sitzmann et al. 2020) (“Bach”
and “Counting”) and a 30-second clip from GTZAN dataset
(“Blues”). To comprehensively evaluate the performance of
effective methods, we selected ten audio clips of different
genres from the GTZAN dataset and ten audio clips with
various accents from the CSTR VCTK dataset.

Networks. We ensured that the network parameters were
comparable, ranging between 250K and 270K. For the
Coordinate-MLPs, each network has a depth of 6 and a
width of 256. In contrast, the Fourier-ASR network has a
depth of 6 and a width of 64, with the maximum frequency

thresholds set to 1024, 5, and 3 for the input layer, hidden
layers, and the output layer, respectively.

Evaluation Metrics. Signal-to-Noise Ratio (SNR) (Roux
et al. 2019) and Log-Spectral Distance (LSD) (Gray and
Markel 1976) were utilized to assess the temporal and spec-
tral errors in the reconstructed audios, respectively. Since
LSD provides an indirect measure for frequency domain
evaluation, we primarily focus on the SNR metric.

Benchmark Leaderboard
We begin by examining the impact of nonlinear mappings,
which are commonly presumed but have not yet been ana-
lyzed in the context of implicit audio representation. In line
with Eq. 3, Table 2 presents the evaluation results of audio
signal representation using 16 different activation functions
and 3 types of positional encoding (Identity, NeFF, and
RFF). Based on this comprehensive benchmarking, the fol-
lowing conclusions can be drawn:
• Most activation functions (Sigmoid, ReLU, Tanh, etc.),

aside from those with strong nonlinearity (Gaussian-
type) and periodicity (Sine-type), fail to capture the high-
frequency and local periodicity of audio signals.

• Positional encodings significantly enhance the ability of
Coordinate-MLPs to represent audio signals due to their
high-dimensional mapping capabilities, which improve
the model’s ability to capture high-frequency informa-
tion. This enhancement is particularly notable for Gaus-
sian (11.02dB ↑ in SNR) and Sine (18.96dB ↑ in SNR)
activation functions.

• In the context of positional encoding, the introduction of
random Gaussian noise by RFF makes it more suited to
Gaussian-type activation functions (≈ 3dB ↑ in SNR).



GTZAN Dataset Metrics blu. cla. cou. dis. hip. jaz. met. pop. reg. roc. Avg.

Baselines

Gaussian (MLP)
SNR ↑ 0.68 0.25 2.64 2.40 1.02 0.15 1.66 4.61 1.33 1.06 1.58
LSD ↓ 3.059 3.175 3.028 3.379 3.761 3.494 3.634 3.030 3.047 3.219 3.383

Sine (MLP)
SNR ↑ 7.47 2.86 5.92 7.34 3.04 6.08 4.32 8.776 4.87 6.84 5.76
LSD ↓ 1.722 1.755 2.338 2.204 2.754 1.771 2.830 2.595 1.969 1.900 2.184

B-Spline (KAN)
SNR ↑ 0.00 0.01 0.00 0.00 0.17 0.00 0.00 2.07 0.00 0.01 0.23
LSD ↓ 4.643 4.278 6.685 5.799 4.359 4.899 6.000 3.864 7.533 4.899 5.30

Ours

RFF+Gaussian (MLP)
SNR ↑ 11.80 10.76 11.98 12.00 11.30 12.75 11.25 12.07 11.57 11.84 11.73
LSD ↓ 1.346 1.721 1.474 1.299 1.148 1.936 1.731 1.439 1.362 1.481 1.494

NeFF+Sine (MLP)
SNR ↑ 22.02 25.95 16.35 17.70 13.92 19.22 13.05 15.27 17.79 19.16 18.04
LSD ↓ 0.696 0.585 1.064 1.036 0.741 0.983 0.902 1.245 0.883 0.714 0.885

Fourier-ASR (KAN)
SNR ↑ 13.80 15.05 12.54 12.87 12.22 13.67 12.21 13.27 12.42 12.65 12.76
LSD ↓ 1.245 0.913 1.249 1.158 1.059 1.244 1.203 1.302 1.110 1.399 1.110

CSTR VCTK Dataset Metrics p225 p234 p238 p245 p248 p253 p335 p345 p363 p374 Avg.

Baselines

Gaussian (MLP)
SNR ↑ 1.88 2.09 1.16 4.06 0.23 2.39 1.37 3.06 5.56 2.25 2.41
LSD ↓ 2.126 2.034 2.557 1.831 2.884 2.065 2.277 1.896 1.791 1.827 2.129

Sine (MLP)
SNR ↑ 14.86 10.88 12.38 14.41 10.32 13.85 9.61 15.89 12.78 12.53 12.75
LSD ↓ 1.743 1.588 1.748 1.665 1.630 1.672 1.619 1.556 1.716 1.500 1.644

B-Spline (KAN)
SNR ↑ 0.01 0.02 0.01 0.01 0.00 0.01 0.02 0.02 0.05 0.11 0.03
LSD ↓ 3.312 3.113 3.317 3.151 3.506 3.160 3.000 2.957 2.705 2.631 3.085

Ours

RFF+Gaussian (MLP)
SNR ↑ 11.67 12.93 16.19 11.99 15.52 12.21 13.32 15.95 12.79 12.28 12.81
LSD ↓ 2.401 2.128 1.789 2.218 2.183 2.258 2.076 1.704 2.012 2.059 1.983

NeFF+Sine (MLP)
SNR ↑ 25.20 31.63 19.56 32.03 27.00 27.11 16.87 28.38 29.25 30.83 26.79
LSD ↓ 1.015 0.734 1.235 0.866 1.134 0.917 1.207 1.032 0.753 0.877 0.977

Fourier-ASR (KAN)
SNR ↑ 18.30 20.68 17.12 18.26 21.34 17.40 15.79 17.34 17.86 20.20 18.43
LSD ↓ 1.495 1.228 1.615 1.310 1.464 1.397 1.456 1.417 1.321 1.267 1.397

Table 3: Evaluation of Fourier-ASR and new nonlinear mapping designs on GTZAN and CSTR VCTK dataset.

Conversely, NeFF employs Fourier mappings, which are
more compatible with Sine-type activation functions (≈
9dB ↑ in SNR).

Evaluation of Fourier-ASR and New Designs
Based on the benchmark leaderboard presented in Table 2,
we selected effective nonlinear mappings for comparison
with Fourier-ASR on the GTZAN (Tzanetakis and Cook
2002) and CSTR VCTK (Yamagishi, Veaux, and MacDon-
ald 2019) datasets. It is noteworthy that although Gaussian
(Ramasinghe and Lucey 2022) and Sine (Sitzmann et al.
2020) activation functions were introduced to mitigate the
complex parameter adjustments and pectral bias associated
with positional encoding, we found that positional encoding
remains essential due to the high-frequency nature and lo-
cal periodicity of audio signals. Consequently, we designed
new nonlinear mappings, namely RFF+Gaussian and
NeFF+Sine, to address these challenges.

As shown in Table 3, the designs RFF+Gaussian
and NeFF+Sine significantly enhance the ability of
Coordinate-MLPs to represent audio signals. On the
GTZAN dataset, these methods improve the SNR by
10.15dB ↑ and 12.28dB ↑, respectively. On the CSTR VCTK
dataset, the SNR improvements are 10.40dB ↑ and 14.04dB
↑, respectively. Due to the periodic nature of Fourier ba-
sis functions and the Frequency-adaptive Learning Strat-
egy (FaLS), our proposed Fourier-ASR(KAN) significantly
outperforms Sine(MLP) (≈ 6dB ↑) and B-Spline(KAN)
(≈ 18dB ↑). However, because existing optimization strate-

gies are not perfectly adapted to KAN networks (Liu et al.
2024), Fourier-ASR(KAN) performs slightly worse than the
locally periodic NeFF+Sine(MLP). Nonetheless, Fourier-
ASR(KAN) does not require positional encoding, thereby
avoiding the need for cumbersome hyperparameter tuning.

Conclusion and Future Work

We proposed the first open-source benchmark for evaluat-
ing implicit neural audio signal representations based on
Coordinate-MLPs, addressing a critical gap in standard-
ized performance assessment. We demonstrated the effec-
tiveness of combining positional encoding and nonlinear
mapping designs of activation functions in the field of con-
tinuous audio representations. Additionally, we introduced
a novel audio signal representation framework, Fourier-
ASR, which integrates the Fourier series theorem and the
Kolmogorov-Arnold representation theorem, offering en-
hanced interpretability and more stable representational ca-
pacity. Our work not only guides the selection of compo-
nents for Coordinate-MLP-based audio signal representa-
tions but also advances the development of audio represen-
tation applications. Due to the superior characteristics of im-
plicit neural representations, such as continuous differentia-
bility and decoupling from spatial resolution, our work can
be effectively applied to downstream tasks such as audio
super-resolution, denoising, compression, and generation.
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