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Abstract

Audio-visual navigation has received considerable attention
in recent years. However, the majority of related investiga-
tions have focused on single sound-source scenarios. Stud-
ies in this field for multiple sound-source scenarios remain
underexplored due to the limitations of two aspects. First,
the existing audio-visual navigation dataset only has limited
audio samples, making it difficult to simulate diverse multi-
ple sound-source environments. Second, existing navigation
frameworks are mainly designed for single sound-source sce-
narios, thus their performance is severely reduced in multi-
ple sound-source scenarios. In this work, we make an attempt
to fill in these two research gaps to some extent. First, we
establish a large-scale BEnchmark Dataset for Audio-VIsual
Navigation, namely BeDAViN. This dataset consists of 2,258
audio samples with a total duration of 10.8 hours, which is
more than 33 times longer than the existing audio dataset em-
ployed in the audio-visual navigation task. Second, we pro-
pose a new Embodied Navigation framework for MUltiple
Sound-Sources Scenarios called ENMuS3. There are mainly
two essential components in ENMuS3, the sound event de-
scriptor and the multi-scale scene memory transformer. The
former component equips the agent with the ability to ex-
tract spatial and semantic features of the target sound-source
among multiple sound-sources, while the latter provides the
ability to track the target object effectively in noisy envi-
ronments. Experimental results on our BeDAViN show that
ENMuS3 strongly outperforms its counterparts with an order-
of-magnitude improvement in success rates across diverse
scenarios.

Code — https://github.com/ZhanboShiAI/ENMuS

Introduction
Embodied navigation, which requires an autonomous agent
to solve challenging way-finding tasks by interacting with
previously unseen environments, represents one of the most
fundamental and essential components of embodied AI. In
recent years, this technique has been employed in a wide
range of applications, including but not limited to domestic
service (Zhang, Zhang, and Shao 2021), warehousing (Gadd
and Newman 2015), and logistics (Perdoch et al. 2015).
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Figure 1: A typical scenario in real-world environments. In
this context, the agent is instructed to fetch breakfast for
its owner. This task requires the agent to be equipped with
the capability to accurately discern the sound emitted by the
toaster, despite the presence of other sound-sources such as
television sound and traffic noise, and subsequently navigate
to the kitchen relying on audio-visual observations.

To facilitate real-world applications, the current advances
in embodied navigation tend to build an agent that utilizes
egocentric vision to travel to the desired location (Anderson
et al. 2018; Tang et al. 2022; Partsey et al. 2022), to search
for a specific class of objects (Zhang et al. 2021; Majumdar
et al. 2022; Qiao et al. 2023), or to cruise around the room
following language instructions (Li and Bansal 2023; Gao
et al. 2023). However, due to the complex structures of the
indoor environments, the target objects or locations are fre-
quently situated outside the field-of-view of the agent. Con-
sequently, these visual-only approaches are inherently ineffi-
cient. In order to optimize the utilization of multiple sensory
modalities for effective navigation, there has been an uptick
in investigations exploring audio-visual navigation, which
equips the agent with auditory capabilities and requires it
to find a sounding object (Chen et al. 2020, 2021; Chen, Al-
Halah, and Grauman 2021; Chen et al. 2023; Liu et al. 2024).
In spite of the considerable efforts made in recent years, the
deployment of these methods in multiple sound-source sce-
narios (multi-source scenarios in short) is hindered by limi-
tations in two aspects.

• The existing audio dataset for audio-visual navigation
(Chen, Al-Halah, and Grauman 2021) contains limited



audio samples. This dataset comprises only one audio
clip for each target sound category, making it difficult to
simulate diverse multi-source scenarios. For example, in
scenarios with multiple sound-sources of the same cate-
gory, the same audio signals from different locations will
be superimposed at the microphone, resulting in a false
audio simulation.

• The majority of existing solutions for audio-visual nav-
igation are designed for single sound-source scenarios
(single-source scenarios in short) (Chen et al. 2020,
2021; Chen, Al-Halah, and Grauman 2021; Chen et al.
2023; Liu et al. 2024). It is notable, however, that
real-world environments are commonly characterized by
the presence of multiple sound-sources and background
noise, as illustrated in Fig. 1. When deployed in such
noisy scenarios, the performance of the existing methods
significantly diminishes.

Taking the aforementioned limitations into consideration,
in this paper, we establish a new dataset called BeDAViN
(BEnchmark Dataset for Audio-VIsual Navigation) to facil-
itate the simulation of multiple sound-sources and propose
an Embodied Navigation framework for MUltiple Sound-
Sources Scenarios, namely ENMuS3. Our contributions can
be summarised as follows.

• To facilitate the study of audio-visual navigation in multi-
source scenarios, we establish BeDAViN. BeDAViN con-
sists of 2,258 audio samples encompassing 20 sound
event categories and 4 noise categories, allowing the sim-
ulation of diverse multi-source scenarios. It is also worth
noting that the total duration of this dataset is 10.8 hours,
which is more than 33 times longer than the existing au-
dio dataset (Chen, Al-Halah, and Grauman 2021) used
for the audio-visual navigation tasks.

• A novel embodied navigation framework, ENMuS3, is
proposed in this paper to address the audio-visual navi-
gation tasks in multi-source scenarios. ENMuS3 incorpo-
rates two essential components, the sound event descrip-
tor and the multi-scale scene memory transformer. The
former component is designed to extract spatial and se-
mantic information about the target sound-source from
noisy binaural audio waveforms. The latter takes advan-
tage of global interactions and local features of the scene
memory across multiple resolutions to improve the navi-
gation efficiency in noisy environments.

• Extensive experiments conducted on our BeDAViN
demonstrate that our ENMuS3 completely outperforms
the state-of-the-art (SOTA) competitors in terms of the
navigation success rate and the efficiency across diverse
scenarios with different sound-source configurations.

Related Work
Vision-based Navigation. The general aim of embodied
navigation is to identify a path from the starting position
to a target position in 3D environments. To achieve this,
the traditional navigation framework uses Simultaneous Lo-
calization and Mapping (SLAM) techniques to construct an

occupancy grid as the agent wanders around the environ-
ment and then determines a path to the target with the way-
finding algorithms (Engel, Schöps, and Cremers 2014; Mur-
Artal, Montiel, and Tardós 2015; Zhang et al. 2022). Unfor-
tunately, these SLAM-based methods suffer from accumu-
lated calculation errors along the mapping process, leading
to poor performance in practical applications. With the ad-
vent of reinforcement learning (RL) techniques, recent ad-
vances tend to learn navigation policies directly from ego-
centric observations for a variety of purposes (Anderson
et al. 2018; Zhang et al. 2021; Li and Bansal 2023; Gao et al.
2023). For instance, the PointGoal navigation task (Ander-
son et al. 2018) requires the agent to navigate to a specified
position. Alternatively, in the ObjectGoal navigation task
(Zhang et al. 2021), the agent is instructed to find the nearest
instance of a specific object category. In recent years, numer-
ous studies have been conducted on Vision-and-Language
navigation (Li and Bansal 2023; Gao et al. 2023), in which
the agent is expected to navigate to the destination follow-
ing the natural language instructions. It should be noted that
all the aforementioned RL-based methods restrict the agent
with solely visual observations. As the target object is fre-
quently situated outside the field-of-view of the agent, the
navigation efficiency of these approaches is limited.

Audio-visual Navigation. Audio-visual navigation, also
known as AudioGoal navigation (Chen et al. 2020), involves
an agent navigating to a target object that emits sound by
leveraging audio and visual observations in an unseen envi-
ronment. To address this challenge, the majority of studies
in recent years have attempted to train an end-to-end policy
via RL techniques. For instance, AV-Nav (Chen et al. 2020)
employs a multi-modal deep RL method to train the nav-
igation policy that predicts low-level actions (e.g., moving
forward, turning left, and turning right). To predict high-
level waypoints, AV-Wan (Chen et al. 2021) is proposed
to build both geometric and acoustic maps as the agent
moves in the environments. Considering that the sounds in
the above two studies are persistent, in order to locate and
track sporadic target sounds, SAVi (Chen, Al-Halah, and
Grauman 2021) incorporates a goal descriptor to remem-
ber the location of the target sound when it is inactive. For
the same purpose, ORAN (Chen et al. 2023) is equipped
with an omnidirectional information-gathering mechanism
to collect visual-acoustic observations from different direc-
tions in unseen environments before decision-making. Ad-
ditionally, inspired by methods of vision-and-language nav-
igation, CAVEN (Liu et al. 2024) is proposed to perform
audio-visual navigation with the help of the oracle. It is
worth noting that, due to the limitations outlined regarding
the dataset and frameworks for audio-visual navigation, the
practical applications of these methods in real-world envi-
ronments characterized by multiple sound-sources and back-
ground noise remain a significant challenge.

BeDAViN: A Benchmark Dataset for
Audio-visual Navigation

To facilitate the study of audio-visual navigation, we estab-
lish a new large-scale benchmark dataset named BeDAViN.



Dataset Total number
of samples

Total duration
of audio

SAVi-dataset (Chen,
Al-Halah, and
Grauman 2021)

144 1,157
seconds

BeDAViN (Ours) 2,258 10.8 hours

Table 1: The comparison of our BeDAViN and the existing
dataset employed in audio-visual navigation.
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Figure 2: The number of audio samples in each category.

This dataset comprises 2,258 audio samples covering 24
sound event categories, allowing the simulation of diverse
multi-source scenarios. A comparison of BeDAViN with the
existing dataset for audio-visual navigation is summarized
in Table 1, and a detailed distribution of audio samples in
each category for our BeDAViN is illustrated in Fig. 2.

Categories Information. Our BeDAViN contains two sets
of audio samples, one for target audio simulation and an-
other for background noise generation. The target sound
categories employed in the first set are similar to those
used in the previous study of audio-visual navigation (Chen,
Al-Halah, and Grauman 2021), with the only exception
of the gym equipment. This category is omitted because
its occurrence in simulation environments is insufficient to
yield enough training and testing data. As for the back-
ground noise set, several categories that commonly serve as
background noise in the field of sound event detection are
adopted, including rain (raindrops), bird (bird vocalizations,
bird calls, and bird song), traffic noise (roadway noise), and
fireworks.

Sound Event Dataset Collection. To construct the sound
event dataset comprising the aforementioned categories, a
manual recording process was first conducted. The record-
ing equipment utilized was a Tascam DR-40X with an X-Y
microphone configuration and a built-in level of 70, as il-
lustrated in Fig. 3 (a). In order to collect clear and noiseless
samples, all audio files for the target sound categories were
recorded within 1 meter of the sound-source in indoor envi-
ronments. Fig. 3 (b) shows some instances of the recording
process. As a result, 158 manually recorded 24-bit binaural

(a) (b)

counter clothes cabinet cushion towel

chair drawer bedshower picture

plant sofa toiletsink tv_monitor

Figure 3: (a) The recording equipment Tascam DR-40X. The
red rectangle indicates the X-Y microphone configuration.
(b) Examples of the recording process. The sound event cat-
egory of each instance is labeled in the top right corner of
the image. All the recording processes for target categories
were conducted within 1 meter of the target object in indoor
environments.

wave files with a sampling rate of 96,000 Hz were obtained.
To enrich this dataset, we subsequently selected audio clips
referring to the manually recorded samples in two public
datasets, AudioSet (Gemmeke et al. 2017) and FSD50K
(Fonseca et al. 2022), which are widely used in the field of
sound event detection. In the case of categories that have not
been systematically collected in any datasets, such as towel,
cushion, and plant, an exhaustive search was conducted in a
public database, freesound.org, for audio clips of these cat-
egories under the Creative Commons licenses. To achieve
this, the names and materials of these categories were used
as keywords in order to facilitate the retrieval of relevant au-
dio clips. Eventually, a large-scale sound event dataset was
constructed including 2,258 audio clips with a total duration
of 10.8 hours, which is 33 times longer than the existing au-
dio dataset (Chen, Al-Halah, and Grauman 2021) employed
in recent investigations for audio-visual navigation.

Navigation Episodes Generation. To train the agent with
our BeDAViN, 1.5 million navigation episodes were gen-
erated. Note that each episode comprises a set of parame-
ters for simulating the navigation process in virtual environ-
ments, which can be defined by 1) the simulation scene, 2)
the agent’s start location and rotation, 3) the location and
category of the target object, 4) the audio file name and the
duration of the sound for target audio simulation. Two op-
tional settings are also included in part of the episodes, 5)
the audio file name and the duration of the sound for in-
terfering sound simulation in multi-source scenarios, and
6) the noise file name for background noise generation in
noisy scenarios. The detailed sound-source configurations
for different scenarios are described in the experiments sec-
tion. In an episode of a given scene, the agent’s start loca-
tion and the location of the target object were randomly se-
lected with the guarantee that the geodesic distance between
these two positions was greater than 4m and the ratio of Eu-
clidean distance to geodesic distance was greater than 1.1.
In addition, the audio files were also randomly sampled ac-
cording to the sound category in our BeDAViN. Eventually,
1.5 million/3,000/3,000 episodes were collected for train/-



val/test splits in all 85 Matterport3D environments (Chang
et al. 2017).

ENMuS3: An Embodied Navigation
Framework for Multi-Source Scenarios

Framework Overview
As illustrated in Fig. 4, to fulfill the audio-visual naviga-
tion task in multi-source scenarios, our ENMuS3 first maps
the local observations to an observation embedding for each
time step using the Observation Encoder module. Specif-
ically, to detect and locate the target sound-source among
multiple sound-sources, this module includes a sound event
descriptor, which equips the agent with the ability to ex-
tract both semantic and spatial features of the target sound-
source. Subsequently, ENMuS3 employs our multi-scale
scene memory transformer to construct a multi-resolution
memory representation. With the global and local features
contained in this representation, ENMuS3 can efficiently de-
termine the next action of the agent in noisy environments.

Observation Encoder
The purpose of the Observation Encoder module is to trans-
form the current scene observations into an observation em-
bedding at each time step and then update the scene memory,
which has been shown to be beneficial in long-horizon nav-
igation tasks (Fang et al. 2019). The encoders employed in
this module and their functions are described as follows.

Audio Encoder. The function of the audio encoder is to
generate the low-level audio representation eBt with cur-
rent audio observations for time step t. To achieve this goal,
an audio feature extraction process is conducted as an ini-
tialization. First, the binaural waveforms are transformed
into the left-channel and right-channel spectrogram, SL and
SR ∈ CT×F , respectively, employing the short-time Fourier
transform (STFT) with the Hamming window, where T is
the number of time frames and F is the number of frequency
bins configured in STFT. Then, the interaural spectrogram Ŝ
can be defined as follows,

Ŝ =
[
Ŝtf , · · ·

]
T×F

, Ŝtf = SL
tf/S

R
tf , (1)

where SL
tf and SR

tf are the elements at the t-th time frame
and the f -th frequency bin of SL and SR, respectively. To
mimic human auditory characteristics (Blauert 2013), the In-
teraural Phase Difference (IPD) SIPD ∈ RT×F and Interau-
ral Level Difference (ILD) SILD ∈ RT×F are derived from
the interaural spectrogram as,

SIPD =
[
SIPD
tf , · · ·

]
T×F

, SIPD
tf = arg(Ŝtf )

SILD =
[
SILD
tf , · · ·

]
T×F

, SILD
tf = 20 log|Ŝtf |,

(2)

where arg(·) and | · | denote the argument and the modulus of
a complex number, respectively. Eventually, a four-channel
acoustic feature B ∈ R4×T×F is obtained by combining the
real parts of the left- and right-channel spectrograms, SL

real

and SR
real ∈ RT×F , with IPDs and ILDs as,

B = Concat(SL
real,S

R
real,S

IPD,SILD), (3)

where Concat(·) denotes the concatenation operation.
After obtaining this acoustic feature, a CRNN-based ar-

chitecture (Adavanne et al. 2019) is employed taking it as
the input to generate a low-level representation eBt ∈ RNb

of the audio observation for time step t, where Nb is the out-
put dimension of the audio encoder.

Sound Event Descriptor. To facilitate the ability of the
agent to distinguish the target sound-source among multi-
ple sound-sources, we propose the sound event descriptor
to extract the high-level audio representation eDt . In detail,
this module processes the output of the aforementioned au-
dio encoder and generates a class-wise output, which con-
tains the estimated categories of the active sound-sources in
surroundings and their corresponding directions of arrival
(DoAs), as shown in the red rectangle of Fig. 4. Specifi-
cally, the estimated DoAs are initially expressed in 3D coor-
dinates, which can be represented as xt, yt, and zt ∈ RNc

for time step t, where Nc is the number of sound event cat-
egories. Note that this estimation is expressed on the unit
sphere centered at the agent, and the range of positions along
each axis is [−1, 1] relative to the origin of the agent coordi-
nate system. For brevity, let F(x, y, z) denotes the following
function,

F(x, y, z) =
√

x2 + y2 + z2. (4)
Then the determination of whether the sound-source cate-
gory i ∈ [0, Nc) is active can be calculated as,

sit =

{
1, if F(xi

t, y
i
t, z

i
t) ≥ δ,

0, otherwise,
(5)

where δ is the threshold, which is set to 0.5 in the practice,
xi
t, y

i
t, and zit are the i-th elements of xt, yt, and zt, respec-

tively.
Considering that DoA estimation inevitably introduces lo-

calization errors, our sound event descriptor averages the
DoAs over Nd time steps to minimize this error. To achieve
this, these DoAs under the agent’s local coordinate system
are first transformed into the global coordinate system,

γi
t = arctan(yit, x

i
t) + µ

θit = arcsin

(
zit

F(xi
t, y

i
t, z

i
t)

)
,

(6)

where µ is the agent’s current orientation in the global coor-
dinate system, γi

t and θit represent the yaw and pitch of the
i-th sound-source in the global coordinate system, respec-
tively. After that, the yaw and pitch of the recent Nd time
steps are fed into an LSTM network to minimize the loca-
tion errors, and the hidden layers of this network are consid-
ered the high-level representation of the audio observations,
denoted by eDt ∈ RNh , where Nh is the dimension of the
processed hidden layers.

Visual/Pose/Action Encoders. We adopt a ResNet (He
et al. 2016) as the visual encoder to generate the visual rep-
resentation eIt ∈ RNi . To encode the current pose and the
previous action of the agent, we employ two linear networks
to produce the pose representation ept ∈ RNp and the action
representation eat ∈ RNa . Here, Ni, Np, and Na denote the
output dimensions of their respective networks.
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Figure 4: The framework overview of ENMuS3. ENMuS3 can be divided into two parts, an observation encoder to process
multi-sensory scene observations and a scene representation decoder to predict the next action of the agent. Specifically, a
sound event descriptor is proposed to accurately capture the semantic and spatial features of the target sound-source among
multiple sound-sources, as shown in the red rectangle. In addition, to maintain tracking of the target sound-source in noisy
environments, a multi-scale scene memory transformer is introduced, as illustrated in the blue rectangle.

Scene Memory Storage. To empower the agent with the
capability to exploit the historical information to perform
long-horizon navigation tasks more efficiently, we employ
a scene memory storage to maintain the recent Nm scene
observations. In detail, after obtaining all of the above-
mentioned representations, the observation embedding eOt
of the current time step t is constructed as,

eOt = Concat(eBt , e
D
t , eIt , e

p
t , e

a
t ) (7)

This observation embedding is then inserted into the mem-
ory storage M t. In order to achieve a balance between the
navigation performance and the storage cost, M t retains
only the most recent Nm observation embeddings, which
can be represented as,

M t = {eOi |i = max{0, t−Nm + 1}, . . . , t}. (8)

It should be noted that if the length of M t exceeds the limi-
tation Nm, the oldest embedding will be discarded upon the
insertion of a new one.

Scene Representation Decoder
The scene representation decoder module decodes the cur-
rent observation embedding and the scene memory storage
with our multi-scale scene memory transformer and predicts
the next action of the agent with an actor-critic network. As
the target sound in the environment is sporadic, the agent
must leverage both global interactions and local features to
maintain tracking of the target sound-source in noisy en-
vironments when it is inactive. To achieve this, given the
processed scene memory storage eMt , our multi-scale scene

memory transformer first generates a multi-resolution mem-
ory representation eMt utilizing multiple convolution layers
with the same kernel size and stride as follows,

eMt
0
= eMt ,

eMt
i
= Convi

(
eMt

i−1
)
,

eMt = Concat
(
eMt , eMt

1
, · · · , eMt

n
)
,

(9)

where eMt
i
, i ∈ (0, n] is the scene memory representation

generated by the i-th convolution layer and n is the num-
ber of convolution layers, as shown in the left column of
Fig. 5. Next, to form the scene representation for the agent’s
action prediction, the generated eMt is fed into the decoder
of our multi-scale scene memory transformer in conjunc-
tion with the current scene observations. Specifically, this
decoder employs two branches of processing in parallel, as
illustrated in the right column of Fig. 5. The first one is a
convolution branch which extracts the local audio and vi-
sual features from current scene observations. The second
one utilizes the multi-head attention mechanism (Vaswani
et al. 2017) to exploit the global interactions contained in the
observation memory. The outputs of these two branches are
then aggregated to constitute a state representation. After ob-
taining this state representation, an actor-critic network takes
it as input to predict the action distribution and value for the
current time step, and a categorical sampler samples the next
action at from this action distribution. More training details
of our ENMuS3 are provided in the supplementary material.
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Experiments
Setup
Environments and Simulator. We adopted Matterport3D
virtual indoor scenes (Chang et al. 2017), which are widely
used in embodied navigation, to serve as the training and
testing environments. As for the audio and visual simulator,
we modified the SoundSpaces platform (Chen et al. 2020)
by adding the generation pipelines for the interfering sound
and the background noise.

Scenario Configurations. We conducted extensive exper-
imentation on our BeDAViN in three types of scenarios, 1)
single-source scenarios, where only the target object emitted
sounds, 2) multi-source scenarios, in which multiple cate-
gories of sound events were active in the environment and a
specific category of the sound event was considered the tar-
get sound-source, and 3) noisy scenarios, which were based
on multi-source scenarios with additional everlasting back-
ground noise randomly selected from our BeDAViN. To en-
sure the generalizability of the experiments, all test results
were averaged over 10 scenes from Matterport3D (Chang
et al. 2017) with varying degrees of complexity, each com-
prising 100 episodes.

Evaluation Metrics. Similar to the existing studies (Chen
et al. 2020; Chen, Al-Halah, and Grauman 2021; Chen et al.
2023), the following metrics were adopted to evaluate the
performance of various audio-visual navigation schemes, 1)
success rate (SR), 2) success weighted by inverse path length
(SPL) (Anderson et al. 2018), 3) success weighted by inverse

number of actions (SNA) (Chen et al. 2021), and 4) average
distance to goal when episodes are finished (DTG).

Baseline Methods. We conducted a comparative analysis
of our proposed ENMuS3 against the following baselines.

• Random: A random policy uniformly samples one of
three actions and increases the likelihood of executing
stop as the number of actions increases.

• Goal Follower: A policy that first rotates the agent to-
wards the direction of the target sound-source estimated
by our sound event descriptor and then calls move for-
ward.

• ObjectGoal (Batra et al. 2020): An end-to-end RL policy
that takes RGB-D images and GPS compass as inputs to
search the nearest instance of the target category. It is also
given a one-hot encoding of the true category label as an
additional input to search for the target object instance.

• Av-Nav (Chen et al. 2020): An end-to-end RL policy that
encodes audio and visual observations with a GRU and
predicts the low-level actions directly.

• SAVi (Chen, Al-Halah, and Grauman 2021): An end-to-
end policy that adopts a ResNet to predict the location of
the target sound-source and makes decisions utilizing a
transformer-based architecture.

• SMT (Fang et al. 2019) + Audio: A transformer-based
policy that encodes the scene observations from the past
Nm time steps into a memory representation and then
predicts the agent’s next action by decoding this repre-
sentation. We modify this policy by also encoding the
audio observations into its memory representation.

For a fair comparison, all the baseline methods and our
ENMuS3 used the same reward function and the same inputs
if necessary, such as RGB-D images with a height and width
of 128 pixels and the audio waveforms with a sampling rate
of 16,000 Hz.

Quantitative Experimental Results

Table 2 presents the comparative navigation results of
ENMuS3 with SOTA audio-visual navigation methods on
our BeDAViN. The optimal results are highlighted in bold.
It is evident that our ENMuS3 significantly outperforms all
of its rivals. Specifically, ENMuS3 achieves a notable in-
crease in SR across all scenarios, surpassing the existing
SOTA method by 13.1%, 7.1%, and 3.1%, respectively. This
highlights the robust capability of our sound event descrip-
tor in detecting and locating the target sound-source in di-
verse scenarios. Additionally, ENMuS3 also demonstrates a
considerable advancement in navigation efficiency, exhibit-
ing a marked increase in both SPL and SNA. This suggests
that our multi-scale scene memory transformer is capable
of leveraging both global interactions and local features to
identify shorter paths to the target object, thus improving the
navigation efficiency. Further quantitative experiments (ab-
lation study) are presented in the supplementary material.
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square, and pink square indicate the start location of the agent, the location of the target object, and the location of the interfering
sound-source, respectively. The yellow arrow shows the last location and orientation of the agent when it stops, and the blue
line shows the navigation trajectories of the agent which gradually becomes lighter as the time step increases.

Single-source Scenarios Multi-source Scenarios Noisy Scenarios
SR↑ SPL↑ SNA↑ DTG↓ SR↑ SPL↑ SNA↑ DTG↓ SR↑ SPL↑ SNA↑ DTG↓

Random 1.9 1.1 1.6 11.6 1.2 0.6 0.9 12.2 1.0 0.5 0.8 12.6
Goal Follower 2.1 1.1 1.7 11.5 1.2 0.7 1.0 12.0 1.3 1.0 1.2 12.5
ObjectGoal 2.8 1.0 1.4 10.7 3.4 1.2 1.7 11.0 2.2 0.6 1.0 11.1
Av-Nav 33.7 15.3 20.2 7.2 27.4 12.4 18.1 8.8 13.2 5.4 7.6 10.5
SAVi 26.3 11.1 14.4 7.3 19.9 8.5 9.3 8.9 12.0 6.4 7.1 10.4
SMT + Audio 66.3 31.9 47.3 3.9 37.9 17.7 24.5 6.9 14.1 6.1 9.4 10.1
ENMuS3 79.3 44.1 64.4 2.1 46.5 24.0 35.0 6.0 18.0 8.8 12.3 9.9

Table 2: The performance of our ENMuS3 and other compared methods on BeDAViN under various scenarios with different
sound-source configurations.

Qualitative Experimental Results

Fig. 6 shows the navigation trajectories of our ENMuS3 and
other SOTA methods in multi-source scenarios. It can be
observed that our ENMuS3 is capable of completing the
navigation tasks with more efficient paths. Especially, in
S9hNv5qa7GM scene, our method reaches the target nearly
following the shortest path, indicating the strong ability of
our multi-scale scene memory transformer to track the tar-
get object in noisy environments. Furthermore, in situations
where the target object is situated at a considerable distance
from the agent’s initial position, such as in ac26ZMwG7aT
scene, our method can achieve the goal successfully with the
help of our sound event descriptor, while other approaches
get stuck within regions close to the starting point. More
qualitative experiments in single-source scenarios and noisy
scenarios are detailed in the supplementary material.

Conclusions
To facilitate audio-visual navigation in noisy environments,
we introduced BeDAViN, a large-scale benchmark dataset
containing 2,258 audio samples covering 24 sound event
categories. Supported by BeDAViN, diverse scenarios with
different sound-source configurations can be simulated, en-
abling the training and testing of the agent in multi-source
environments. In addition, we proposed ENMuS3, an em-
bodied navigation framework for multi-source scenarios.
ENMuS3 is equipped with a sound event descriptor and a
multi-scale scene memory transformer that significantly en-
hances the capacities of the agent to locate and track the
target sound-source in challenging noisy environments. As
existing methods of audio-visual navigation are developed
in simulation environments, our future work will focus on
deploying our ENMuS3 in real-world applications.
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