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ABSTRACT
Surround-view system is an important information medium for dri-
vers to monitor the driving environment. A typical surround-view
system consists of four to six fish-eye cameras arranged around the
vehicle. From these camera inputs, a top-down image of the ground
around the vehicle, namely the surround-view image can be gener-
ated with well calibrated camera poses. Although existing surround-
view system solutions can estimate camera poses accurately in off-
line environment, how to correct the camera poses’ change in online
environment is still an open issue. In this paper, we propose a cam-
era pose optimization method for surround-view system in online
environment. Our method consists of two models: Ground Model
and Ground-Camera Model, both of which correct the camera poses
by minimizing photometric errors between ground projections of
adjacent cameras. Experiments show that our method can effec-
tively correct the geometric misalignment of the surround-view
image caused by camera poses’ change. Since our method is highly
automated with low requirement of calibration site and manual
operation, it has a wide range of applications and is convenient for
the end-users. To make the results reproducible, the source code is
publicly available at https://cslinzhang.github.io/CamPoseOpt/.
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1 INTRODUCTION
Surround-view system is an emerging ADAS (Advanced Driver
Assistance System) technology and an important informationmedia
for drivers to monitor the driving environment [12, 14, 16, 17]. It can
generate a top-down image of ground around the vehicle, namely
the surround-view image, which can provide information of the
road conditions for drivers. In recent years, surround-view images
have also been widely used in traffic sign recognition, parking-slot
detection and other computer vision tasks in autonomous driving
[2, 7, 11, 21]. A typical surround-view system consists of four to six
fish-eye cameras arranged around the vehicle. By using the existing
calibration methods for the surround-view system, the camera
poses of the system can be estimated quite accurately [9, 10, 15, 19].
Then, the images captured by the surround-view system can be
projected onto the ground with the estimated camera poses. Finally,
a seamless surround-view image can be generated.

However, most of the existing methods are designed for the of-
fline environment, such as an automobile factory. The camera poses
calibrated with these methods may change after the automobiles
leave the factory for daily-use. In daily-use scenarios, namely the
online environment, the camera poses may change due to bumps,
collisions and tire pressure changes, which will cause obvious geo-
metric misalignment at stitching boundaries in the surround-view
images. In such a situation, most commercial surround-view solu-
tions need to take the automobile back to the factory with calibra-
tion sites and technical supports to re-calibrate the system, which
is very troublesome for both the automobile enterprises and the
clients.

In this paper, we propose a new camera pose optimizationmethod
for the surround-view system. The method is oriented to the online
environment and can optimize the camera poses on a flat ground
with natural texture, which is very common in daily use. In the
meanwhile, the calibration process is highly automated and does
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not require any manual operation. After being corrected by our
proposed method with only one frame, the new camera poses can
still be valid for a period.

1.1 Related Work
Most existing extrinsic calibration methods for the surround-view
system estimated the camera poses through geometric alignment
with specific kinds of image features. According to what kind of
features are used, existing methods can be categorized into two
classes: pattern-based approaches and feature-based approaches.

The pattern-based approaches estimated the camera poses with
special patterns like chessboard or point array, which are precisely
drawn on a calibration board. In [18, 20, 22], the authors adopted a
factorization based method to calibrate the multi-camera system by
placing a calibration pattern between adjacent cameras. Gao et al.
[6] proposed amethod that adopted a colinear constraint to estimate
coordinate transformation with a special designed checkerboard.
However, since these methods do not take the loop closure relation
of the surround-view system into consideration, the calibration
results usually have accumulative error. To guarantee precision of
the calibration result, Natroshvili and Scholl [15] jointly optimized
the camera poses after the orientation of each camera has been esti-
matedwith a fixed pattern placed on the ground. Analogously, Liu et
al. [13] and Zhang et al. [19] proposed a surround-view camera solu-
tion for embedded system by using bundle adjustment to minimize
geometric misalignment. In [8], Hedi and Loncaric estimated ho-
mograph matrix by mapping 3D coordinates of chessboard corners
to their 2D coordinates on the images, then minimized stitching
error within the overlapping areas of adjacent cameras. Although
the camera poses can be estimated highly accurately by pattern-
based methods, most of them require large calibration sites, which
are inconvenient for end-users. Once the camera poses change,
the users must seek for professional assistance to re-calibrate the
surround-view system.

The feature-based approaches estimated the camera poses with
natural features such as corners, lines and photometric information
in the images. Heng et al. [9, 10] proposed infrastructure-based
calibration methods which leveraged on multi-sensor SLAM to
build a highly accurate map of a calibration area using an already
calibrated robotic system. Given camera intrinsic parameters, the
vehicle was required to be driven in the calibration area for a period
of time to complete the calibration process. By specifying corre-
sponding feature points on the ground in adjacent images, Liu et
al. [14] calculated the homography matrix of the camera to the
ground to generate the surround-view image. In [1], Choi et al.
calibrated multiple cameras by automatically finding correspond-
ing lane markings across images of adjacent cameras. Zhao et al.
[24] utilized multiple vanishing points of lane markings for camera
orientation calibration with the weighted least squares method,
followed by a tracking process with Kalman Filter for better consis-
tency and robustness. Although feature-based approaches are more
flexible than pattern-based approaches, they also introduce new
limitations like a prepared map of the calibration area or particular
pattern of lane markings. In addition, it is difficult for feature-based
approaches to obtain accurate camera poses, which influences the
stitching effect of the surround-view image.

To our knowledge, most of existing extrinsic calibration methods
for the surround-view system are designed for the off-line environ-
ment. The pattern-based approaches are more accurate but need
calibration sites, while the feature-based approaches are easy to
use but not accurate enough. That is to say, these methods can not
meet both the convenience and accuracy requirements of camera
pose correction in the online environment.

1.2 The Motivations and Contributions
Through the literature survey, we find that existing methods of
surround-view system calibration have limitations in the following
aspects:

(1) Existingmethods are not designed for the online environment.
Although existing methods work well in the off-line environment,
once the camera poses change, these methods need to re-calibrate
the surround-view system, which is very cumbersome. In fact, there
are initial camera poses available under the online condition. How-
ever, to our knowledge, no existing method takes advantage of this
important information.

(2) As mentioned in Sect. 1.1, existing methods are not able to
balance the convenience of calibration process and the accuracy
of calibration results, which are key demands of the end-users.
The pattern-based methods are accurate, but they require precisely
drawn calibration sites and manual operations to assist the calibra-
tion process, which is troublesome. On the contrary, the feature-
based methods are relatively flexible and have lower dependence
on the calibration sites, but their accuracy is not satisfactory.

Therefore in this paper, we attempt to fill the above-mentioned
research gaps to some extent. Our major motivations and contribu-
tions are summarized as follows:

(1) Aiming at the characteristics of the online environment, we
propose a camera pose optimization method which fully exploits
the initial camera poses of the calibrated surround-view system. The
method consists of two models: Ground Model and Ground-Camera
Model. Considering the lack of reliable feature points in the online
environment, both of the two models correct the camera poses by
minimizing the photometric error between ground projections of
adjacent cameras. The optimization objective of the Ground Model
is consistent with the objective of surround-view image stitching.
This model theoretically establishes the relationship between the
camera poses and the photometric error of the surround-view image.
It can correct particular types of camera poses’ change. On the other
hand, the Ground-Camera Model steps further on the basis of the
Ground Model and solves the problem of DOF (degree of freedom)
loss. Since Ground-Camera Model is more general and complete in
theory, it has a wider application range.

(2) In order to meet the convenience and accuracy requirements
of the end-users, we design and implement a highly automated al-
gorithm based on our proposed models. It only needs a flat ground
with rich texture where no fixed pattern or regular shape is nec-
essary. In the meanwhile, the calibration process does not require
any manual operation. Experiments show that our algorithm can
effectively correct the geometric misalignment in the surround-
view image caused by camera poses’ change. After the camera
pose correction, the stitching error of the surround-view image is
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significantly reduced and the visual effect is greatly improved as
well.

2 OVERVIEW OF SURROUND-VIEW SYSTEM
This section describes how to generate a surround-view image from
the images captured by the surround-view system.

Given a surround-view system consisting of four cameras C1,
C2, C3, C4 and the ground coordinate system OG , the poses of the
cameras inOG areTC1G ,TC2G ,TC3G ,TC4G , respectively. For a point
PG = [XG ,YG ,ZG , 1]T inOG , the pixel coordinate pCi of PG in the
ith camera Ci is given by,

pCi =
1

ZCi
KCiTCiGPG (1)

where KCi is the intrinsic matrix [23] of the camera Ci , and ZCi is
the depth of the point in the camera’s coordinate system.

Besides, assume that the world is wide and flat, the bird’s-eye-
view image can be generated by projecting a camera image to
the ground, namely the plane ZG = 0 in OG . For a point pG =
[uG ,vG , 1]T in the bird’s-eye-view image, the relationship between
pG and PG can be presented as,

uG
vG
1

 =


1

dXG
0 W

2dXG
0 − 1

dYG
H

2dYG
0 0 1



XG
YG
1

 (2)

wheredXG anddYG are the size of each pixel,W andH are the width
and height of the scope covered by the surround-view image. It is
worth mentioning that because ZG = 0, ZG is ignored implicitly
here. Denote the transformation matrix by KG , the Eq. 2 can be
written as,

pG = KGPG (3)
By combining Eq. 1 and Eq. 3, we can get,

pCi =
1

ZCi
KCiTCiKG

−1pG (4)

Using Eq. 4, we can project the image of cameraCi onto the ground
to generate a bird’s-eye-view image by,

IGCi (pG ) = ICi (pCi ) (5)

where ICi is the image captured by camera Ci , IGCi is the ground
projection of ICi , namely the bird’s-eye-view image. By projecting
the images of the four cameras onto the ground and choosing
the appropriate stitching seam, the surround-view image can be
generated.

3 CAMERA POSE OPTIMIZATION
Using correct camera poses, we can generate an almost seamless
surround-view image with the model in the previous section. How-
ever, in online environment, the camera poses are often disturbed.
For example, vehicle bumps can cause the cameras shaking, which
may change the camera poses. In addition, the change of tire pres-
sure will make the whole camera system move closer or farther
to the ground. All these factors will lead to misalignment on the
generated surround-view image.

In order to solve the problem of camera poses’ change during
vehicle driving, we propose a new camera pose optimization ap-
proach. Our approach draws lessons from direct methods [3–5] in

Figure 1: Relationship between the ground coordinate sys-
tem and the surround-view image coordinate system.W and
H are thewidth and height of the scope covered by the bird’s-
eye-view image.

SLAM field. It estimates optimal camera poses by optimizing the
photometric error between specific images’ projections. In the fol-
lowing subsections, we will introduce two models in our approach,
namely Ground Model and Ground Camera Model. The Ground
Model theoretically establishes the relationship between the camera
poses and the photometric error of the surround-view image, while
the Ground-Camera Model steps further on the basis of the Ground
Model and solves the problem of DOF (degree of freedom) loss.

3.1 Ground Model
Suppose Ci and Cj are two adjacent cameras in a surround-view
system. Their projections on the ground are IGCi and IGCj , respec-
tively. The photometric error of a point pG on the ground in IGCi
and IGCj can be defined as,

εpG =∥ IGCi (pG ) − IGCj (pG ) ∥2 (6)

By expanding pG into a form that includes the camera’s pose,
pG can be written as,

pG = KG exp(ξGCi )PCi (7)

where ξGCi is the Lie algebra representation of the transformation
matrix from the cameraCi to the groundTGCi . Put Eq. 7 into Eq. 6,
we can get,

εpG =∥IGCi (KG exp(ξGCi )PCi )
− IGCj (KG exp(ξGCj )PCj ) ∥2

(8)

Then the optimization objective of Ground Model can be defined
as,

ξ ∗GCi , ξ
∗
GCj
= argmin

ξGCi ,ξGCj

∑
pG ∈Ni j

εpG (9)

where Ni j is the overlapping region of IGCi and IGCj .
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To optimize this objective function, we need to analyze the de-
rivative relationship between εpG and ξGCi . The Jacobian of εpG
to ξGCi can be expressed as,

Ji =
∂εpG
∂ξGCi

(10)

With PG = exp(ξGCi )PCi , it can be decomposed as,

Ji =
∂εpG
∂IGCi

∂IGCi
∂pG

∂pG
∂PG

∂PG
∂ξGCi

(11)

Next, we will discuss these four parts separately:
(1) ∂εpG /∂IGCi is the derivative of photometric error to image

pixel intensity, denoted by δ . Suppose that IGCi is a gray scale
image,

δ =
∂εpG
∂IGCi

= IGCi (pG ) − IGCj (pG ) (12)

(2) ∂IGCi /∂pG is the gradient of IGCi at the pixel pG ,
∂IGCi
∂pG

=
[
∂IGCi
∂uG

∂IGCi
∂vG

]
=

[
▽uG ▽vG

]
(13)

(3) ∂pG/∂PG is the derivative of a pixel’s 2D coordinate to its
3D coordinate,

∂pG
∂PG

=

[
∂uG
∂XG

∂uG
∂YG

∂uG
∂ZG

∂vG
∂XG

∂vG
∂YG

∂vG
∂ZG

]
=

[ 1
dXG

0 0
0 − 1

dYG
0

] (14)

(4) ∂PG/∂ξGCi is the derivative of 3D coodinate PG to Lie alge-
bra ξGCi ,

∂PG
∂ξGCi

=
[
I −P∧G

]
=


1 0 0 0 ZG −YG
0 1 0 −ZG 0 XG
0 0 1 YG −XG 0


(15)

where P∧G is the anti-symmetric matrix of PG .
By combining the above four parts, noticing that pG is a point

on the ground plane ZG = 0, the final form of Ji can be expressed
as,

Ji = δ
[
▽uG
dXG

−
▽vG
dYG

0 0 0 −
▽uGYG
dXG

−
▽vGXG
dYG

]
(16)

Once Ji is obtained, Eq. 9 can be iteratively optimized with con-
ventional optimization methods, such as Gradient Descent, Gauss-
Newton method and Levenberg-Marquardt algorithm. Take the
Gradient Descent method as an example, for the nth iteration, the
camera pose ξnGCi can be updated by,

ξnGCi ← ξn−1GCi − α J
n
i (17)

where α is the rate factor.
For the surround-view system, we can optimize all camera poses

together by minimizing the photometric error of each camera and
its adjacent cameras. The optimization objective of the surround-
view system can be expressed as,

ξ ∗GCi = argmin
ξ ∗GCi

4∑
i=1

∑
j ∈Ω(i)

∑
pG ∈Ni j

εpG (18)

where j is the index of Ci ’s adjacent cameras.
Although the Ground Model can solve the problem of camera

pose optimization to some extent, it also has an obvious shortcom-
ing. The camera pose ξGCi has 6 DOF (degree of freedom), but the
Jacobian matrix Ji calculated by the Ground Model has only 3 DOF,
which means only three dimensions of ξGCi can be updated. The
first two dimensions represent translations parallel to the ground
plane, while the last one represents rotation around the Z axis of
the ground coordinate system. That is to say, the Ground Model
can only correct particular types of camera poses’ change, which
limits its application. To solve the problem of DOF loss, we propose
a more universal method called Ground-Camera Model.

3.2 Ground-Camera Model
Unlike Ground Model, Ground-Camera Model uses a different pro-
jection plane to calculate photometric error. To correct the pose of
camera Ci , we firstly project IGCj to camera Ci . Suppose that the
projection of bird’s-eye-view image IGCj on cameraCi is ICiGCj

, the
photometric error of camera Ci in Ground-Camera Model can be
defined as,

εp =∥ ICi (p) − I
Ci
GCj
(p) ∥2 (19)

where p is a point on the imaging plane of the camera Ci . Similar
to Ground Model, p is firstly expanded into a form with the camera
pose,

p =
1

ZCi
KCi exp(ξCiG )PG (20)

where KCi is the intrinsic matrix of Ci ,

KCi =


fx 0 cx
0 fy cy
0 0 1

 (21)

and,
PCi = exp(ξCiG )PG =

[
XCi YCi ZCi

]T (22)

Then the photometric error can be written as,

εp =∥ICi (
1

ZCi
KCi exp(ξCiG )PG )

− ICiGCj
(
1

ZCi
KCi exp(ξCiG )PG ) ∥2

(23)

By analyzing the derivative relationship between εp and ξCiG ,
the Jacobian of εp to ξCiG can be decomposed into,

J =
∂εp

∂ξCiG
=
∂εp

∂ICi

∂ICi
∂p

∂p

∂PCi

∂PCi
∂ξCiG

+
∂εp

∂ICiGCj

∂ICiGCj

∂p

∂p

∂PCi

∂PCi
∂ξCiG

(24)

Obviously, this formula can be divided into two symmetric main
parts with four small parts each. The four small parts are:

(1) ∂εp/∂ICi and ∂εp/∂I
Ci
GCj

are the derivative of photometric
error to the two images. Suppose that

δ = ICi (p) − I
Ci
GCj
(p) (25)
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then
∂εp

∂ICi
= δ ,

∂εp

∂ICiGCj

= −δ (26)

(2) ∂ICi /∂p and ∂ICiGCj
/∂p are the gradient of ICi and I

Ci
GCj

at p.
Suppose that p =

[
u v

]
, then,

∂ICi
∂p
=

[
▽iu ▽iv

]
(27)

∂ICiGCj

∂p
=

[
▽ju ▽jv

]
(28)

(3) ∂p/∂PCi is the derivative of 2D coordinate to 3D coordinate,

∂p

∂PCi
=


fx
ZCi

0 −
fxXCi
Z 2
Ci

0 fy
ZCi

−
fyYCi
Z 2
Ci

 (29)

(4) ∂PCi /∂ξCiG is the derivative of 3D coordinate PCi to Lie
algebra ξCiG ,

∂PCi
∂ξCiG

=
[
I −P∧Ci

]
=


1 0 0 0 ZCi −YCi
0 1 0 −ZCi 0 XCi
0 0 1 YCi −XCi 0


(30)

By merging the decomposed parts of Eq. 24, the Jacobian J can
be expressed as,

J = δ
[
▽iu − ▽ju ▽iv − ▽jv

]

fx
ZCi

0 −
fxXCi
Z 2
Ci

−
fxXCi YCi

Z 2
Ci

fx +
fxX 2

Ci
Z 2
Ci

−
fxYCi
ZCi

0 fy
ZCi

−
fyYCi
Z 2
Ci

−fy −
fyY 2

Ci
Z 2
Ci

fyXCi YCi
Z 2
Ci

fyXCi
ZCi


(31)

After J is obtained, we can minimize the photometric error εp
by updating ξCiG iteratively with,

ξnCiG ← ξn−1CiG − α J
n (32)

For the surround-view system, the optimization objective of all
cameras can be expressed as,

ξ ∗CiG = argmin
ξ ∗CiG

4∑
i=1

∑
j ∈Ω(i)

∑
p ∈N

Ci
i j

εp (33)

where j is the index of Ci ’s adjacent cameras, and NCi
i j is Ni j ’s

projection on Ci . We can optimize all camera poses together by
minimizing the photometric error of the whole surround-view sys-
tem.

Obviously, no dimension of the Jacobian J in Ground-Camera
Model is constantly equal to zero. This means that the Ground-
Camera Model can theoretically correct the rotation and transla-
tion shift of the camera poses in any directions. In other words, the
Ground-Camera Model is superior to the Ground Model in perfor-
mance. Therefore, we adopt the Ground-Camera Model to solve the
camera pose optimization problem and the surround-view image
generation.

4 EXPERIMENTAL RESULTS
4.1 Implementation Details
We evaluate our approach on a calibrated surround-view system.
The system consists of four cameras mounted in the four directions
of the vehicle, namely F ,L,B,R (short for Front, Left, Back and
Right). The initial camera poses of the system are ξF , ξL , ξB , ξR ,
respectively. Based on the models described in the previous section,
we design and implement an automated algorithm, whose pseudo-
code is as following.

Algorithm 1 Camera Pose Correction

Input: ξC , IC C ∈ {F ,L,B,R}
Output: ξ ∗C
1: Function
2: IGC ← P(IC , ξC ,KC )

3: J ← G(I1, I2, ξ1, ξ2)
4:
5: Initialize IC , ξC ,KC
6: for camera Ci in {F ,L,B,R} do
7: IGCi ← P(ICi , ξCi ,KCi )

8: end for
9: while iter < iter_max and δ > threshold do
10: for camera Ci in {F ,L,B,R} do
11: for Cj adjacent to Ci do
12: JCi ← G(IGCi , IGCj , ξCi , ξCj )

13: ξCi ← ξCi − α JCi
14: α ← decay_rate ∗ α
15: end for
16: end for
17: iter ← iter + 1
18: end while
19: ξ ∗C ← ξC
20: return ξ ∗C

P is the function of projecting a camera image onto the ground
and G represents our proposed models, namely the Ground Model
or the Ground-Camera Model. The loop will quit after iter_max
iterations or when the normalized average photometric error of
all the overlap regions in the surround-view image δ is less than
the threshold . The rate factor α varies in different implementations
and different parameter settings. The decay_rate is used to reduce
vibration in optimization.

δ here is the average photometric error of the ROIs in the surround-
view image. In order to reduce the influence of different exposure
level of different cameras, the photometric error is calculated as
following:

δ =
1
N

4∑
i=1

∑
j ∈Ω(i)

∑
pG ∈Ni j

(IGCi (pG ) − γi j IGCj (pG )) (34)

where N is the number of the pixels in ROI, and

γi j =

∑
pG ∈Ni j IGCi (pG )∑
pG ∈Ni j IGCj (pG )

(35)

In our implementation, threshold is set to 0.10, iter_max is 30,
α is 5.0E − 10 and decay_rate is 0.95.
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Figure 2: The optimization process of our algorithm. The first row is the overall effect of the surround-view image after 0, 10,
20, and 30 iterations. The following eight rows are the magnified images and the corresponding photometric errors maps of
four ROIs (region of interest) marked in the first surround-view image as the Roman numerals I, II, III, IV. δ under each image
is the average photometric error of the whole image, which quantitatively illustrates the reduction of stitching misalignment
in the surround-view image.
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4.2 optimization procedure
To evaluate our algorithm, we firstly apply random disturbance
to the initial camera poses to simulate camera poses’ change in
the real world. Then we use our proposed algorithm to iteratively
optimize the camera poses, and generate the surround-view image
of different iterative stages, as shown in Fig. 2.

The first row of Fig. 2 shows the overall effect of the surround-
view images after 0, 10, 20, and 30 iterations. It can be seen that,
within the iteration process, the geometric misalignment of the
surround-view image is decreased, which reflects that the camera
poses are gradually corrected. In addition, δ under each image is the
average photometric error of the whole image, which quantitatively
illustrates the reduction of stitching misalignment in the surround-
view image. The following eight rows are the magnified images and
the corresponding photometric error maps of four ROIs marked in
the first surround-view image as the Roman numerals I, II, III, IV.

For each ROI, the first row are the local magnified images, which
shows the gradually closing up of the texture around the stitching
seam during the iteration process in detail. Correspondingly, the
second row are the normalized photometric error maps of the ad-
jacent cameras’ images in the same region. As shown in the color
bar on the left, the red tendency represents that the intensity of a
pixel in one image is greater than the intensity of its corresponding
pixel in another image, while the blue tendency is the opposite. It
is obvious that even the stitching is misaligned at the beginning
of the iteration, the photometric errors of weak texture areas like
the pavement are not very large. On the contrary, the photomet-
ric errors are greater in the areas with strong texture, such as the
road lanes and the zebra crossing. Thus these regions make major
contributions to the camera pose correction. Although there are
still some photometric errors in the final results, especially in ROI
III, the stitching misalignment are essentially eliminated by our
algorithm. Actually, these photometric errors are mainly caused
by local texture inhomogeneity and ground surface reflection. The
text under the images shows the average photometric error of each
ROI at different iterations. Although some of them increase slightly
in later iterations, the overall photometric errors of all the four
ROIs decrease because of the global optimization. Take ROI II as
an example to analyze, the manhole cover on the ground is obvi-
ously divided into two parts due to wrong initial camera poses at
the beginning. At the same time, the red and blue circles in the
photometric error map also reflect the stitching misalignment of
the ground images. As the iteration proceeds, the red and blue
circles gradually approach to each other and disappear, while the
misalignment of the ground image is also reduced, which indicates
that the camera poses have been effectively corrected.

To sum up, after optimization with our algorithm, the geomet-
ric misalignment and the photometric error of the surround-view
image are significantly reduced.

4.3 Quantitative Evaluation
We also validate our algorithm on other test samples, as shown in
Fig. 3. Each row of the figure is a specific test sample, in which the
image on the left is the surround-view image before the camera
pose optimization, and the one on the right is the result after opti-
mization. It can be seen that after being processed by our algorithm,

(a)

(b)

(c)

(d)

Figure 3: Comparisons of surround-view images before and
after camera pose optimization. The images in the left col-
umn are the surround-view images before the camera pose
optimization, and the ones in the right column are the re-
sults after optimization.
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Figure 4: Photometric errors of the samples in Fig. 3 in dif-
ferent iteration times.

Table 1: Normalized photometric error of the samples in Fig.
3

Image Iter 0 Iter 5 Iter 10 Iter 20 Iter 30
Fig. 3(a) 0.0277 0.0215 0.0192 0.0111 0.0094
Fig. 3(b) 0.0219 0.0106 0.0120 0.0096 0.0078
Fig. 3(c) 0.0272 0.0142 0.0116 0.0101 0.0097
Fig. 3(d) 0.0203 0.0139 0.0097 0.0068 0.0049

the misalignment of the surround-view image is greatly reduced,
and the visual effect is improved. We also calculate objective indi-
cators to measure the performance of our algorithm. Table 1 shows
the normalized photometric errors of the four test samples in Fig.
3 under different iterations, which indicates that our method can
optimize the photometric error to a low level, under 0.01. Fig. 4 is
the line chart corresponding to Table 3. It shows that our algorithm
could converge around 30 iterations.

It is worth mentioning that all the test samples include roads
with the zebra crossing. That is because during the optimization
process, each ROI needs a clear texture for calculating the image
gradient in our algorithm . The texture of the common lane lines
on the road is not sufficient enough, while the zebra crossing areas
can meet our requirements well. Therefore, it is recommended to
use our algorithm in similar scenarios. However, on the premise of
ensuring sufficient ground texture, the orientation relationship be-
tween the vehicle and the ground texture is not important thus can
be arbitrarily specified, which reduces the requirement of manual
operation and guarantees the convenience of our method.

4.4 Long-term Performance
In online environment, the change of camera poses occur acciden-
tally in common. That is to say, it is not necessary to optimize
the camera poses all the time and the corrected camera poses by
our method should be effective for a period of time. Therefore,
we test the long-term performance of our approach on a video
stream in this subsection. We firstly collected raw videos of the
fish-eye cameras with our surround-view system. Then random
disturbance was applied to the original camera poses to simulate

Figure 5: Photometric errors of a videos before and after
camera pose optimization with the first frame.

camera poses’ change in online environment. With the disturbed
camera poses, we generated a surround-view video and calculated
the photometric error of each frame in the video. After that, we
used the proposed approach to correct the camera poses with the
first frame of the video. Utilizing the corrected camera pose, we
generated a new surround-view video and calculated its the photo-
metric error as well. Fig. 5 shows the comparison of photometric
errors of the videos before and after camera pose correction. As we
can see in Fig. 5, the photometric errors of most frames after camera
pose correction are significantly lower than the ones before, which
illustrates that the camera poses corrected with the first frame are
still valid in the following period.

5 CONCLUSION
In this paper, we propose a novel camera pose optimization method
for the surround-view system. Our method consists of two mod-
els, Ground Model and Ground-Camera Model, both of which can
correct the camera poses by minimizing the photometric error of
the surround-view image. The Ground Model establishes the rela-
tionship between the photometric error and the camera pose, while
the Ground-Camera model solves the DOF loss problem of Ground
Model and improves the universality of our method. We also de-
sign and implement a highly automated algorithm based on the
propsed model to meet the convenience and accuracy requirements
in online environment. The experiments show that our method can
effectively reduce the geometric misalignment and the photometric
error of the surround-view image caused by camera poses’ change.
It is also improved that our method has a long-term effectiveness.
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