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ABSTRACT
How to restore back-lit images still remains a challenging task. State-
of-the-art methods in this field are based on supervised learning
and thus they are usually restricted to specific training data. In
this paper, we propose a “zero-shot” scheme for back-lit image
restoration, which exploits the power of deep learning, but does
not rely on any prior image examples or prior training. Specifically,
we train a small image-specific CNN, namely ExCNet (short for
Exposure Correction Network) at test time, to estimate the “S-curve”
that best fits the test back-lit image. Once the S-curve is estimated,
the test image can be then restored straightforwardly. ExCNet
can adapt itself to different settings per image. This makes our
approach widely applicable to different shooting scenes and kinds
of back-lighting conditions. Statistical studies performed on 1512
real back-lit images demonstrate that our approach can outperform
the competitors by a large margin. To the best of our knowledge,
our scheme is the first unsupervised CNN-based back-lit image
restoration method. To make the results reproducible, the source
code is available at https://cslinzhang.github.io/ExCNet/.
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1 INTRODUCTION
When taking images, one of the most annoying types of ill illumi-
nation conditions is back-lighting. Though most modern imaging
sensors can automatically adjust relevant hardware parameters
(such as the aperture, the shutter speed, and the electronic gain
[24]) according to the illumination conditions of the shooting tar-
gets, they still cannot get satisfied results in most back-lighting
cases. One possible way to combat this problem is to use HDR (high
dynamic range) imaging techniques [5]. However, HDR can only be
used for image acquisition in back-lighting but cannot help restore
existing poor-quality back-lit images.

In this work, we investigate the problem of back-lit image restora-
tion and introduce a “zero-shot” scheme, namely ExCNet (short
for Exposure Correction Network). By “zero-shot”, we mean that
ExCNet does not need prior training. ExCNet is a specially designed
CNN (Convolutional Neural Networks) which can estimate the best-
fitting S-curve [2, 28] for the given back-lit image directly. With its
S-curve, the back-lit image can be then restored accordingly. In Fig.
1, we show 4 typical back-lit images along with the restored results
by ExCNet. It can be seen that the proposed approach has a strong
power for restoring poor-quality back-lit images.

1.1 Related Work
Actually, conventional image enhancement methods [8, 13, 19, 21,
30] can be explored to enhance back-lit images, but in most cases
their efficacy is quite limited. There are also some heuristic meth-
ods specially designed for restoring back-lit images. In [22], Sa-
fonov proposed such an approach based on contrast stretching
and alpha-blending of both brightness of the initial image and es-
timations of reflectance. In [25], Tsai and Yeh first detected the
back-lit regions by simple thresholding the luminance channel and
then they linearly stretched the detected back-lit regions. Lee et al.
[15] refined Tsai and Yeh’s idea by introducing quad-tree growing
and guided filtering [11]. In [12], Im et al.’s approach first extracts
under-exposed regions using the dark channel prior [10] and then
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Figure 1: Back-lit image restoration results of ExCNet. Im-
ages in the first column are the original back-lit images
while the ones in the second column are the enhanced re-
sults by our ExCNet.

performs spatially adaptive contrast enhancement. In [28], Yuan
and Sun estimated the image specific S-curve through zone-based
region-level optimal exposure evaluation. They formulated the best
zone estimation as a graph labeling problem and solved it by a
brute-force searching strategy. Later, the authors extended their
work to correct ill-exposed video sequences [6].

Another branch of back-lit image restoration methods are based
on theories of machine learning. In [4], Dale et al. first established
a database comprising 1 million images. Given an input image
to be restored, their system executes a visual search to find the
closest images in the database; these images define the input’s
visual context, which can be further exploited to instantiate the

restoration operations. In [14], Kang et al. constructed a database
which stored the feature vectors describing training images along
with vectors of enhancement parameters. Given a test image, the
database was then searched for the best matching image, and the
corresponding enhancement parameters were used to perform the
enhancement. Following Kang et al.’s idea [14], Bychkovsky et al.
[1] constructed a dataset containing 5000 example input-output
image pairs that could be used to learn global tonal adjustments.
In [16], Li and Wu proposed a two-phase pipeline, which performs
an object-guided segmentation of back-lit and front-lit regions
followed by spatially adaptive tone mapping.

1.2 Our Motivations and Contributions
We find that using machine learning tools to solve the problem of
back-lit image restoration is a recent trend and also a promising
direction. However, it should be noticed that existing solutions
[1, 3, 4, 14, 16, 27] in this field are all based on supervised learning
frameworks and thus their performance highly depends on the
training dataset. In fact, for the problem of back-lit image restora-
tion, how to collect sufficient effective training data is a challenging
task itself. Consequently, these supervised learning based schemes
usually perform quite well on test images satisfying the conditions
on which they were trained; on the contrary, their performance
deteriorates significantly once these conditions are not satisfied.
This prompted us to think: Is it possible to learn an exposure cor-
rection model from the back-lit image to be restored itself? If “Yes”,
the learned model will be image-specific and the approach can
inherently adapt itself to different settings of the unseen images.
Actually, the idea of learning the restoration model solely from
the test image itself has been manifested to be feasible in the field
of image super-resolution [23]. In [23], Shocher et al. proposed a
super-resolution model, which is an image-specific CNN trained on
internal examples extracted solely from the low resolution test im-
age. When dealing with real-world low resolution images, Shocher
et al.’s method substantially outperforms its competitors.

Thus in this paper, motivated by the success of Shocher et al.’s
work in the field of super-resolution, a “zero-shot” scheme for back-
lit image restoration is proposed. The term “zero-shot” is borrowed
from the domains of recognition and here is used to emphasize that
our approach does not need prior image examples or prior training.
Our major contributions are summarized as follows.

(1) The core of our approach is a specially designed CNN, namely
ExCNet (Exposure Correction Network). Given a test back-lit image
I, ExCNet could estimate the parametric “S-curve” that best fits I
within limited iteration times. With its S-curve, I can be restored
straightforwardly. To our knowledge, our work is the first unsuper-
vised learning framework to correct image exposure automatically.
It can be easily applied on images with various contents under
different exposure levels.

(2) When designing ExCNet, a key issue is how to devise a loss
function that can evaluate an image’s degree of being ill-exposed.
To this end, motivated by the formulation of MRF (Markov Random
Field) [17], we design a block-based loss function, which tends
to maximize the visibility of all blocks while keeping the relative
difference between neighboring blocks. Experiments show that the
designed loss function could guide ExCNet to obtain restored results
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Figure 2: S-curve.ϕs andϕh control themagnitude of S-curve
adjustment in the shadow range and the highlight range, re-
spectively.

with high visual quality. When the results of multiple competing
methods are presented in front of them, people are more inclined
to prefer the output of our method.

(3) Due to the CNN structure of ExCNet, our method could learn
the mapping relationship between images and their best “S-curve”
parameters. Thus along with the increasing of processed images,
ExCNet takes less iterations to converge to the optimized curve
when facing an unseen image. Besides, when handing video stream,
the correction of subsequent frames could be guided by the param-
eters of the previous frames, which would not lead to significant
flickering artifacts as [28] and have relatively low computational
cost.

2 S-CURVE
Most photographers often use an S-shaped non-linear curve, namely
S-curve, tomanually adjust the exposure of shadow/mid-tone/highlight
areas in photographs by photo editing softwares [2]. An S-curve
can map input levels to desired output levels. The graph of a typ-
ical S-curve is demonstrated in Fig. 2. The horizontal axis of the
graph represents the original image values while the vertical axis
represents the new adjusted values. When adjusting an image, the
upper-right area of the graph represents the highlights and the
lower-left area represents the shadows.

As suggested in [28], the S-curve can be simply parameterized
by two parameters, shadow amount ϕs and highlight amount ϕh ,
and accordingly it can be represented as,

f (x : ϕs ,ϕh ) = x + ϕs × f∆(x) − ϕh × f∆(1 − x) (1)

where x and f (x : ϕs ,ϕh ) are the input and output luminance
values in the image.1 The incremental function f∆(t) is defined as
f∆(t) = k1t exp(−k2tk3 ), where k1, k2 and k3 are default parameters
(k1 = 5,k2 = 14,k3 = 1.6) so that f∆(t) will fall in [0, 0.5].

The shape of the S-curve is determined by ϕs and ϕh . ϕs can help
shift under-exposed regions into well-exposed levels, while ϕh can
help over-exposed regions. Given a back-lit image I , to correctly
restore it, we need to find the optimal parameter pair {ϕ∗s ,ϕ∗h } for
I . To this end, ExCNet is proposed in this paper.

1The luminance of the input image is normalized to [0, 1].

3 EXCNET: AN UNSUPERVISED CNN-BASED
APPROACH TO ESTIMATE THE S-CURVE

Our proposed back-lit image restoration approach ExCNet is pre-
sented here in detail. ExCNet is actually a CNN designed to estimate
the optimal S-curve from the luminance channel Il of the input
image I . With the estimated S-curve, I can be restored accordingly.
The structure of ExCNet is depicted in Fig. 3. To better understand
it, each training iteration of ExCNet can be conceptually considered
as having two stages, adjusting Il using the intermediate S-curve
and deriving the loss. Details of these two stages will be introduced
in Sect. 3.1 and Sect. 3.2, respectively. Implementation details will
be given in Sect. 3.3.

3.1 Adjusting Il Using the Intermediate S-curve
For each training iteration, at this stage, Il first goes through an
internal CNN. This CNN comprises a stack of convolutional layers,
followed by several fully connected layers. Its last fully connected
layer has two outputs, which are regarded as the intermediate esti-
mations of the shadow amount and the highlight amount and are
denoted by ϕ̂s and ϕ̂l , respectively. With ϕ̂s and ϕ̂l , the intermedi-
ate S-curve is instantiated as f

(
x ; ϕ̂s , ϕ̂h

)
(See Eq. 1). Then, Il is

corrected using f
(
x ; ϕ̂s , ϕ̂h

)
and the result is denoted by Icl .

3.2 Deriving the Loss
To update the weights of ExCNet, we need to have a loss function
that can evaluate the degree of being ill-exposed of the intermediate
restoration result Icl . If we have such an ideal loss function, by

minimizing it iteratively, the optimal parameters
{
ϕ∗s ,ϕ

∗
h

}
of the

S-curve for the input image I can be obtained.
In this paper, we formulate the loss function (taking Icl as the

input) of ExCNet as a block-based energy minimization problem.
Compared with the pixel-based formulation, the block-based one
has the advantage that regions can better represent the visibility of
contents and measure the relative difference of neighboring regions.
When designing the energy function, we should keep in mind that
the back-lit image restoration operation needs to maximize the
visibility of each blockwhile keeping the relative difference between
two neighboring regions. Motivated by the formulation of MRF
[17], we define the loss function of ExCNet as,

L =
∑
i
(Ei + λ

∑
j ∈Ω(i)

Ei j ) (2)

where Ei is the unary data term, Ei j is referred to as the pairwise
term, and λ is a predefined constant. For a given block i , by mini-
mizing Ei , its visibility is anticipated to increase. Ei j represents the
change of the relative difference between neighboring blocks i and
j before and after the restoration operation. j ∈ Ω(i) means that
block j belongs to the set of neighboring blocks of block i . In this
paper, Ω(i) is the set of 4-neighboring blocks of block i . By mini-
mizing L, we expect that the visibility of image blocks can increase
and at the same time the relative difference between neighboring
blocks can be kept as much as possible.

The unary term Ei is defined as,

Ei = siдn
(
lci − 0.5

)
·
(
lci − li

)
(3)
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Figure 4: (a) shows the value surface of Ei as a function of li
and lci . The two examples shown in (b) and (c) demonstrate
how Ei changes with lci when li is fixed. In (b), li is fixed as
0.2 and in (c), li is fixed as 0.7.

where li and lci are the average luminance of block i in Il and Icl ,
respectively. Following the assumption widely adopted in HDR
[20] and exposure fusion [18] field, Ei measures the visibility of
each block by the distance between the block average intensity
and the mid gray (0.5). Fig. 4(a) shows the value surface of Ei as
a function of li and lci . The two examples shown in Figs. 4(b) and
4(c) demonstrate how Ei changes with lci when li is fixed. In Fig.
4(b), li is fixed as 0.2 (smaller than 0.5) and in Fig. 4(c), li is fixed as
0.7 (greater than 0.5). It can be easily verified that the unary term

-1 1 0

(a) left

0 1 -1

(b) right

-1

1

0

(c) up

0

1

-1

(d) down

Figure 5: 4 non-trainable convolution kernels, each for com-
puting the block difference in one direction.

Ei encourages lci as close to 0.5 as possible so that both the under-
and over-exposed regions can be adjusted to well-exposed levels. In
addition, Ei encourages lci to inherit the value relationship between
li and 0.5. That is to say, if li is greater (smaller) than 0.5, lci will
also tend to be greater (smaller) than 0.5. Such a property of Ei can
guarantee that lighter/darker regions in Il remain lighter/darker in
Icl .

The pairwise term Ei j is defined as,

Ei j =
((
lcj − lci

)
−
(
lj − li

) )2
(4)

where lj (lcj ) and li (l
c
i ) are the average luminance of block j and

block i , respectively, in Il (Icl ). This term is designed to keep the
relative difference between neighboring regions.

The combination of the unary term and the pairwise term can
encourage exposure to get close to 0.5 but will stop at some inten-
sity by the pairwise term so that the relative difference between
neighboring regions can be kept.

3.3 Implementation Details
ExCNet is implemented as a CNN, whose detailed configurations
are summarized in Table. 1. ExCNet takes the normalized luminance
map Il with the fixed size 128 × 128 as the input.

One key issue in implementation is how to compute the block-
based loss function with plain convolution operations. A 4 × 4
average pooling is applied to Il (Icl ) and the result is denoted by
Ilb (Iclb ). In this way, the value of a “pixel” in Ilb (Iclb ) is actually
the average luminance of a particular 4 × 4 block in Il (Icl ). The
unary term Ei (Eq. 3) can be easily computed with Ilb and Iclb .
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Table 1: Detailed configurations of ExCNet.

Stage Type Input Output Output Dimension
Input Input - Il (128, 128, 1)

Adjusting Il using the
intermediate S-curve

Conv + Pooling
(kernel size: 3 × 3)

Il Conv1 (64,64,64)
Conv1 Conv2 (32, 32, 128)
Conv2 Conv3 (16, 16, 256)
Conv3 Conv4 (8, 8, 512)
Conv4 Conv5 (4, 4, 512)

Fully connected

Conv5 FC1 (512, 1)
FC1 FC2 (256, 1)
FC2 FC3 (128, 1)
FC3 ϕ̂s , ϕ̂h -

f (x : ϕ̂s , ϕ̂h ) (Eq. 1) Il , ϕ̂s , ϕ̂h Icl (128, 128, 1)

Deriving the loss

Average pooling Il , Icl Ilb , Iclb (32, 32, 1)
Conv (4 non-trainable

Ilb , Iclb {Dr
lb }, {D

cr
lb } (32, 32, 1)

kernels, shown in Fig. 5)
Edata (Eq. 3) Ilb , Iclb Edata -
Esmooth (Eq. 4) {Dr

lb }, {D
cr
lb } Esmooth -

Sum (Eq. 2) Edata , Esmooth L -

To get the differences between one block and its 4-neighboring
blocks in Il (Icl ), we can convolve Ilb (Iclb ) with 4 non-trainable one-
dimensional kernels as shown in Fig. 5 and the results are denoted
by

{
Dr
lb : |r ∈ {le f t , riдht ,up,down}

}
(
{
Dcr
lb

}
). The pairwise term

Ei j , which depends on the differences between adjacent blocks, can
be computed straightforwardly from

{
Dr
lb

}
and

{
Dcr
lb

}
.

ExCNet can be considered as an unsupervised learning approach.
That is to say, after processing some images, ExCNet can progres-
sively learn a capability to capture the image’s tonality information.
When dealing with forthcoming images, such a pre-trained ExCNet
could converge much faster than its counterpart which is randomly
initialized. Thus, in our implementation, we prepared 50 back-lit
images and used ExCNet to estimate their optimal S-curves. The fi-
nal weights were saved and used afterwards for initializing ExCNet
when coping with new images.

4 BACK-LIT IMAGE RESTORATION USING
EXCNET

The overall pipeline of the proposed back-lit image restoration
scheme is presented in this section. Suppose that I is the given
back-lit image to be restored. Denote by Î the restoration result.
The restoration pipeline comprises three major steps, S-curve esti-
mation, luminance channel restoration, and chrominance adjust-
ment. I is first transformed from the RGB space to the YIQ space
as

(
IY , II , IQ

)
, where IY , II , IQ are the three YIQ channels. After

that, the data range of IY is normalized to [0, 1]. To meet ExCNet’s
requirement of the input size, IY is then resized to 128×128 and the
result is regarded as Il . Afterwards, the optimal S-curve parameter-
ized by {ϕ∗s ,ϕ

∗
h } is estimated by feeding Il to ExCNet. With IY and

{ϕ∗s ,ϕ
∗
h }, the luminance channel ÎY of the final restoration result Î

can be derived using Eq. 1. The two chrominance channels II and
IQ are adjusted accordingly as,

ÎI (x) =
ÎY (x)
IY (x)

× II (x)

ÎQ (x) =
ÎY (x)
IY (x)

× IQ (x)
(5)

where ÎI and ÎQ are the two chrominance channels of the final
restoration result Î , and x is the pixel’s position. Finally, convert Î
from the YIQ space to the RGB space.

It is worth mentioning that we also take detail preserving into
consideration in our implementation. We firstly separate each input
image into a base layer and a detail layer using the guided filter
[11] and then use the estimated S-curve to adjust the base layer.
Finally, we adopt Weber contrast [26] to fuse the detail layer and
the adjusted base layer.

Our hardware platform is a workstation with a 3.0GHZ Intel
Core i7-5960X CPU and an Nvidia Titan X GPU card. The method
is implemented with Python and TensorFlow. It costs our method
about 1.0s to process one 4032 × 3024 image.

5 EXPERIMENTAL RESULTS
5.1 Dataset and the Compared Methods
Experiments were performed on 1,512 real-world images taken
from IEpsD [29], which was established for studying the problem
of exposure level assessment. These images vary on scenes and
lighting conditions. We invited three subjects to roughly partition
these images into three groups, around 500 images for each group,
according to their exposure conditions. Three groups are “severely
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Figure 6: Results of pairwise comparison user study. The pairwise comparison was conducted between the result of ExCNet
and the input or the result of one of the eight compared methods. Input images were from “Group A”, “Group B”, “Group
C”, and “All Groups”, respectively. Each color bar denotes the average percentage of the image version favored (with I-shaped
standard deviation bars). (Best viewed on screen.)

ill-exposed” (Group A), “slightly ill-exposed” (Group B), and “well-
exposed” (Group C).

The proposed method ExCNet was compared with eight state-of-
the-art or representative automatic exposure correction algorithms,
including 1) HE [21], 2) CLAHE [30], 3) Retinex [13], 4) Google
Picasa’s Auto-contrast [9], 5) edge-preserving decomposition (wls-
filter) [8], 6) local Laplacian filtering (lapfilter) [19], 7) Yuan and
Sun’s method [28], and 8) Li and Wu’s method [16].

5.2 Pairwise Comparison User Studies
Ten volunteers (6 males and 4 females) were invited to perform
pairwise comparison between our result and the input or the result

of one of the eight compared methods. For each pairwise compar-
ison, the subject had three options: “left better”, “right better”, or
“no preference”.

The results of the user study are summarized in graphs shown in
Fig. 6. Each color bar is the averaged percentage of the image version
favored over all 10 subjects (I-shape error bar denotes the standard
deviation). From results on “All Groups” (without distinguishing
the photos from different groups), it is obvious that the participants
overwhelmingly selected our results over the input or the outputs
of the compared methods. The participants showed a strong bias
in preference towards our correction results when compared to
CLAHE [30], edge-preserving decomposition (wlsfilter) [8], and
local Laplacian filtering (lapfilter) [19]. Moreover, ExCNet gained
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60%∼70% of the favor compared with the input or the results by
HE [21], Retinex [13], Picasa [9], Yuan and Sun’s method [28],
and Li and Wu’s method [16]. The results from “Group A” and
“Group B” indicate that ExCNet performed significantly better for
restoring both severely ill-exposed and slightly ill-exposed images
than its competitors. When dealing with properly-exposed images
in “Group C”, ExCNet also performed well. For about 84% images in
“Group C”, ExCNet did not make the results worse compared with
the inputs. These results imply that ExCNet can work consistently
well when processing images with different lighting conditions. By
contrast, some approaches (such as HE [21], Yuan and Sun’s method
[28], and Li and Wu’s method [16]) may achieve acceptable results
when processing ill-exposed images but they tend to deteriorate
properly-exposed ones. This phenomenon can be clearly observed
through examples shown in Fig. 7.

5.3 Visual Quality Comparisons
In order to facilitate readers to visually compare the results of
different back-lit image restoration approaches, we show several
examples in Fig. 7. Fig. 7(a) (b or c) shows one typical image se-
lected from Group A (B or C) along with the results obtained by
mainstream schemes in this field. From the results shown in Fig. 7,
we can have the following findings.

It is evident that the results obtained by the two conventional
methods for image enhancement, HE [21] and Retinex [13], suffer
from severe color deviation. When processing severely or slightly
ill-exposed images, neither Picasa [9] nor lapfilter [19] has a satis-
fied capability for increasing the exposure levels of under-exposed
regions. It seems that Yuan and Sun’s method [28] and Li and Wu’s
method [16] can work well for restoring ill-exposed images. How-
ever, both of them tend to destroy properly-exposed inputs and
such a fact can be observed through examples shown in Fig. 7(c). In
Fig. 7(c), the input image is properly-exposed and is of high visual
quality. Yuan and Sun’s method [28] decreases its contrast and Li
and Wu’s method [16] introduces annoying halo effects. It implies
that these two approaches cannot be routinely applied to imaging
systems where whether the acquired images are properly-exposed
or not cannot be guaranteed. By contrast, the proposed method
ExCNet can produce pleasing results for all cases, indicating that it
is more robust and can be applied to a wider range of applications.
A demo video is provided in the supplementary material.

5.4 Objective Evaluation
The performance of back-lit image restoration methods was also
evaluatedwith two objectivemetrics, CDIQA (contrast-distorted im-
age quality assessment) [7] and LOD (luminance ordinal distortion)
[16]. CDIQA is a no-reference quality metric for contrast-distorted
images, which can be considered as a metric for richness of im-
age details. Higher CDIQA value roughly corresponds to higher
contrast. LOD is defined as,

LOD =
1
N

N∑
i=1

√
∥v̂i − vi ∥2 (6)

where N is the number of sliding windows, vi and v̂i are the pixels’
luminance ordinal vectors of the i-th window in the input and
corrected images, respectively. Ideally, if the restoration approach

Table 2: Objective evaluation results.

Methods CDIQA LOD
HE [21] 2.8757 4.4820

CLAHE [30] 3.0602 3.5214
Retinex [13] 3.2021 3.9602
Picasa [9] 3.0667 2.2694
wlsfilter [8] 2.7608 3.7365
lapfilter [19] 2.7790 5.0398

Yuan and Sun [28] 2.9451 4.6261
Li and Wu [16] 3.2494 4.9643

ExCNet 3.2616 2.8030

does not violate the order statistics of pixel values of the input image,
the associated LOD measure would be zero. Unwanted artifacts
introduced by the restoration algorithm, such as contours, halos
and rings, could lead to changes in order statistics. Thus, LOD can
measure the severity of artifacts caused by restoration.

The results over 1,512 test images are reported in Table. 2. From
Table. 2, it can be seen that ExCNet achieves the highest CDIQA
value, demonstrating its superiority in restoring image details over
the other methods. With respect to LOD, ExCNet and Picasa [9]
are comparable and both of them could achieve quite low LOD
values than the other competitors. Such a result demonstrates that
compared with ExCNet and Picasa the other methods are prone
to annoying over-enhancement artifacts. On the other hand, it is
not surprising that Picasa could achieve the least LOD value since
Picasa actually has a weak capability to restore ill-exposed images
and thus the order statistics could be kept well. Overall, it can
be seen that among the evaluated schemes ExCNet is the most
competent one for restoring back-lit images without introducing
objectionable artifacts.

6 CONCLUSION
Back-lit image restoration is of practical importance and has not
been well resolved. In this paper, a “zero-shot” back-lit image
restoration scheme is proposed, which exploits the power of deep
learning, without relying on any external examples or prior training.
This is achieved via a small image-specific CNN, namely ExCNet,
which guides the restoration progress by minimizing a block-based
loss function defined on the intermediate restoration result. The
proposed scheme is concise yet powerful. It is quite robust and
thus can yield pleasing results under different kinds of illumination
conditions. Subjective and objective evaluations were conducted
comprehensively to corroborate the superiority of the proposed ap-
proach over the other mainstream competitors. To our knowledge,
it is the first unsupervised CNN-based back-lit image restoration
method.
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Li and Wu’s [16] ExCNet

Picasa [9]

Lapfilter [19] Yuan and Sun’s [28]

(c) Group C

Figure 7: Visual quality comparison of results obtained by different back-lit image restoration approaches. Input images in
(a), (b), and (c) are selected from “Group A”, “Group B”, and “Group C”, respectively. (Best viewed on screen.)
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