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ABSTRACT
Learning-based image enhancement has made great progress re-
cently, among which the 3-Dimensional LookUp Table (3DLUT)
based methods achieve a good balance between enhancement per-
formance and time-efficiency. Generally, the more basis 3DLUTs
are used in such methods, the more application scenarios could
be covered, and thus the stronger enhancement capability could
be achieved. However, more 3DLUTs would also lead to the rapid
growth of the parameter amount, since a single 3DLUT has as
many as 𝐷3 parameters where 𝐷 is the table length. A large pa-
rameter amount not only hinders the practical application of the
3DLUT-based schemes but also gives rise to the training difficulty
and does harm to the effectiveness of the basis 3DLUTs, leading
to even worse performances with more utilized 3DLUTs. Through
in-depth analysis of the inherent compressibility of 3DLUT, we
propose an effective Compressed representation of 3-dimensional
LookUp Table (CLUT) which maintains the powerful mapping capa-
bility of 3DLUT but with a significantly reduced parameter amount.
Based on CLUT, we further construct a lightweight image enhance-
ment network, namely CLUT-Net, in which image-adaptive and
compression-adaptive CLUTs are learned in an end-to-end man-
ner. Extensive experimental results on three benchmark datasets
demonstrate that our proposed CLUT-Net outperforms the existing
state-of-the-art image enhancement methods with orders of magni-
tude smaller parameter amounts. The source codes are available at
https://github.com/Xian-Bei/CLUT-Net.
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1 INTRODUCTION
The digital imaging process suffers from various types of degrada-
tion such as adverse shooting environments and limited hardware
conditions. Even without these distortions, the captured photos
may still have unsatisfied perceptual quality. The traditional en-
hancement process adjusts the input image to meet human aesthetic
requirements by photographers or expert-designed cascade mod-
ules, which are not only tedious and inefficient but also inflexible.
Therefore, automatic and adaptive image enhancement methods
are highly desired.

Benefiting from the rapid development of artificial intelligence
technology, recent years have witnessed an increasing interest and
a significant progress in the learning-based automatic enhancement
methods [1, 2, 4, 10, 12, 13, 15, 19–21, 27]. Some of them [1, 4, 13, 27]
directly transform the low-quality input image to the corresponding
enhanced one using image-to-image networks, while others [2, 10,
12, 15, 19–21] construct the enhancement pipeline by combining
powerful neural networks with manual-designed models to make
full use of domain prior knowledge.

Among the latter category, Zeng et al. [31] proposed an adap-
tive 3-Dimensional LookUp Table (3DLUT) based approach with
state-of-the-art (SOTA) overall performance. Specifically, it learns
𝑁 3DLUTs as a set of basis vectors of R3𝐷

3
(𝐷 indicates the table

length) and a lightweight convolutional neural network (CNN) si-
multaneously. The former aims to span a subspace that contains
as many 3DLUTs as possible to cover various adjustment effects
required in different scenes. The latter is intended to linearly com-
bine the basis 3DLUTs to enhance the input image according to
its characteristics. Since a larger set of effective basis vectors have
the potential to span a larger subspace that could cover more types
of enhancement effects, a larger 𝑁 could naturally improve the
enhancement capability.
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However, the 3DLUT-based methods enjoy powerful enhance-
ment ability at the cost of a huge space complexity of 𝑂 (𝑁𝐷3),
which significantly hinders the practical application, especially for
mobile devices with limited resources. Moreover, a large number of
parameters gives rise to the training difficulty and does harm to the
effectiveness of the learned basis 3DLUTs, making the performance
even worse with the increase of 𝑁 . Fig. 1 shows how the enhance-
ment performance and the parameter amount (3DLUT part) of the
3DLUT-based methods change with 𝑁 on MIT-Adobe FiveK [3]
dataset. It can be seen that the PSNR (Peak Signal to Noise Ratio)
increases with 𝑁 when 𝑁 is relatively small but quickly stagnates
and even starts to decrease when 𝑁 continues to grow, while the
parameter amount keeps a steep growth rate.
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Figure 1: The trends of the PSNR and the parameter amount
with the increase of 𝑁 in the 3DLUT-based methods.

As an attempt to fill in the research gap to some extent, we con-
duct thorough analyses on the inherent property of 3DLUT and
find that there are two kinds of correlations between the output of
3DLUT and the input of its three dimensions, according to which
each dimension should be compressed in different manner and
degree. Based on this observation, we propose an effective Com-
pressed representation of 3-dimensional LookUp Table (CLUT) and
build an efficient image enhancement network, namely CLUT-Net.
The main contributions of this paper are summarized as follows:

• An effective compressed representation of 3DLUT, namely
CLUT, is proposed based on in-depth analysis and explo-
ration of its inherent compressibility. Compared with the
standard 3DLUT, CLUT has orders of magnitude fewer pa-
rameters while maintaining the powerful mapping ability.

• A lightweight image enhancement network is built based
on CLUT, namely CLUT-Net, in which adaptive CLUTs are
learned end-to-end to strike an optimal balance between the
enhancement performance and the parameter amount.

• Extensive qualitative and quantitative experiments are con-
ducted on three benchmark datasets and the results show
that our CLUT-Net outperforms SOTA image enhancement
methods with a significantly reduced parameter amount.

2 RELATEDWORK
In this section, we take a brief review of the learning-based image
enhancement methods and then focus on a more specific field that

our work belongs to, namely the 3DLUT-based enhancement meth-
ods. In addition, we introduce the relationship between our work
and the general network compression.

2.1 Learning-based enhancement methods
Learning-based image enhancement methods could be traced back
to 2011 when Bychkovsky et al. [3] collected the first large bench-
mark in this domain, namely MIT-Adobe FiveK dataset, and uti-
lized handcraft features and shallow regression models to predict
the adjustment strategies. The recent learning-based enhancement
methods could be divided into two categories.

The methods in the first category [1, 4, 13, 27] treat image en-
hancement as an image translation task and utilize image-to-image
networks to predict the enhancement results directly. Afifi et al. [1]
and Kim et al. [13] both utilized UNet-like [24] networks to generate
the enhanced images, while Chen et al. [4] utilized two-way GANs
[8] that could be trained with unpaired retouched data. DeepUPE
[27] learned to generate illuminationmapswith an encoder-decoder
architecture to guide the enhancement process.

The methods in the other category [2, 7, 10, 12, 15, 19–21] com-
bine neural networks with domain prior knowledge contained in
various kinds of manual-designed models. Afifi et al. [2] and Liu
et al. [19] trained networks to predict polynomial mapping func-
tions, while Kim et al. [12], Moran et al. [21], and Li et al. [15]
chose to predict one-dimensional rgb curves. HDRNet [7] learned
pixel-wise transformation coefficients in the bilateral space. Moran
et al. [20] learned three types of spatial filters to enhance the in-
put image locally. He et al. [10] simulated some commonly used
pixel-independent adjustments by multi-layer perceptrons (MLPs).

2.2 3DLUT-based enhancement methods
Zeng et al. [31] firstly proposed to combine 3DLUT with deep-
learning techniques and constructed an adaptive 3DLUT-based im-
age enhancement network that possesses powerful enhancement
capability and high time efficiency. Following their strategy, some
studies were conducted to utilize 3DLUT for other tasks and scenes.
Liang et al. [18] applied 3DLUT to the portrait photo retouching
(PPR) task by adjusting the learning strategy. Wang et al. [28] ex-
tended the 3DLUT-based methods to a spatial-aware version by
learning pixel-level fusions of the basis 3DLUTs. Cong et al. [5]
embedded a 3DLUT-based sub-module in their network for the high-
resolution image harmonization task. To the best of our knowledge,
all the follow-up researches extended the network that 3DLUT is
embedded into, but none of them focus on improving the 3DLUT
itself. In comparison, we further analyzed and utilized the inherent
properties of 3DLUT and made fundamental improvements that
could be simply integrated into any 3DLUT-based methods to sig-
nificantly reduce the space complexity while maintaining or further
improving the enhancement performance.

2.3 General network compression
There exists a wide range of studies that aim at the compression of
general network architectures such as CNN and MLP. Among them
[16, 17, 22] utilized the decomposition technique to represent high-
dimension tensors as matrix multiplications to reduce parameter
amount, [6] enforced sparsity constraints upon networks to reduce
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computation cost and improve accuracy. Differently, our work fo-
cuses on the compression of 3DLUT, a specific high-dimensional
data structure with abundant domain prior knowledge and special
intrinsic properties that could be leveraged to reduce the parame-
ter amount while maintaining the mapping capability. It is worth
mentioning that our work could be complementary and cooper-
ate with the general network compression approaches, since the
3DLUT-based models consist of a feature extraction network and 𝑁
basis 3DLUTs, which could be compressed by the general network
compression technique and our scheme, respectively.

3 METHOD
In this section, we analyze the compressibility of 3DLUT in Sect.
3.1 and present in detail the proposed CLUT and CLUT-Net in Sect.
3.2. Then we give a thorough analysis of CLUT-Net in Sect. 3.3.

3.1 Compressibility of 3DLUT
Mathematically, standard 3DLUT is commonly represented by a
three-dimensional three-channel array of R3×𝐷×𝐷×𝐷 denoted by
𝝓. We split 3DLUT into three sub-tables corresponding to different
channels and denote them by [𝝓𝑐 ]𝑐∈{𝑟,𝑔,𝑏 } where 𝝓𝑐 ∈ R𝐷×𝐷×𝐷 .
3DLUT discretizes each dimension of the RGB color space into 𝐷

bins, resulting in 𝐷3 discrete colors denoted by {(𝑖, 𝑗, 𝑘)}𝑖, 𝑗,𝑘=1,...,𝐷 ,
and stores the corresponding mapped color of each of them as
(𝝓𝑟[𝑖, 𝑗,𝑘 ] , 𝝓

𝑔

[𝑖, 𝑗,𝑘 ] , 𝝓
𝑏
[𝑖, 𝑗,𝑘 ] ), where 𝝓

𝑐
[𝑖, 𝑗,𝑘 ] represents the elementwith

[𝑖, 𝑗, 𝑘] coordinate in 𝝓𝑐 . Basically, the mapping process of 3DLUT
consists of a lookup operation and a trilinear interpolation opera-
tion, where the former finds the surrounding elements of the input
color in the table and the latter fuses them into an output color.

Although 3DLUT enjoys a high time efficiency as it could process
all the pixels in parallel, it suffers a large space complexity since its
parameter amount grows cubically with 𝐷 , resulting in the rapid
growth of the parameter amount of the 3DLUT-based methods. A
natural way to compress 3DLUT is to utilize a smaller value for
the hyper-parameter 𝐷 , which is equivalent to directly reducing
the number of discrete bins of 𝑟 , 𝑔, and 𝑏 dimensions by the same
proportion simultaneously. However, the number of discrete bins
determines the color mapping precision of 3DLUT on the corre-
sponding channel. Therefore, such a naive compression approach
would lose the mapping precision of 3DLUT on all three channels
to some degree and even lead to an unacceptable degradation of the
enhancement performance, which will be verified through ablation
studies in Sect. 4.2.

Actually, we find that in each 𝝓𝑐 , the input values of different
dimensions have different impacts on the output values. Therefore,
each dimension of each 𝝓𝑐 has its most suitable compression ap-
proach and degree depending on its corresponding impact, and it is
not an effective compression scheme to directly reduce the bin num-
ber of each dimension to the same degree. Specifically, we use 𝐷𝑟 ,
𝐷𝑔 ,𝐷𝑏 to denote the bin numbers of different dimensions of 3DLUT
corresponding to channel 𝑟 , 𝑔, and 𝑏, respectively, instead of using
𝐷 for all of them. In consequence, 3DLUT could be represented as
[𝝓𝑐 ]𝑐∈{𝑟,𝑔,𝑏 } where 𝝓𝑐 ∈ R𝐷𝑟×𝐷𝑔×𝐷𝑏 . Given a specific color chan-
nel 𝑐 where 𝑐 ∈ {𝑟, 𝑔, 𝑏} and the other two channels denoted by 𝑥
and𝑦, we find that the output value 𝑐𝑜𝑢𝑡 of 𝝓𝑐 is strongly correlated
to the input value 𝑐𝑖𝑛 of channel 𝑐 while weakly correlated to the
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Figure 2: Visualization of the strong correlations between
𝑐𝑜𝑢𝑡 and 𝑐𝑖𝑛 given (𝑥𝑖𝑛, 𝑦𝑖𝑛) in five 3DLUTs. The horizontal
axis represents 𝑐𝑖𝑛 and the longitudinal axis represents 𝑐𝑜𝑢𝑡 .
Each 𝝓𝑐 ∈ R𝐷×𝐷×𝐷 consists of 𝐷2 strong correlations (i.e.,
(𝑐𝑖𝑛, 𝑐𝑜𝑢𝑡 ) = {(0, 0), (0, 1), ..., (𝐷 − 1, 𝐷 − 1)}), and we only visu-
alize ten of them for clear and intuitive observation.
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Figure 3: Visualization of the weak correlations between 𝑐𝑜𝑢𝑡
and (𝑥𝑖𝑛, 𝑦𝑖𝑛) given 𝑐𝑖𝑛 in five 3DLUTs. The horizontal axis
represents (𝑥𝑖𝑛, 𝑦𝑖𝑛) and the longitudinal axis represents 𝑐𝑜𝑢𝑡 .
Each 𝝓𝑐 ∈ R𝐷×𝐷×𝐷 consists of𝐷 (i.e.,𝑐𝑖𝑛 = {0, 1, ..., 𝐷−1}) weak
correlations in total, and we only visualize three of them (i.e.,
𝑐𝑖𝑛={0, 15, 30}) for clear and intuitive observation.

input values 𝑥𝑖𝑛 , 𝑦𝑖𝑛 of channel 𝑥 and 𝑦, respectively. To demon-
strate our observation, we visualize the strong correlations between
𝑐𝑜𝑢𝑡 and 𝑐𝑖𝑛 and weak correlations between 𝑐𝑜𝑢𝑡 and (𝑥𝑖𝑛, 𝑦𝑖𝑛) of
five 3DLUTs in Fig. 2 and Fig. 3, respectively, where these 3DLUTs
are learned on MIT-Adobe FiveK dataset [3] under the setting of
[31] with 𝐷 = 33 and 𝑁 = 5. Each column in these two figures
corresponds to one of the five 3DLUTs and each row visualizes 𝝓𝑟 ,
𝝓𝑔 , and 𝝓𝑏 from top to bottom, respectively. Obviously, no matter
which color channel 𝑐 indicates, 𝑐𝑜𝑢𝑡 is mainly determined by 𝑐𝑖𝑛
but only fluctuates slightly with 𝑥𝑖𝑛 and 𝑦𝑖𝑛 . Therefore, dimensions
corresponding to channel 𝑐 , 𝑥 , and 𝑦 of each 𝝓𝑐 should be precisely
compressed in their most suitable manner and degree.
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Figure 4: Framework of our proposed CLUT-Net which consists of a neural network, 𝑁 basis CLUTs and two transformation
matrices. The 𝑁 basis CLUTs cover various enhancement effects required in different scenes. The neural network predicts
content-dependent weights according to the downsampled input to fuse the basis CLUTs into an image-adaptive one, from
which the transformation matrices adaptively reconstruct the corresponding standard 3DLUT to enhance the original input
image. All three modules are jointly learned from the annotated data in an end-to-end manner.

3.2 Learning adaptively compressed
representations of 3DLUTs

Based on the analysis in the previous subsection, we propose an
effective compressed representation of 3DLUT, namely CLUT, de-
noted by 𝝍 = [𝝍𝑐 ]𝑐∈{𝑟,𝑔,𝑏 } ∈ R3×𝑆×𝑊 . Compared with the stan-
dard form of 𝝓 = [𝝓𝑐 ]𝑐∈{𝑟,𝑔,𝑏 } ∈ R3×𝐷×𝐷×𝐷 , CLUT introduces two
hyper-parameters 𝑆 and𝑊 instead of one parameter 𝐷 to precisely
control the compression degree of different dimensions. In addi-
tion, each sub-table 𝝓𝑐 of 3DLUT is compressed to 𝝍𝑐 of CLUT by
reducing 𝐷𝑐 to 𝑆 and 𝐷𝑥 ×𝐷𝑦 to𝑊 through linear spatial transfor-
mation, in which two utilized transformation matrices denoted by
𝑴 = {𝑴𝑠 ∈ R𝐷×𝑆 ,𝑴𝑤 ∈ R𝑊 ×𝐷2 } serve as the suitable compres-
sion schemes for different dimensions. The reconstruction process
between CLUT 𝝍 and corresponding 3DLUT 𝝓 is conducted as,

𝝓 = 𝑓 (𝝍,𝑴) = ℎ( [𝑴𝑠𝝍
𝑟𝑴𝑤 , 𝑴𝑠𝝍

𝑔𝑴𝑤 , 𝑴𝑠𝝍
𝑏𝑴𝑤]), (1)

where ℎ denotes a simple reshape procedure from R3×𝐷×𝐷2
to

R3×𝐷×𝐷×𝐷 . Notice that 𝐷𝑥 and 𝐷𝑦 are collectively reduced since
there is no obvious difference between the impacts of dimensions
corresponding to channel 𝑥 and channel 𝑦 on 𝝓𝑐 .

Based on CLUT, we construct CLUT-Net which learns adaptive
CLUTs for lightweight image enhancement. Fig. 4 illustrates the
overall architecture of our proposed CLUT-Net which consists of
three modules as circled by the dotted line, namely a neural network
𝐺 , 𝑁 basis CLUTs {𝝍𝑛}𝑛=1,...,𝑁 and two transformation matrices
𝑴 = {𝑴𝑠 , 𝑴𝑤 }. The basis CLUTs and 𝐺 act the same roles as
the basis 3DLUTs and the neural network in the standard 3DLUT-
based methods, respectively. The former aims to cover various
enhancement effects required in different scenes but with orders of
magnitude fewer parameters compared with the standard 3DLUTs,
while the latter is intended to extract features from the input image
and predict weights to fuse the basis CLUTs into an image-adaptive

one. It is worth mentioning that following the common practice
[12, 18, 19, 28, 31],𝐺 only needs to work on the downsampled input
image to decide how to fuse the basis operators, since a relatively
low-resolution version contains enough global context information
and could significantly save the computational cost. 𝑴𝑠 and 𝑴𝑤

are learned to adaptively reconstruct the corresponding standard
3DLUT from the image-adaptive CLUT to enhance the original
input image. The hyper-parameters 𝑁 , 𝑆 , and𝑊 are set to 20, 5, and
20 in our implementation, respectively, through ablation studies. All
three modules of CLUT-Net are jointly learned from the annotated
data in an end-to-end manner.

Specifically, given an input image 𝑰 , 𝐺 predicts the content-
dependent weights as 𝐺 (𝑰 ) = {𝑤𝑛}𝑛=1,...,𝑁 where 𝑰 is the down-
sampled version of 𝑰 . Then the basis CLUTs are linearly combined
into an image-adaptive one as,

𝝍 =

𝑁∑︁
𝑛=1

𝑤𝑛𝝍𝑛 . (2)

After that, the image-adaptive 3DLUT is reconstructed and the
corresponding enhanced result 𝑂 is generated as,

𝑂 = 𝝓 (𝑰 ) = 𝑓 (𝝍,𝑴) (𝑰 ), (3)

where 𝑓 is presented in Eq. 1. Given a training set with 𝑃 pairs of
input and target images denoted by {(𝑰𝑝 , 𝑻𝑝 )}𝑝=1,...,𝑃 , the target
of the training stage can be formulated as,

argmin
(𝐺,𝑴,{𝝍𝑛 })

𝑃∑︁
𝑝=1

L(𝑻𝑝 ,𝑶𝑝 ), (4)

where L denotes the loss function which in our implementation is
defined as,

L = ∥𝑻𝑝 − 𝑶𝑝 ∥1 + 𝑐𝑜𝑠 (𝑻𝑝 ,𝑶𝑝 ) + _𝑠R𝑠 + _𝑚R𝑚 . (5)
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The former two terms are the 𝐿1 distance and the cosine distance
between 𝑻𝑝 and 𝑶𝑝 , respectively. The cosine distance is empirically
found to be conducive to achieve smaller accuracy variances and
faster convergence. The latter two terms are the smooth and mono-
tonicity regularization constraints proposed by [31], respectively.
_𝑠 and _𝑚 are the hyper-parameters that control the regularization
strength and were set to 1𝑒 − 4 and 10, respectively, according to
the ablation studies of [31]. Such a combination of loss functions
was applied to all the 3DLUT-based methods for fair comparisons.

In CLUT-Net, the neural network module plays the role of ex-
tracting features and predicting weights from input images. Theo-
retically, any backbone network architecture with image features
extraction capabilities such as various kinds of CNN and Trans-
former [26] could be integrated into our enhancement pipeline.
On consideration of space and time efficiencies, we utilized a light-
weight CNNwith only about 264 K parameters in total when𝑁 = 20,
which is similar to the one used in [31]. Specifically, it consists of
five convolutional blocks with leaky ReLU [30] and instance nor-
malization [25], one dropout layer, a global average pooling layer,
and a hardswish classifier module proposed by [11].

3.3 Discussion and analysis
3.3.1 Image-adaptive and Compression-adaptive properties. CLUT-
Net learns adaptive CLUTs end-to-end for lightweight image en-
hancement. It is worth noting that comparedwith the image-adaptive
3DLUT-basedmethods, the implications of adaptability in our scheme
are extended into two parts. Image-adaptive: In the training process,
the basis CLUTs are directly learned from the annotated data, and
thus they are adaptive to the training images. In the testing stage,
the neural network predicts content-dependent weights to fuse
the basis 3DLUTs, and thus the enhancement effect is adaptive to
the test image. Compression-adaptive: The basis CLUTs and the
transformation matrices which control the compression and re-
construction processes are jointly learned so they could cooperate
well with each other to achieve an optimal balance between the
enhancement capability and the parameter amount. We verify the
effectiveness of our adaptive compression scheme by comparing it
with non-adaptive ones in the ablation study.

3.3.2 Space and time complexities. Themain improvement of CLUT-
Net compared with the standard 3DLUT-based methods lies in the
process of generating the image-adaptive 3DLUT. In this process,
the space complexities of CLUT-Net and standard 3DLUT-based
methods are 𝑂 (𝑁𝑆𝑊 + 𝐷𝑆 +𝑊𝐷2) and 𝑂 (𝑁𝐷3), respectively. Ob-
viously, although an extra cost 𝑂 (𝐷𝑆 +𝑊𝐷2) of two matrices is
introduced, it is irrelevant to 𝑁 . Only the parameter amount of
the basis CLUTs part 𝑂 (𝑁𝑆𝑊 ) increases with 𝑁 at a very low
speed since 𝑆 ≪ 𝐷 and𝑊 ≪ 𝐷2 in our implementation. Overall,
CLUT-Net significantly reduces the space complexity of the stan-
dard 3DLUT-based methods. As an example, under the setting of
𝐷 = 33 and 𝑁 = 20, the parameter amounts of CLUT-Net and the
standard 3DLUT-based methods are about 28 K and 2,156 K, respec-
tively, where the former is only about 1.3% of the latter. Similarly,
CLUT-Net reduces the𝑂 (𝑁𝐷3) time complexity (measured by num-
bers of float multiply-add operations) of the standard 3DLUT-based
methods to 𝑂 (𝑁𝑆𝑊 + 𝑆𝐷3 + 𝑆𝑊𝐷2), where an extra cost of two
matrix multiplication operations is introduced but the growth rate

with 𝑁 is reduced. Under the same setting, the numbers of float
multiply-add operations of CLUT-Net and the standard 3DLUT-
based methods are about 872 K and 2,156 K, respectively, where the
former is only about 40.4% of the latter.

4 EXPERIMENTS
4.1 Experimental setup
Experiments were conducted on three benchmark datasets, namely
MIT-Adobe FiveK [3], HDR+ [9] and PPR10K [18]. The MIT-Adobe
FiveK dataset is one of the most widely used benchmarks for image
enhancement task proposed by [3]. Following the common practice
[4, 28, 31], we experimented with the expert-C version groundtruth
and adopted the same split with 4,500 training image pairs and 500
testing ones.

TheHDR+ dataset is a burst photography dataset proposed by the
Google camera group in [9] for research of high dynamic range and
low-light imaging on mobile cameras. Following the practice of [28,
31], we utilized the intermediate results of the aligned and merged
frames as the input, and the images generated by the manually
tuned HDR imaging pipeline as the groundtruth. The same split
with 675 training image pairs and 250 testing ones was adopted.

The PPR10K dataset is a large-scale benchmark collected by
[18] for the study of automatic portrait photo retouching (PPR).
Following the strategy of [18], we experimented with all three
versions of groundtruth and both the low-resolution and original
high-resolution settings, which are denoted by PPR-a, PPR-b, PPR-c,
LR, and HR, respectively. The same split with 8,875 training images
and 2,286 testing ones was adopted.

Three most commonly used metrics, namely PSNR, SSIM [29],
and Δ𝐸, were employed to quantitatively evaluate the enhancement
performance on the aforementioned datasets. The PSNR and Δ𝐸 are
defined based on the 𝐿2 distance in RGB color space and CIELAB
color space, respectively. Notice that higher PSNR and SSIM and
lower Δ𝐸 indicate better enhancement performance.

Our CLUT-Net was implemented based on PyTorch [23], and
the deployment of 3DLUT was implemented via the CUDA parallel
code released by [31]. All the experiments were conducted on Titan
RTX GPUs. An Adam [14] optimizer with default setting except for
a learning rate of 1𝑒−4was applied for training. Same to [18, 28, 31],
a classical setting of 𝐷 = 33 was adopted in CLUT-Net.

4.2 Ablation study
In this subsection, ablation studies were conducted on MIT-Adobe
FiveK [3] to investigate the selection of hyper-parameters and verify
the efficacy of the proposed adaptive compression mechanism.

4.2.1 Selection of hyper-parameters. As aforementioned, there are
three important hyper-parameters in our proposed CLUT-Net, namely
𝑁 , 𝑆 , and𝑊 , where the first one determines the number of the basis
CLUTs and the latter two take control of the compression degrees
of different dimensions. To quantitatively demonstrate their im-
pact on the overall performance and determine the most suitable
settings for them, we first evaluated with 𝑆 = {2, 3, 5, 7, 10, 15, 25}
without reducing 𝐷𝑥 × 𝐷𝑦 to𝑊 , and repeated these experiments
for 𝑁 = {3, 5, 10, 20, 30} to determine the optimal setting of 𝑁 and 𝑆 .
Then we evaluated with𝑊 = {5, 7, 10, 15, 20, 25, 30, 40, 50, 70, 100}
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under the optimal setting of 𝑁 and 𝑆 to determine that of𝑊 . Each
experiment was repeated three times to avoid the influence of ran-
domness on the results.
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Figure 5: Effects of hyper-parameter 𝑁 and 𝑆 on the enhance-
ment performance of CLUT-Net.
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Figure 6: Effects of hyper-parameter𝑊 on the enhancement
performance of CLUT-Net when 𝑁 = 20 and 𝑆 = 5.

As shown in Fig. 5, although there are some local fluctuations
in the line charts, the overall tendency is still obvious. Under the
same setting of 𝑁 , the PSNR first increases and then decreases
with the growth of 𝑆 . The separating points between the rising
phase and falling phase are about 5 ∼ 7. In addition, under the
optimal setting of 𝑆 for each 𝑁 , the enhancement performance
improves with 𝑁 from 1 to 20 and then starts to decrease when
𝑁 ≥ 20. Thus, we adopted 20 and 5 as the optimal values for 𝑁
and 𝑆 , respectively. As shown in Fig. 6, under the setting of 𝑁 = 20
and 𝑆 = 5, the PSNR increases with𝑊 when𝑊 < 20 and then
starts to decrease slowly. Overall, we set 𝑁 = 20, 𝑆 = 5, and𝑊 = 20
in our implementation of CLUT-Net for a good balance between
the capability and the complexity. Notice that as a compressed
representation of 3DLUT, CLUT could have 𝑆 ranging between
[1, 33) and𝑊 ranging between [1, 1089). The experimental results
demonstrate that small values like 𝑆 = 5 and𝑊 = 20 could achieve
higher enhancement performance than the standard 3DLUT-based
methods, which fully verifies the huge compressibility of 3DLUT
and the effectiveness of CLUT and CLUT-Net.

4.2.2 Effectiveness of adaptive compression. To demonstrate the
importance of the compression mechanism to the enhancement
capability and verify the effectiveness of our adaptive compression

scheme which learns the transformation matrices and the com-
pressed representations jointly, we compared CLUT-Net with three
baselines using different compression mechanisms. In this abla-
tion study, we set 𝑁 = 20 for all the experiments. These baselines
are presented as follows: BL-𝑨) standard 3DLUT-based method
with smaller 𝐷 ; BL-𝑩) standard 3DLUT-based method with non-
learnable offline PCA compression;BL-𝑪) Non-learnable CLUT-Net:
basis CLUTs with fixed non-learnable transformation matrices.

Specifically, for BL-𝑨, we learned twenty standard basis 3DLUTs
with𝐷 = {7, 9, 11, 13, 15, 17, 21, 25, 33}. A 3DLUT with𝐷 < 33 could
be seen as a compressed representation of that with 𝐷 = 33 con-
structed by linear interpolation. For BL-𝑩, we compressed the
twenty standard basis 3DLUTs with 𝐷 = 33 learned in BL-𝑨
through offline PCA decomposition. We present this process by tak-
ing the reduction from 𝐷𝑥 ×𝐷𝑦 to𝑊 as an example. Specifically, all
the twenty basis 3DLUTs were firstly permuted and reshaped into
20 × 3 × 33 = 1980 vectors of R33

2=1089 which represent the weak
correlations between 𝑐𝑜𝑢𝑡 and (𝑥𝑖𝑛, 𝑦𝑖𝑛). Then PCA was applied
on these vectors to calculate𝑊 basis vectors of R1089, which form
the transformation matrices 𝑴𝑤 ∈ R𝑊 ×1089, and the compressed
representation with 𝑊 parameters for each vector, which form
the compressed representations (R3×𝐷×𝑊 ) of the twenty 3DLUTs.
For BL-𝑪 , we directly fixed the transformation matrices calcu-
lated by offline PCA decomposition in BL-𝑩 and then learned the
basis CLUTs end-to-end, which can be seen as learning to build
the basis 3DLUTs by selecting and combining base vectors from
given sets. Notice that BL-𝑪 possesses image-adaptive property
but not compression-adaptive property. We experimented with
𝑊 = {10, 20, 30, 60, 120, 200} and 𝐷𝑐 uncompressed for BL-𝑩 and
BL-𝑪 . We reported the performance of CLUT-Net near the optimal
setting (𝑆 = 5 and𝑊 = 20) to show its overall superiority.
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Figure 7: Quantitative comparison of the enhancement per-
formance of different baselines and CLUT-Net.

The quantitative comparisons of the three baselines and CLUT-
Net are presented in Fig. 7. To facilitate the comparison, the perfor-
mance of BL-𝑩 and BL-𝑪 with the same transformation matrices
are connected with gray dotted lines. Obviously, simply reducing
𝐷 in BL-𝑨 could save the parameter amount to a small extent,
but a large-scale compression in this way will inevitably lead to
unacceptable performance degradation, due to the loss of the color
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Figure 8: Qualitative comparison of the enhancement results
of different baselines and CLUT-Net.

mapping precision of 3DLUT on all three channels. These exper-
imental results verify our analysis in Sect. 3.1 that it is not an
effective compression scheme to directly reduce the bin number of
each dimension to the same degree. Compared with the standard
3DLUT-based approach with 𝐷 = 33, offline PCA compression
in BL-𝑩 reduces the parameter amount at the cost of the largest
loss of enhancement performance among all baselines, while BL-𝑪
has the same transformation matrices as BL-𝑩 but performs much
better than it, indicating the importance of the online learning
strategy. However, BL-𝑪 learns CLUTs in an end-to-end manner
but with non-learnable transformation matrices, making it perform
worse than CLUT-Net which learns CLUTs and the transformation
matrices jointly.

As shown in Fig. 8, BL-𝑨 failed to achieve a vivid enhancement
effect with sufficient saturation and contrast due to the severe loss
of the color mapping precision.BL-𝑩 generated enhancement result
with distorted visual quality since as a post-processing compres-
sion approach, the PCA decomposition only aims at the maximum
reconstruction of the basis 3DLUTs but without considering the
image enhancement effects. In comparison, both BL-𝑪 and our
CLUT-Net generated visual-pleasing enhancement results, where
CLUT-Net apparently outperformed the former approach on the
overall perceptual quality. In conclusion, compared with all the
other baselines, our CLUT-Net achieved the highest PSNR with
the maximum compression degree and generated the most visual-
pleasing enhancement result, which fully verifies the effectiveness
of our adaptive compression scheme.

4.3 Comparison with SOTA
We compared our proposed CLUT-Net with several SOTA learning-
based image enhancement methods including UPE [27], DPE [4],
HDRNet [7], CSRNet [10], 3DLUT [31] and spatial-aware 3DLUT
[28] under the aforementioned experimental settings. For simplicity,
3DLUT [31], spatial-aware 3DLUT [28] and CLUT-Net are denoted
by LUT, sLUT and CLUT, respectively. Notice that in the PPR task

Table 1: Quantitative comparison on MIT-Adobe FiveK [3]
and HDR+ [9] datasets. For the 3DLUT-based methods, 𝑁 is
shown after the name, and the parameter amount is com-
posed of the neural network part and the basis 3DLUTs part.

Dataset Method PSNR ↑ SSIM ↑ Δ𝐸 ↓ Param. (K)

FiveK

UPE [27] 21.88 0.853 10.80 999
DPE [4] 23.75 0.908 9.34 5,750
HDRNet [7] 24.32 0.912 8.49 482
CSRNet [10] 25.23 0.923 7.70 37
LUT-3 [31] 25.23 0.912 7.61 269+323
LUT-20 [31] 25.38 0.922 7.46 269+2,156
sLUT-30 [28] 25.40 0.925 7.46 921+3,234
CLUT-20 25.55 0.927 7.46 264+28

HDR+

UPE [27] 21.21 0.816 13.05 999
DPE [4] 22.56 0.872 10.45 5,750
HDRNet [7] 23.04 0.879 8.97 482
CSRNet [10] 23.32 0.888 8.51 37
LUT-3 [31] 23.54 0.885 7.93 269+323
LUT-20 [31] 23.91 0.891 7.67 269+2,156
sLUT-30 [28] 26.94 0.927 6.04 921+3,234
sCLUT-30 26.98 0.928 6.04 921+31

Table 2: Quantitative comparison on PPR10K [18] datasets.
For the 3DLUT-based methods, 𝑁 is shown after the name,
and the parameter amount is composed of the neural net-
work part and the basis 3DLUTs part.

Dataset Method PSNR↑ Δ𝐸 ↓ Param. (K)LR HR LR HR

PPR-a

HDRNet [7] 23.93 23.06 8.70 9.13 482
CSRNet [10] 22.72 22.01 9.75 10.20 37
sLUT-30 [28] 25.85 25.39 6.84 7.11 921+3,234
LUT-HRP-5 [31] 25.99 25.55 6.76 7.02 11,177+539
CLUT-HRP-5 26.11 25.69 6.68 6.95 294+28

PPR-b

HDRNet [7] 23.96 23.51 8.84 9.13 482
CSRNet [10] 23.76 23.29 8.77 9.28 37
sLUT-30 [28] 25.01 24.54 7.67 7.88 921+3,234
LUT-HRP-5 [31] 25.06 24.66 7.51 7.73 11,177+539
CLUT-HRP-5 25.22 24.84 7.49 7.70 294+28

PPR-c

HDRNet [7] 24.08 23.66 8.87 9.05 482
CSRNet [10] 23.17 22.85 9.45 9.87 37
sLUT-30 [28] 25.36 24.85 7.54 7.78 921+3,234
LUT-HRP-5 [31] 25.46 25.05 7.43 7.69 11,177+539
CLUT-HRP-5 25.62 25.21 7.41 7.65 294+28

the resolution of the HR human portrait is very high (ranging
from 4K to 8K), which hinders the applications of some compared
methods because of their heavy computational and memory costs.
Thus following the practice of [18], we evaluated HDRNet [7],
CSRNet [10], LUT [31], sLUT [28] and our CLUT on PPR10K [18]
dataset. As a fundamental improvement, CLUT-Net could be simply
integrated with the standard 3DLUT-based methods to boost their
space efficiency. To verify this capability, we integrated our schemes
with [28] and [18]. The consequential two CLUT-based methods are
denoted by sCLUT and CLUT-HRP and were evaluated on HDR+
[9] and PPR10K [18] datasets, respectively.
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Figure 9: Qualitative comparison with SOTA methods on MIT-Adobe FiveK [3] dataset.

The quantitative experimental results and the parameter amounts
are reported in Table 1 and Table 2. As highlighted in bold, CLUT-
based methods achieved the best performance on each dataset and
metric. It can be seen that by integrating with CLUT-Net, the pa-
rameter amounts of the corresponding 3DLUT-based methods are
significantly reduced, especially when 𝑁 is relatively large. For
example, sLUT [28] utilized thirty basis 3DLUTs and improved the
performance significantly on HDR+ [9] dataset. By integrating with
CLUT-Net, the parameter amount of the basis 3DLUTs part is re-
duced from 3,234 K to 31 K, which is a more than 99% compression
rate, while the enhancement performance is further improved.

In addition, our CLUT-Net inherits the superior time efficiency of
the standard 3DLUT-based methods, and both [31] and ours could
enhance an input image of 1920 × 1080 resolution in less than 0.7
ms on a single Titan RTX GPU. In comparison, under the same
device and resolution settings, the time cost of UPE [27], DPE [4],
HDRNet [7] and CSRNet [10] are 45 ms, 86 ms, 45 ms and 6 ms,
respectively, which are orders slower than [31] and ours. Among all
evaluated approaches, although CSRNet [10] has fewer parameters
than ours, CLUT-Net outperforms it on each dataset in terms of all
three metrics and speed by a large margin.

The qualitative comparison of the enhancement effects is pre-
sented in Fig. 9. It can be seen that the enhancement results of
UPE [27], DPE [4], HDRNet [7] and CSRNet [10] suffered from
unpleasing color deviations to some extent. In comparison, the
3DLUT-based methods generated relatively stable enhancement
results, among which CLUT-Net achieved the most vivid effects in
terms of hue, saturation, and contrast. Overall, by learning the adap-
tive compressed representations of the basis 3DLUTs, CLUT-Net
not only improved the quantitative performance of the standard

3DLUT-based methods with a much smaller parameter amount
but also generated enhancement effects with higher visual qual-
ity. Our CLUT-Net achieves SOTA on consideration of both the
enhancement performance and the model complexity.

5 CONCLUSION
In this paper, we focus on the automatic image enhancement field
and proposed a novel lightweight solution based on 3-Dimensional
LookUp Table (3DLUT), which is a widely used powerful enhance-
ment operator but with a large parameter amount. To boost the
space efficiency of the 3DLUT-based methods, we first conducted
thorough analyses of the inherent compressibility of 3DLUT. Then
we proposed an effective compressed representation of 3DLUT and
built an efficient image enhancement network based on it. Extensive
experiments on three benchmark datasets demonstrated that our
scheme outperforms the existing state-of-the-art image enhance-
ment methods with a significantly reduced parameter amount.
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