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ABSTRACT
Recently, the multi-modal fusion with 3D LiDAR, camera, and IMU
has shown great potential in applications of automation-related
fields. Yet a prerequisite for a successful fusion is that the geometric
relationships among the sensors are accurately determined, which is
called an extrinsic calibration problem. To date, the existing target-
based approaches to deal with this problem rely on sophisticated
calibration objects (sites) and well-trained operators, which is time-
consuming and inflexible in practical applications. Contrarily, a few
target-free methods can overcome these shortcomings, while they
only focus on the calibrations of two types of the sensors. Although
it is possible to obtain LiDAR-visual-inertial extrinsics by chained
calibrations, problems such as cumbersome operations, large cu-
mulative errors, and weak geometric consistency still exist. To this
end, we propose LVI-ExC, an integrated LiDAR-Visual-Inertial
Extrinsic Calibration framework, which takes natural multi-modal
data as input and yields sensor-to-sensor extrinsics end-to-end
without any auxiliary object (site) or manual assistance. To fuse
multi-modal data, we formulate the LiDAR-visual-inertial extrinsic
calibration as a continuous-time simultaneous localization andmap-
ping problem, in which the extrinsics, trajectories, time differences,
and map points are jointly estimated by establishing sensor-to-
sensor and sensor-to-trajectory constraints. Extensive experiments
show that LVI-ExC can produce precise results. With LVI-ExC’s out-
puts, the LiDAR-visual reprojection results and the reconstructed
environment map are all highly consistent with the actual natural
scenes, demonstrating LVI-ExC’s outstanding performance. To en-
sure that our results are fully reproducible, all the relevant data and
codes have been released publicly1.
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1 INTRODUCTION
Today, the sensor suite which consists of multi-beam LiDARs (light
detection and ranging), optical cameras, and IMUs (inertial mea-
surement unit) is a common configuration for many unmanned
drones, robots, and vehicles. Likewise, perception, localization, and
mapping via multi-sensor fusion also play prominent roles in these
intelligence agents [18, 19, 32]. Yet before such multi-sensor data
can be meaningfully fused, the extrinsics among the LiDAR, the
camera, and the IMU must be precisely determined.

From the point of view of whether or not to resort to auxiliary
calibrators, existing inter-sensor (LiDAR-camera, camera-IMU, or
LiDAR-IMU) calibration schemes can be roughly classified into
two categories, target-based and target-free. The target-based ones
generally rely on precise calibration objects (sites), such as checker-
boards [14], folding planes [2], plates with circular holes [10], ubiq-
uitous cartons [30], etc. Although these approaches can conve-
niently establish geometric constraints and estimate the extrinsics
with high precision, they suffer from the following defects in prac-
tical applications: 1) it is time-consuming, costly, and laborious to
produce sophisticated calibration objects (sites); 2) this kind of meth-
ods requires operators to be highly professional; and 3) mechanical
vibrations are inevitable during carriers’ online movements, leading
to extrinsic drifts, while the target-based methods are limited to
offline calibration and thus can not rectify the extrinsics in time.

Contrarily, the target-free approaches try to estimate the extrin-
sics directly from natural scenes. This class of methods usually
determine the extrinsics via “hand-eye calibration”, which is based
on the assumption that the rigidly attached sensors share the same
motion over time [3]. However, the performance of hand-eye cali-
bration is limited due to the reasons as follows. For one aspect, its
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accuracy depends on the precision of sensor-independent odometry
estimation. Up to now, however, the error of pose estimation with
a single sensor still can not be ignored. For another aspect, the
data collected by different sensors have time differences, which will
contradict the essential premise of the equal relativemotion in hand-
eye calibration, resulting in extra errors. An elegant way to deal
with these two problems is to model the extrinsic calibration under
the CT-SLAM (continuous-time simultaneous localization and map-
ping) framework [6, 8]. With CT-SLAM, the sensor observations at
any time can be conveniently fused. To date, few studies have em-
ployed the CT-SLAM techniques to conduct target-free LiDAR-IMU
or LiDAR-camera calibrations [11, 16, 21]. Although the sensor-to-
sensor (LiDAR-camera, camera-IMU, and LiDAR-IMU) extrinsics
can be obtained by chained calibrations (e.g., the LiDAR-IMU ex-
trinsics can be inferred via chained LiDAR-camera and camera-IMU
calibrations), there are still some problems such as the cumbersome
operations, large accumulated errors, and geometric inconsistency
of the calibration results.

Taking aforementioned analysis into considerations, in this arti-
cle, we attempt to integrate LiDAR,Visual, and Inertial information
into a unified Extrinsic Calibration framework, LVI-ExC for short,
and jointly estimate the sensor-to-sensor extrinsics directly from
the data collected in natural scenes. The features of LVI-ExC and
our contributions can be summarized as follows:

(1) As far as we know, LVI-ExC is the first totally target-free
integrated framework that can calibrate extrinsics among 3D
LiDAR, camera and IMU jointly. Compared with the target-
based ones, LVI-ExC gets rid of the dependence on the profes-
sional operators and the expensive sophisticated calibrators,
which makes it possible to rectify the extrinsics online when
the carrier is working. Compared with the chained calibra-
tion, LVI-ExC only takes the multi-modal data collected from
natural scenes as the input and can output the extrinsics end-
to-end, which avoids cumbersome operations and effectively
fuses the multi-modal information, thus greatly improving
the calibration efficiency and eliminating cumulative errors.

(2) Considering the time asynchrony among the three sensors,
we formulate the LiDAR-visual-inertial calibration as a CT-
SLAM problem. The loss terms with respect to LiDAR mea-
surements, visual features, and IMU readings are constructed
in a unified framework. These terms help LVI-ExC to fuse
the multi-modal data in deep and produce results with strong
geometric consistency. To guarantee a smooth optimization
of these terms, a reasonable initialization approach of all the
relevant variables is also presented, which can be seamlessly
embedded in any LiDAR-inertial or visual-inertial extrinsic
calibration system.

(3) To verify the effectiveness of LVI-ExC, we developed a hand-
held device (Fig. 1 (a)) consisting of a LiDAR, a camera, and
an IMU, gathered several data sequences from various natu-
ral scenes, and made comprehensive experimental analysis.
The results showed that LVI-ExC can achieve comparable ac-
curacy with state-of-the-art target-based approaches. With
the calibrated extrinsics, the results of the LiDAR scan repro-
jected to the image and the image reprojected to the point
cloud map were highly consistent with the actual scenes.

To ensure a high degree of reproducibility of our results
and to benefit the community, we have open-sourced all the
relevant codes and data on an online website1.

2 RELATEDWORK
2.1 Target-based Approaches
To date, most of the visual-inertial and LiDAR-camera extrinsic
calibrations are target-based. Often, the visual-inertial ones rely
on checkerboards for camera pose estimation. In [24], based on
the extended Kalman filter, Mirzaei and Roumeliotis combined the
camera-IMU extrinsics, time difference, carrier pose, and IMU bi-
ases into a unified state vector, performed state recursion with IMU
readings and updated the state with visual inputs. Similarly, Kelly
and Sukhatme [14] attempted to extend the state vector defined
in [24] with 3D visual map points. However, only the results with
known map points were provided in their experiments. To take full
advantage of multi-frame information, some studies modeled the
camera-IMU extrinsic calibration as a CT-SLAM problem. For ex-
ample, Fleps et al. [6] conducted camera-IMU extrinsic calibration
under the CT-SLAM framework, which estimates the camera pose
in the world frame from an auxiliary checkerboard and obtains
the extrinsics by associating IMU measurements and camera poses.
Later, Furgale et al. [8] constructed a complete continuous-time
SLAM theory stemming from the Bayesian law and validated its
effectiveness via camera-IMU calibration. Although the auxiliary
checkerboards ease these visual-inertial calibrations, as Fleps et al.
pointed out in [6], the dependence of the boards also limits the mo-
tion of the carrier, which in turn adversely affects the observability
of the IMU.

For LiDAR-camera extrinsic calibration, the target-based meth-
ods are usually carried out in static states, which requires sufficient
common view areas between the two sensors. For example, by
putting a carton with a known side length in the co-visible area of
the camera and LiDAR, Pusztai and Hajder [30] extracted the planes
from LiDAR point clouds and the corresponding edges from images,
and further formulated the extrinsic calibration as a perspective-n-
point problem; In [34], with a checkerboard, by finding the plane
where the board is located and its edge lines from the point cloud,
Zhou et al. extracted the edge points of the board plane from the
image and established point-to-line and point-to-plane constraints
to estimate the extrinsic parameters; Guindel et al. [10] designed a
calibration board with a checkerboard and four circular holes on
it, and established constraints between the circles fitted from the
point cloud and the known visual points to estimate the extrinsics.
Although these methods simplify the design of the algorithm by
using auxiliary calibrators, they also limit themselves to offline
calibrations and the requirement for a co-visible area between the
LiDAR and the camera is actually not always met.

2.2 Target-free Approaches
The target-free manner is usually encountered for the LiDAR-IMU
calibration. In [9], Geiger et al. estimated LiDAR-IMU extrinsics
resorting to the hand-eye calibration. Their approach expects that
each sensor can estimate the trajectory accurately and that the sen-
sors are precisely time-synchronized, which is, in fact, difficult to
meet in practice. In [16], Gentil et al. extracted the geometric planes

3320



LVI-ExC: A Target-free LiDAR-Visual-Inertial Extrinsic Calibration Framework MM ’22, October 10–14, 2022, Lisboa, Portugal

point cloud map

LiDAR SLAM

3D Map Points 
Re-scalingscale

map points

pose

visual map

Camera-IMU Initialization

LiDAR Scan

Camera Image

LiDAR-IMU Initialization

p0

p1

p2 p3

p4

p5

B-spline Initialization

Visual SLAM

IMU Pre-integration
t

Surfel Fitting

pose

L-I extrinsics
gravity in 

C-I extrinsics
gravity in 

Joint OptimizationIMU Reading
t

z
10

42

x y

Multi-beam LiDAR

Optical camera

6-axis IMU

surfel

Handheld Device Sensor Data Preprocessing Initialization Optimization

(a) (b) 

Figure 1: The self-developed handheld device (a) and the framework of LVI-ExC (b). LVI-ExC takes LiDAR-visual-inertial data
as input, roughly estimates the sensor-to-sensor extrinsics via LiDAR-IMU, camera-IMU, and B-spline initialization, and jointly
optimize them subsequently by establishing sensor-to-sensor and sensor-to-trajectory constraints.

from the first frame of point clouds, established point-to-plane
constraints, and modeled the calibration as a graph optimization
problem. Although their approach did not rely on specific calibra-
tion objects, fitting planes from a single frame alone was not stable
enough and actually required a higher regularity of the planes in
the scene. Under the framework of CT-SLAM, Lv et al. proposed
LI-Calib [21] to calibrate the LiDAR-IMU extrinsics. LI-Calib fitted
surfels from coarse-aligned point cloud maps, established point-to-
surfel constraints, and optimized the extrinsics in the CT-SLAM
framework. Further, its accuracy was improved by undistorting the
point clouds and performing iterative calibrations.

In a similar manner, several LiDAR-camera calibration meth-
ods resort to the hand-eye calibration to estimate the extrinsics.
For instance, Taylor and Nieto [31] calibrated the LiDAR-camera-
GPS extrinsics simultaneously based on the motion constraints
among the sensors; Ishikawa et al. [11] designed a two-stage scheme,
which determined the approximate LiDAR-camera extrinsics by
the hand-eye calibration, and skillfully established frame-to-frame
constraints via Lucas–Kanade tracking [20]. Similar to [11], Park
et al. [28] put forward a solution to calibrate the LiDAR-camera
extrinsics from coarse to fine. Due to the inherent shortcomings of
the hand-eye calibration described in Sect. 1, how to properly tune
its output for target-free LiDAR-camrera calibration still remains
as an open problem.

3 METHODOLOGY
3.1 Framework Overview
As illustrated in Fig. 1 (b), when the multi-sensor data sequence
flows in, LVI-ExC performs the extrinsic calibration via three stages,
i.e., a preprocessing stage, an initialization stage, and a joint op-
timization stage. In the preprocessing stage, the incoming data is

processed by LiDAR SLAM, IMU pre-integration, and visual SLAM
to obtain pre-integrations, LiDAR (camera) poses, and LiDAR (vi-
sual) maps. In the initialization stage, the preprocessed data is
employed to roughly align the LiDAR and the camera to the IMU.
Meanwhile, the carrier trajectory is also fitted from the IMU read-
ings, LiDAR poses, and LiDAR-IMU extrinsics estimated. In the
optimization stage, the coarsely estimated results are jointly opti-
mized in a unified framework by establishing sensor-to-sensor and
sensor-to-trajectory constraints.

3.2 Preliminary Knowledge and Preprocessing
3.2.1 Notation. Weuse (·)𝑤 , (·)𝑏 , (·)𝑐 , and (·)𝑙 to denote a quantity
in the world frameF𝑤 , the body frame (IMU frame)F𝑏 , the camera
frame F𝑐 , and the LiDAR frame F𝑙 , respectively. The 𝑧-axis of F𝑤

is assumed to be vertical to the horizontal plane. The right subscript
stands for the owner or reference time of the state quantity. The
right superscript denotes the reference frame. The left superscript
implies some special attributes depending on the specific context.
A rotation matrix 𝑹 ∈ R3×3 or a quaternion 𝒒 = [𝑞𝑤 , 𝒒𝑇𝑣 ]𝑇 ∈ R4 is
indiscriminately utilized to denote a 3D rotation, where 𝑞𝑤 (𝒒𝑇𝑣 ) is
the real (imaginary) part of 𝒒. 𝒑 (𝒗) ∈ R3 denotes the 3D spatial
position (velocity) of the carrier. 𝒈 ∈ R3 represents the gravity.
For compactness of expression, we use 𝑻 to denote the compound
transformation of 𝑹 and 𝒑.

3.2.2 LiDAR/Visual SLAM and CT-SLAM. Since the constraint be-
tween an IMU and a camera (LiDAR) can only be established
through their motion relationships, it is required to accurately
estimate the camera’s (LiDAR’s) poses, which is generally achieved
via the visual (LiDAR) SLAM technology. A SLAM system not only
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estimates the camera (LiDAR) poses but also reconstructs the envi-
ronmental map simultaneously. In the preprocessing stage, the in-
put LiDAR scans and camera images are fed into two high-precision
SLAM systems, LOAM [33] and ORB-SLAM2 [26], to generate poses
and maps, respectively. Note that the scale of a visual SLAM system
remains unknown. Hence, to restore the visual map points and the
camera’s physical trajectory, it’s also necessary to determine the
absolute scale of the visual SLAM in the subsequent stages.

Although the aforementioned SLAM systems can effectively
process data from a single sensor, it becomes challenging to build
data associations among sensors with different timestamps when
the system input is multi-modal data. To make up for this short-
coming, Furgale et al. [8] generalized the traditional discrete-time
SLAM to CT-SLAM whose trajectory is no longer discrete poses
but continuous curves with time as the independent variable. To
fully fuse the LiDAR-camera-IMU data, we consider combining all
their measurements together in the CT-SLAM framework. Next,
we will introduce the continuous-time trajectory representation in
LVI-ExC beforehand and discuss how to formulate our calibration
as a CT-SLAM problem in detail in the optimization stage.

3.2.3 Trajectory Representation. To ease state inference and update,
we expect the mathematical representation of the trajectory to
have the following properties, local controllability and analytic
second-order derivability. Among the parametric curves with such
properties, B-spline is an ideal choice since it is a (𝑘−1)-th order
piecewise polynomial and is 𝐶𝑘−2 continuous (𝑘 is the degree of
the B-spline). According to [4], the trajectory of a carrier in 3D
space can be expressed with the B-spline,

𝒑(𝑡) =
𝑛∑︁
𝑖=0

𝒑𝑖𝐵𝑖,𝑘 (𝑡), (1)

where 𝒑𝑖 ∈ R3 is the 𝑖-th control point, 𝑛 is the max index of the
control points, and 𝐵𝑖,𝑘 (𝑡) is the corresponding basic function,

𝐵𝑖,1 (𝑡) =
{

1 if 𝑡 ∈ [𝑡𝑖 , 𝑡𝑖+1),
0 otherwise.

(2)

𝐵𝑖,𝑘 (𝑡) = ( 𝑡 − 𝑡𝑖

𝑡𝑖+𝑘−1 − 𝑡𝑖
)𝐵𝑖,𝑘−1 (𝑡) + ( 𝑡𝑖+𝑘 − 𝑡

𝑡𝑖+𝑘 − 𝑡𝑖+1
)𝐵𝑖+1,𝑘−1 (𝑡). (3)

This R3 trajectory can also be given in a cumulative form,

𝒑(𝑡) = 𝒑0𝐵0,𝑘 (𝑡)+
𝑛∑︁
𝑖=1

(𝒑𝑖−𝒑𝑖−1)𝐵𝑖,𝑘 (𝑡), 𝐵𝑖,𝑘 (𝑡) =
𝑛∑︁
𝑗=𝑖

𝐵 𝑗,𝑘 (𝑡). (4)

For the rotation trajectory in the special orthogonal group (SO(3)),
Kim et al. proposed the following representation [15],

𝒒(𝑡) = 𝒒
𝐵̄0,𝑘 (𝑡 )
0 ⊗

𝑛∏
𝑖=1

Exp(Log(𝒒∗𝑖−1 ⊗ 𝒒𝑖 )𝐵𝑖,𝑘 (𝑡), (5)

where 𝒒∗
𝑖−1 is the conjugate quaternion of 𝒒𝑖−1, ⊗ means the quater-

nionmultiplication, Exp(·) maps an element in 𝔰𝔬(3) (the Lie algebra
of SO(3)) to SO(3), and Log(·) is the inverse operator of Exp(·).

3.2.4 IMU Pre-integration. Since both the LiDAR-IMU and camera-
IMU initializations have close connectionswith IMUpre-integration,
we briefly introduce it here in advance. According to [7], the rela-
tionship among the pre-integration measurements, true states and

noises conforms to,

𝒒̃𝑏𝑖
𝑏 𝑗

≈ 𝒒𝑤
𝑏𝑖

𝑇 ⊗ 𝒒𝑤
𝑏 𝑗

⊗ Exp(𝛿𝝓𝑏𝑖
𝑏 𝑗
), (6)

𝒗̃𝑏𝑖
𝑏 𝑗

≈ 𝑹𝑤
𝑏𝑖

𝑇 (𝒗𝑤
𝑏 𝑗

− 𝒗𝑤
𝑏𝑖

− 𝒈𝑤Δ𝑡𝑖 𝑗 ) + 𝛿𝒗𝑏𝑖
𝑏 𝑗
, (7)

𝒑̃𝑏𝑖
𝑏 𝑗

≈ 𝑹𝑤
𝑏𝑖

𝑇 (𝒑𝑤
𝑏 𝑗

− 𝒑𝑤
𝑏𝑖

− 𝒗𝑤
𝑏𝑖
Δ𝑡𝑖 𝑗 −

1
2
𝒈𝑤Δ𝑡𝑖 𝑗

2) + 𝛿𝒑𝑏𝑖
𝑏 𝑗
, (8)

where 𝛿𝝓
𝑏 𝑗

𝑏𝑖
, 𝛿𝒗

𝑏 𝑗

𝑏𝑖
and 𝛿𝒑

𝑏 𝑗

𝑏𝑖
are the Gaussian noises of the pre-

integration measurements, and Δ𝑡𝑖 𝑗 is the time difference between
the 𝑖-th and the 𝑗-th IMU readings. How to obtain the pre-integration
measurements from IMU raw readings is provided in the supple-
mentary material.

3.3 Initialization
A reasonable initialization is a prerequisite to ensure that the joint
optimization can be performed successfully. In LVI-ExC, the initial-
ization involves the coarse estimations of the extrinsics ofF𝑐 inF𝑏

(𝑹𝑏𝑐 and 𝒑𝑏𝑐 , or 𝑻𝑏𝑐 ), the ones of F𝑙 in F𝑏 (𝑹𝑏
𝑙
and 𝒑𝑏

𝑙
, or 𝑻𝑏

𝑙
), and

the SO(3) (R3) trajectory. Furthermore, the gravity direction inF𝑤

is also needed to be inferred to align the trajectories to F𝑤 . Next,
we present how to properly perform the camera-IMU, LiDAR-IMU,
and trajectory initializations.

3.3.1 Camera-IMU Initialization. Since the accelerometer measure-
ment of an IMU is coupled with the gravity while the gyroscope is
only involved with the carrier rotation, we first infer the relative
rotation from the gyroscope readings. Then, the relative translation,
the gravity and the visual map points will be further inferred with
the estimated relative rotation.

Initialization of Rotation. Consider two frames of images
with timestamp 𝑡𝑖 and 𝑡 𝑗 respectively. According to the hand-eye
calibration [3], an IMU and a camera that are rigidly attached shall
meet the following equation,

𝑹𝑏𝑖
𝑏 𝑗
𝑹𝑏𝑐 = 𝑹𝑏𝑐 𝑹

𝑐𝑖
𝑐 𝑗 . (9)

Further, with the law of quaternion-matrix multiplication,

[𝒒]𝐿 = 𝑞𝑤 𝑰 +
[

0 −𝒒𝑇𝑣
𝒒𝑣 [𝒒𝑣]×

]
, [𝒒]𝑅 = 𝑞𝑤 𝑰 +

[
0 −𝒒𝑇𝑣
𝒒𝑣 −[𝒒𝑣]×

]
, (10)

where [·]𝐿 ([·]𝑅 ) denotes the left (right) quaternion multiplication,
[·]× means the associated skew-symmetric matrix, and 𝑰 is the
identity matrix, Eq. 9 can be reformulated as,

𝒒𝑏𝑖
𝑏 𝑗

⊗ 𝒒𝑏𝑐 − 𝒒𝑏𝑐 ⊗ 𝒒𝑐𝑖𝑐 𝑗 = ( [𝒒𝑏𝑖
𝑏 𝑗
]𝐿 − [𝒒𝑐𝑖𝑐 𝑗 ]𝑅)𝒒

𝑏
𝑐 = 0. (11)

According to Eq. 11, by employing the rotation measurements,
𝒒̃𝑐𝑖𝑐 𝑗 and 𝒒̃𝑏𝑖

𝑏 𝑗
, of the visual SLAM and IMU pre-integrations respec-

tively, overdetermined linear equations can be constructed to solve
the relative rotation 𝒒𝑏𝑐 (𝑹𝑏𝑐 ) from the camera to IMU.

Initialization of Translation, Gravity andVisualMapPoints.
With a reasonable estimate of 𝑹𝑏𝑐 , it becomes possible to infer the
relative translation 𝒑𝑏𝑐 , the gravity at the starting time 𝒈𝑏0 , and the
scale ambiguity (𝜇) of visual SLAM based on the velocity-related
(Eq. 7) and translation-related (Eq. 8) equations for the IMU pre-
integration. From Eq. 7 and Eq. 8, when taking the camera frame at
the initial moment (F𝑐0 ) as the reference, we need to establish the
association between the IMU frame at time 𝑡 ( F𝑏𝑡 ) and F𝑐0 first.
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According to the chain rule of 3D spatial coordinate transformation,
the following equation holds,[

𝑹𝑐0
𝑏𝑡

𝜇𝒑𝑐0
𝑏𝑡

0 1

]
=

[
𝑹𝑐0
𝑐𝑡 𝜇𝒑𝑐0

𝑐𝑡
0 1

] [
𝑹𝑐
𝑏

𝒑𝑐
𝑏

0 1

]
. (12)

With Eq. 12, we can get the following relations,

𝑹𝑐0
𝑏𝑡

= 𝑹𝑐0
𝑐𝑡 𝑹

𝑐
𝑏
, 𝜇𝒑𝑐0

𝑏𝑡
= 𝑹𝑐0

𝑐𝑡𝒑
𝑐
𝑏
+ 𝜇𝒑𝑐0

𝑐𝑡 = 𝜇𝒑𝑐0
𝑐𝑡 − 𝑹𝑐0

𝑏𝑡
𝒑𝑏𝑐 . (13)

Substituting Eq. 13 into Eq. 7 produces,

Δ𝒗̃𝑏𝑖
𝑏 𝑗

≈ 𝑹𝑐0
𝑏𝑖

𝑇 (𝑹𝑐0
𝑏 𝑗
𝒗
𝑏 𝑗

𝑏 𝑗
− 𝑹𝑐0

𝑏𝑖
𝒗𝑏𝑖
𝑏𝑖

− 𝒈𝑐0Δ𝑡𝑖 𝑗 ), (14)

in which 𝑹𝑐0
𝑏𝑖

and 𝑹𝑐0
𝑏 𝑗

can be obtained via Eq. 13, and 𝒗𝑏𝑖
𝑏𝑖
, 𝒗

𝑏 𝑗

𝑏 𝑗
, and

𝒈𝑐0 are the velocities and the gravity to be estimated. Similarly,
substituting Eq. 13 into Eq. 8 yields,

Δ𝒑̃𝑏𝑖
𝑏 𝑗

≈ 𝑹𝑐0
𝑏𝑖

𝑇 ((𝑹𝑐0
𝑐 𝑗𝒑

𝑐
𝑏
− 𝑹𝑐0

𝑐𝑖 𝒑
𝑐
𝑏
)

+ 𝜇 (𝒑𝑐0
𝑐 𝑗 − 𝒑𝑐0

𝑐𝑖 ) − 𝒗𝑐0
𝑏𝑖
Δ𝑡𝑖 𝑗 −

1
2
𝒈𝑐0Δ𝑡𝑖 𝑗

2) . (15)

To this point, by computing the multiple keyframe poses and pre-
integrating the associated IMU readings in a certain time window,
the overdetermined equations can be established according to Eq.
14 and Eq. 15, so that the camera-IMU extrinsics and the scale
ambiguity can be determined by linear least squares estimation.
Furthermore, the depths of all the 3D visual points can be re-scaled
with the estimated sale. In addition, with the estimated 𝒈𝑐0 and
𝑹𝑏𝑐 , 𝒈𝑏0 can be conveniently obtained and all the variables can be
roughly transformed to the world frame by aligning 𝒈𝑏0 with 𝒈𝑤 .
As a result, we get proper estimates of 𝑹𝑏𝑐 , 𝒑𝑏𝑐 and all 3D visual
points via camera-IMU initialization.

3.3.2 LiDAR-IMU Initialization. We employ a technique similar
to the camera-IMU initialization to roughly align F𝑙 with F𝑏 by
establishing the relationship between the IMU pre-integration and
the LiDAR odometry. Specifically, we first resort to LOAM [33] to
estimate the poses of the point clouds and build the environmental
map concurrently. Meanwhile, with the timestamps of the point
clouds, the frame-to-frame pre-integrations are propagated from
the IMU readings. After that, by employing the technique presented
in Sect. 3.3.1, rough estimates of the LiDAR-IMU extrinsics as well
as the gravity in the first frame of the scans can be obtained.

As the environmental map constructed by LOAM still has non-
negligible errors due to themotion distortion of the laser points [33],
we consider establishing more accurate geometric constraints for
a finer calibration. A natural idea is to extract surface features
from the map. However, regular planes do not always exist stably
in natural scenes. Therefore, inspired by [21], we fit surfels from
point cloud maps to enhance the environmental adaptability of
the framework. Specifically, we first divide the point cloud map
constructed by LOAM into spatial voxels. Afterwards, we calculate
the first-order and second-order moments of the point clouds within
the voxels. According to [1], whether a point cloud constitutes a
surfel can be detected by the following surfel likeliness coefficient,

𝜁 = 2
𝜆1 − 𝜆0

𝜆0 + 𝜆1 + 𝜆2
, (16)

where 𝜆0 ≤ 𝜆1 ≤ 𝜆2, and they are the eigenvalues of the second-
order moment matrix. If the point clouds in the voxel are sampled

from a surfel, the corresponding coefficient 𝜁 should be close to 1.
Therefore, if 𝜁 of a voxel is greater than a certain threshold, we will
perform a RANSAC [5] plane fitting for the points that belong to
the voxel. As a result, the fitted surfel parameters are regarded as
variables and will be updated in the joint optimization later.

3.3.3 Trajectory Initialization. As described in Sect. 3.2.3, B-splines
of SO(3) and R3 are utilized to represent the carrier’s trajecto-
ries. In the initialization of the R(3) trajectory, we first transform
the LiDAR positional attitude estimated by LOAM to IMU frame
employing the coarse LiDAR-IMU extrinsics. Then this position
sequence is used as the control points for the R(3) trajectory fitting.
As for the SO(3) trajectory, we straightforwardly fit it with the
IMU gyroscope readings as its control points.

3.4 Joint Optimization
To refine the coarse results obtained from the initialization stage,
we consider fusing all the measurements into a unified CT-SLAM
framework via MAP (maximum a posteriori) estimation and jointly
optimizing all the involved variables.

3.4.1 Problem Formulation. We first define all the observations
and the variables to be optimized in the joint optimization. Denote
the LiDAR data, the image features, and the IMU measurements by
L,V , and I, respectively. The variables to be optimized in LVI-ExC
are the R(3) and SO(3) B-splines as well as the gravity (denoting
these trajectory-related variables by C), the visual map points (M),
the LiDAR surfels (S), and the extrinsics and time offsets along with
the IMU biases (denoting these sensor-related parameters by T ).
The optimization objective of LVI-ExC is to find the maximum value
of the joint probability of the variables to be estimated conditioning
on all the observations, i.e.,

{C,M,S,T }∗ = arg max
C,M,S,T

𝑝 (C,M,S,T | L,V,I). (17)

According to the Bayes law, 𝑝 (·) can be reformulated as,

𝑝 (C,M,S,T | L,V,I) = 𝑝 (C,M,S,T)𝑝 (L,V,I | C,M,S,T)
𝑝 (L,V,I)

∝ 𝑝 (C,M,S,T)𝑝 (L,V,I | C,M,S,T). (18)

Since LiDAR observations are associated with the surfels, extrinsics
and trajectories while IMU observations are only associated with
the trajectories, the following equation should hold,

𝑝 (L,V,I | C,M,S,T) =
𝑝 (L | C,S,T)𝑝 (V | C,M,S,T)𝑝 (I | C). (19)

Further, via initialization, we already have reasonable estimates
for the trajectories, visual points, surfels, and extrinsics. Therefore,
they can be considered as independent prior terms in Eq. 18. Thus,
using the results of Eq. 19, we can obtain,

𝑝 (C,M,S,T | L,V,I) ∝ 𝑝 (C)𝑝 (M)𝑝 (S)𝑝 (T )·
𝑝 (L | C,S,T)𝑝 (V | C,M,S,T)(I | C), (20)

where the first four terms are the prior terms, and the last three
are the observed posteriors of the LiDAR, the camera and the IMU,
respectively. In MAP estimation, these posterior terms can be mod-
eled as the corresponding high-dimensional Gaussian distributions
characterized by their means and variances. Thus, the optimization
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Point cloud map Surfel set

(a) LiDAR error term (b) Visual error term

Figure 2: Illustrations of the LiDAR and visual error terms.

objective equates to minimizing the sum of the quadratic error
terms, i.e.,

{C,M,S,T }∗ = arg min
C,M,S,T

𝐿𝒆 + 𝑉 𝒆 + 𝐼 𝒆, (21)

where 𝐿𝒆, 𝑉 𝒆, and 𝐼 𝒆 are the LiDAR, visual, and inertial error terms,
respectively. As a result, to perform the joint optimization, we need
to first construct the concrete forms of 𝐿𝒆, 𝑉 𝒆, and 𝐼 𝒆.

3.4.2 LiDAR Error Term. A significant difference between a LiDAR
scan and an image is the sparsity of the point cloud, which makes
it difficult to directly establish frame-to-frame constraints among
scans. Therefore, we consider building an environmental map by
accumulating multi-frame point clouds and fitting surfels from
the map to build point-to-surfel constraints. As introduced in Sect.
3.3.2, the scan poses are estimated by LOAM and the surfel set S is
obtained via surfel fitting. According to the estimated scan poses,
each laser point is firstly assigned to its associated surfel which has
the nearest Euclidean distance and lies within a certain distance to
the point. Assume that the surfel set S is established at time 𝑡𝑠 and
S = {𝝅1, 𝝅2, . . . , 𝝅𝑛, . . . } where 𝑛 ∈ 𝑁 + is the index of a surfel and
𝝅𝑛 ∈ R4 is the parameter vector of the associated surfel. Thus, for
a laser point 𝒑𝑙𝑚𝑚 measured at time 𝑡𝑚 and its associated surfel 𝝅𝑛 ,
the corresponding error term 𝐿𝒆𝑚,𝑛 is established as,

𝒑̊𝑏𝑠𝑚 = 𝑻𝑤
𝑏
𝑇 (𝑡𝑠 + 𝜏𝑙 )𝑻𝑤𝑏 (𝑡𝑚 + 𝜏𝑙 )𝑻𝑏𝑙 𝒑̊

𝑙𝑚
𝑚 , (22)

𝐿𝒆𝑚,𝑛 = 𝝅𝑛 · 𝒑̊𝑏𝑠𝑚 /∥𝝅̌𝑛 ∥2, (23)

in which ˚(·) is the homogeneous coordinate of the associated point,
𝑻𝑤
𝑏
(·) returns the pose of F𝑏 in F𝑤 at the given timestamp, 𝜏𝑙 is

the LiDAR-to-IMU time difference, 𝝅̌𝑛 is the vector with the first
three elements of 𝝅𝑛 , and ∥·∥2 is the 𝑙-2 norm of the operated vector.
An illustration of this error term is given in Fig. 2 (a).

3.4.3 Visual Error Terms. Reprojection Error Term. For ease of
management, we assign a reference frame to each visual feature
point (the frame in which the point is first time observed). When
the point is observed in subsequent frames, a visual constraint can
be established between the observed frame and the reference frame
with respect to the point by visual feature association. Specifically,
when the 𝑘-th 2D visual feature point 𝒑̆𝑖

𝑖,𝑘
of the 𝑖-th frame is

observed in the 𝑗-th frame, its corresponding 3D spatial point 𝒑𝑐𝑖
𝑖,𝑘

is first obtained by triangulation. Due to the large number of feature
points, to reduce the computational complexity, we use a pair of the
2D point and its inverse depth, (𝒑̆𝑖

𝑖,𝑘
, 𝑑𝑖,𝑘 ), to identify each 3D visual

point as Patrob-Perez et al. suggested [29]. Furthermore, according

to the epipolar geometry, the reprojection error 𝑉 𝒆𝑖, 𝑗,𝑘 between the
𝑖-th and the 𝑗-th frame with respect to (𝒑̆𝑖

𝑖,𝑘
, 𝑑𝑖,𝑘 ) is defined as,

𝑉 𝒆𝑖, 𝑗,𝑘 = 𝒑̆ 𝑗

𝑖,𝑘
− 𝜙 (𝑻𝑐

𝑏
𝑻𝑤
𝑏
𝑇 (𝑡 𝑗 + 𝜏𝑐 )𝑻𝑤𝑏 (𝑡𝑖 + 𝜏𝑐 ) ˚(𝑹𝑏𝑐 𝒑𝑐𝑖𝑖,𝑘 ),𝑲 ), (24)

where 𝑲 is the camera intrinsic matrix which is regarded known, 𝜏𝑐
is the time difference between the camera and the IMU, 𝜙 represents
the projection of the associated 3D spatial visual point to the 2D
feature, and the inverse operator of 𝜙 conforms to,

𝒑𝑐𝑖
𝑖,𝑘

= 𝜙−1 (𝒑̆𝑖
𝑖,𝑘
, 𝑑𝑖,𝑘 ,𝑲 ), (25)

which lifts a 2D feature on an image to the 3D space. An intuitive
example of this visual error term is provided in Fig. 2 (b).

Visual-Point to LiDAR-Surfel Error Term. Considering that
in real scenarios, visual feature points may appear on spatial sur-
faces, such as paintings on a wall or text on a blackboard, we also
append the constraints among the spatial visual points and the
fitted surfels to the optimization problem. Starting from the initial-
ization results, we first associate the re-scaled visual points and
laser surfels by the Euclidean distances among them. Then, for
a pair of a visual point and a LiDAR surfel ((𝒑𝑖

𝑖,𝑘
, 𝑑𝑖,𝑘 ), 𝝅𝑛), the

corresponding loss term 𝑉 𝒆𝑛,𝑖,𝑘 is defined as,

𝒑̊𝑏𝑠
𝑖,𝑘

= 𝑻𝑤
𝑏
𝑇 (𝑡𝑠 + 𝜏𝑙 )𝑻𝑤𝑏 (𝑡𝑖 + 𝜏𝑐 )𝑻𝑏𝑙 𝒑̊

𝑐𝑖
𝑖,𝑘
, (26)

𝑉 𝒆𝑛,𝑖,𝑘 = 𝝅𝑛 · 𝒑̊𝑏𝑠
𝑖,𝑘
/∥𝝅̌𝑛 ∥2, (27)

where 𝒑𝑐𝑖
𝑖,𝑘

is obtained by Eq. 25. With this term, the results yielded
by the optimization are expected to be more geometric consistent.

3.4.4 IMU Error Terms. The constraints among the IMU measure-
ments and the trajectories are straightforward. Assuming that the
rotation and translation at the timestamp 𝑡 on the SO(3) and R3

trajectories are 𝑹𝑤
𝑏
(𝑡) and 𝒑𝑤

𝑏
(𝑡), respectively, the associated esti-

mates of the IMU measurements that can be extrapolated from the
trajectories are,

𝒂𝑏 (𝑡) = 𝑹𝑤
𝑏
𝑇 (𝑡) ( ¥𝒑𝑤

𝑏
(𝑡) − 𝒈𝑤), 𝝎𝑏 (𝑡) = 𝑹𝑤

𝑏
𝑇 (𝑡) ( ¤𝑹𝑤

𝑏
(𝑡)), (28)

where the operator ¥(·) ( ¤(·)) returns the associated second-order
(first-order) derivative. Thus, the loss term between the IMU reading
𝒂̃𝑡 (𝝎̃𝑡 ) at time 𝑡 and the R3 (SO(3)) trajectory can be defined as,

𝐼 𝒆𝑎 = 𝒂̃𝑡 − 𝒂𝑏 (𝑡) − 𝑎𝒃 , 𝐼 𝒆𝜔 = 𝝎̃𝑡 − 𝝎𝑏 (𝑡) − 𝜔𝒃 . (29)

3.4.5 Bundle Adjustment. After the sensor-to-sensor and sensor-
to-trajectory constraints are established, starting from the estimated
initial values,we resort to the Levenberg-Marquardt algorithm [17,
22] to jointly optimize all the variables. More details about the
bundle adjustment are provided in the supplementary material.

4 EXPERIMENT
4.1 Setup
To verify the effectiveness of LVI-ExC, a handheld data acquisition
device was developed as shown in Fig. 1 (a). The device consists of a
16-beam ROBOSENSE LiDAR, a ZED-2 stereo camera, and a built-in
6-axis IMU which can report readings at 400 Hz. The three sensors
are rigidly connected during all the experiments. With the handheld
device, several sequences of experimental data were collected from
various natural scenes. Each data sequence was about one minute
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Table 1: Implicit errors. “Acc.” and “Gyr.” are the abbreviations
of accelerator and gyroscope respectively.

Error Type Number Axis Mean Variance Unit

Visual error 6223 𝑢 -0.1495 0.1477 pixel
𝑣 -0.0099 0.0004

Acc. error 18007
𝑥 0.0157 8.9350*1e-6

m/s2𝑦 0.008 1.5099*1e-6
𝑧 0.0146 1.7076*1e-6

Gyr. error 18007
𝑥 0.0033 4.7624*1e-7

rad/s𝑦 0.0034 1.8057*1e-6
𝑧 0.0054 8.5605*1e-6

LiDAR error 24171 0.0178 8.2177*1e-5 m

long and contained LiDAR point clouds, 1280×720 grayscale images,
and IMU readings with accelerations and angular velocities. During
each sequence acquisition, the handheld device was fully panned
and rotated in all directions to ensure the observabilities in all axes.

4.2 Implicit Error Analysis
To evaluate LVI-ExC’s inherent accuracy, we analyse the implicit
errors which consists of, 1) visual reprojection errors, 2) the errors
between the IMU measurements (acceleration and angular velocity)
and those derived from the trajectories, and 3) the distance error
between the LiDAR point and its associated surfel. Since these
implicit errors are also the loss terms to be optimized in LVI-ExC, if
these errors are small enough, it implies that the constraints among
the LiDAR, the camera, and the IMU are well met.

All the errors involved in LVI-ExC after the convergence of
the joint optimization are listed in Table 1. As seen, in terms of
visual errors, the reprojection errors reach a sub-pixel level in both
the horizontal and vertical directions, indicating that the spatial
structure of the visual points is well recovered with the optimized
inverse depths, the extrinsic parameters, and the trajectories. In
terms of IMU errors, the differences between the measurements of
both linear acceleration and angular velocity and those derived from
the optimized trajectories are very small, which also verifies that
the optimized trajectories are in good agreement with the actual
measurements. In addition, the average error between the laser
points and the fitted surfels is less than 2𝑐𝑚, which is comparable
to the measurement error of the original laser scan and also implies
the high consistency between the trajectory and the built point
cloud map with the optimized results.

4.3 Reprojection Result
In order to have an intuitive understanding of the accuracy of
LVI-ExC’s results, we perform three types of evaluation here.
Image with reprojected point cloud. With the calibration re-
sults, a LiDAR point cloud was reprojected into the camera image
which had the same timestamp as the scan. Two scan-image pairs
after reprojection are shown in Fig. 3 (a). It can be seen that the
distribution of the point cloud at the corner of the cabinet and its
distribution at the edge of the calibration board accord with the
real scenes well.

(a) Image with reprojected point cloud                         

(b) Refined point cloud map

(c) Rendered map with reprojected image

Figure 3: Reprojection results and the constructed maps.

Refined point cloud map. After optimization, we first obtained
the pose of each laser point when it was observed from the estimated
B-spline trajectory according to its timestamp and then registered
it in the global map in turn. Fig. 3 (b) shows the reconstructed point
cloud maps of the calibration sites (the maps are gradually colored
from red to blue according to the 𝑧 values of the points). As shown,
the objects such as tables, chairs, fans, and so on in the optimized
maps are distinguishable, implying high-precision trajectories as
well as refined maps are obtained.
Rendered map with reprojected image. At last, we took an
image from a data sequence, retrieved its corresponding pose from
the optimized trajectory according to its timestamp, reprojected its
pixels into the point cloudmap according to the estimated extrinsics
and put color on the corresponding map points meanwhile. The
rendered resulting maps are shown in Fig. 3 (c). As shown, the
point cloud maps with reprojected images are highly consistent
with the actual scenes, which once again verifies that the extrinsics
calibrated by LVI-ExC have pleasing accuracy.

4.4 Comparison with State-of-the-art Methods

Table 2: Time cost to obtain LiDAR-visual-inertial extrinsics.

Chained calibration LVI-ExCKalibr [8, 23, 27] Autoware [12, 13]
Time cost 94.62s about 10min 208.13s
Total about 694s 208.13s

In this subsection, we compare LVI-ExC with two other well-
known calibration schemes. Since there are no target-free approaches
in existing literature for integrated LiDAR-visual-inertial calibra-
tion, we choose two state-of-the-art target-based calibration meth-
ods, Kalibr [8, 23, 27] and Autoware [12, 13] for comparison, al-
though it is a little unfair to LVI-ExC. Among the existing visual-
inertial calibration schemes, Kalibr is well-known in academia and
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Table 3: Calibration errors. Top three rows are the results of LVI-ExC and its counterparts. The bottom one is the result of
LVI-ExC with random initialization (LVI-ExCRI). The lowest error (runner-up) in a column is marked in blue (violet).

𝑥 (𝑚) 𝑦 (𝑚) 𝑧 (𝑚) roll(◦) pitch(◦) yaw(◦)
Kalibr [8, 23, 27] 0.0083±2.15e-5 -0.0018±4.94e-5 0.0030±1.37e-5 -0.2389±0.28 0.9392±0.47 0.0089±0.09
Autoware [12, 13] 0.0364±0.01 0.0188±4.8e-3 -0.0170±6.81e-3 -0.2820±7.37 0.0821±1.18 0.0224±0.37

LVI-ExC 0.0086±1.87e-4 0.0172±3.58e-3 -0.0147±6.32e-4 -0.0442±4.58e-2 -0.1784±0.20 -0.6129±0.13
LVI-ExCRI 0.4615±0.1698 0.1365±0.2098 0.2767±0.3854 2.1938±25.0639 20.5690±973.6595 -23.6859±1125.9607

industry, which integrated many advanced techniques of camera-
IMU calibration. As for the LiDAR-camera evaluation, we compare
LVI-ExC with the calibration toolkit of a widely used autonomous
driving software, Autoware.

4.4.1 Time cost. To obtain the extrinsics among LiDAR, camera
and IMU, the two counterparts have to resort to a chained cali-
bration. In other words, to infer LiDAR-IMU extrinsics, it is re-
quired to first calibrate camera-IMU by Kalibr and then calibrate
camera-LiDAR by Autoware. To evaluate LVI-ExC’s efficiency, we
compared its average time cost with that of the chained calibration.
Specifically, we conducted nine tests on LVI-ExC and the chained
calibration respectively, and recorded their time costs in Table 2.
As presented, the chained calibration takes three times as long as
LVI-ExC. Although Kalibr performs camera-IMU calibration with a
high efficiency, Autoware estimates the camera-LiDAR extrinsics
with a lot of manual assistance, which significantly restricts its
efficiency. By contrast, LVI-ExC only takes natural data as input
and can automatically solve the extrinsics, thus having a much
higher efficiency.

4.4.2 Calibration accuracy. Since it is difficult to directly obtain
the ground truth of the LiDAR-visual-inertial extrinsics, while the
extrinsics of the ZED-2 stereo cameras are factory-calibrated, we
took it as the ground truth and conducted a chained calibration to
evaluate LVI-ExC. Specifically, when evaluating LVI-ExC’s calibra-
tion results, we obtained the extrinsics of the right camera frame
relative to the left camera frame by calibrating the “LiDAR, left cam-
era, IMU” and the “LiDAR, right camera, IMU” suites, respectively.
Likewise, similar chained calibrations were performed to obtain
the extrinsics between the left and right cameras when performing
the calibrations of Kalibr and Autoware. For the evaluation of each
method, nine independent experiments were conducted and the
mean and variance of the translation errors and rotation errors (in
Euler angle) of the results were listed in Table 3. As shown, the
calibration accuracy of our LVI-ExC is comparable to that of the
checkerboard-based methods, despite the fact that it is free of
any auxiliary calibration objects. In terms of the translation
errors, LVI-ExC and Kalibr achieve similar results, both being be-
low 2𝑐𝑚, while Autoware produces a larger deviation. In terms of
the rotation error, the three schemes yield comparable results, all
below 1◦ and with high stability. It should be noted that among the
sensors available on today’s market, the range error of a LiDAR
is mostly 2 ∼ 3𝑐𝑚, while the highest accuracy of the monocular
visual-SLAM is 6𝑐𝑚 even after scale recovery [25]. Therefore, we
believe that the accuracy of LVI-ExC is sufficient for most of the
perception, mapping or localization applications.

4.5 Ablation Study on Initialization
Due to the large number of variables to be estimated in the joint
optimization, intuitively, a successful initialization eases the estima-
tion of initial values for the extrinsics, the gravity, the visual points,
and the control points, which in turn helps LVI-ExC to find the
optimal values smoothly. To verify the effectiveness of the proposed
initialization scheme, we obtained the chained calibration results
using LVI-ExC with the proposed initialization and LVI-ExCRI with
random initialization on the same data sequences of the left and
right cameras. The results are listed in the third and fourth rows of
Table 3. As seen, the calibration results are with unacceptable errors
for both translation and rotation when no reasonable initialization
is performed. By contrast, our proposed initialization scheme helps
LVI-ExC to find the optimal solution more easily and the converged
results are much closer to the ground truth.

5 CONCLUSION
In this article, we present LVI-ExC, an integrated framework for
LiDAR-visual-inertial extrinsic calibration without using any ar-
tificial auxiliary calibrators, which gets rid of the shortcomings
like tedious operations, large accumulated errors, and poor geo-
metric consistency of existing schemes. LVI-ExC formulates the
LiDAR-visual-inertial extrinsic calibration as a CT-SLAM problem
and estimates the trajectories and maps while estimating the sensor-
to-sensor extrinsics. To make the joint optimization with ultra-high
dimensional variables easy to be carried out, we also propose a rea-
sonable initialization scheme for LVI-ExC with complete estimates
of all the associated variables. The effectiveness of LVI-ExC is fully
verified via comprehensive experimental analysis and comparisons
with competing counterparts. In future work, we will devote our
efforts to designing an integrated framework for the simultaneous
calibration of multiple LiDARs, cameras, and IMUs.
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