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Abstract—Autonomous driving has attracted tremendous attention especially in the past few years. The key techniques for a

self-driving car include solving tasks like 3D map construction, self-localization, parsing the driving road and understanding

objects, which enable vehicles to reason and act. However, large scale data set for training and system evaluation is still a

bottleneck for developing robust perception models. In this paper, we present the ApolloScape dataset [1] and its applications for

autonomous driving. Compared with existing public datasets from real scenes, e.g., KITTI [2] or Cityscapes [3], ApolloScape

contains much large and richer labelling including holistic semantic dense point cloud for each site, stereo, per-pixel semantic

labelling, lanemark labelling, instance segmentation, 3D car instance, high accurate location for every frame in various driving

videos from multiple sites, cities and daytimes. For each task, it contains at lease 15x larger amount of images than SOTA

datasets. To label such a complete dataset, we develop various tools and algorithms specified for each task to accelerate the

labelling process, such as joint 3D-2D segment labeling, active labelling in videos etc. Depend on ApolloScape, we are able to

develop algorithms jointly consider the learning and inference of multiple tasks. In this paper, we provide a sensor fusion scheme

integrating camera videos, consumer-grade motion sensors (GPS/IMU), and a 3D semantic map in order to achieve robust

self-localization and semantic segmentation for autonomous driving. We show that practically, sensor fusion and joint learning of

multiple tasks are beneficial to achieve a more robust and accurate system. We expect our dataset and proposed relevant

algorithms can support and motivate researchers for further development of multi-sensor fusion and multi-task learning in the

field of computer vision.

Index Terms—Autonomous driving, large-scale datasets, scene/lane parsing, self localization, 3D understanding

Ç

1 INTRODUCTION

A successful self-driving vehicle that is widely applied
must include three essential components. Firstly,

understanding the environment, where commonly a 3D
semantic HD map at the back-end precisely recorded the
environment. Secondly, understanding self-location, where
an on-the-fly self-localization system puts the vehicles accu-
rately inside the 3D world, so that it can plot a path to every
target location. Thirdly, understanding semantics in the
view, where a 3D perceptual system detects other moving
objects, guidance signs and obstacles on the road, in order
to avoid collisions and perform correct actions. The prevail-
ing approaches for solving those tasks from self-driving
companies are mostly dependent on LIDAR [4], whereas
vision-based approaches, which have potentially very low-
cost, are still very challenging and under research. It
requires solving tasks such as learning to do visual 3D scene
reconstruction [5], [6], [7], [8], self-localization [9], [10],
semantic parsing [11], [12], semantic instance understand-
ing [13], [14], object 3D instance understanding [15], [16],
[17], [18], [19] online in a self-driving video etc. However,

the SOTA datasets for supporting these tasks either have
limited amount, e.g., KITTI [2] only has 200 training images
for semantic understanding, or limited variation of tasks,
e.g., Cityscapes [3] only has discrete semantic labelled
frames without tasks like localization or 3D reconstruction.
Therefore, in order to have a holistic training and evaluation
of a vision-based self-driving system, in this paper, we build
the Apolloscape [1] for autonomous driving, which is a grow-
ing and unified dataset extending previous ones both on the
data scale, label density and variation of tasks.

Specifically, in current stage, ApolloScape contains prop-
erties of,

1) dense semantics 3D point cloud for the environment
(20+ driving site)

2) stereo driving videos (100+ hours)
3) high accurate 6DoF camera pose. (translation� 50mm,

rotation� 0:015�)
4) videos at same site under different day times, (morn-

ing, noon, night)
5) dense per-pixel per-frame semantic labelling (35

classes, 144K+ images)
6) per-pixel lanemark labelling (35 classes, 160K+

images)
7) semantic 2D instances segmentation (8 classes, 90K+

images)
8) 2D car keypoints and 3D car instance labelling (70K

cars)
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With these information, we have released several stan-
dard benchmarks for scene parsing [20], instance segmenta-
tion [21], lanemark parsing [22], self-localization [23] by
withholding part of the data as test set, and our toolkit for
visualization and evaluation has also published [24]. Here,
for 3D car instance, we list the car number we already
labelled, and since it is still under development, we will
elaborate it in our future work. Fig. 1 shows a glance of
ApolloScape, which illustrates various information from the
dataset that is necessary for autonomous driving. Our data-
set is still growing and evolving, and will shortly contains
new tasks such as 3D car instance shape and pose, 3D car
tracking etc., which are important for scene understanding
with finer granularity. In addition, thanks to our efficient
labelling pipeline, we are able to scale the dataset to multi-
ple cities and sites, and we have already contained 10 cities
in China under various driving conditions.

Based on ApolloScape, we are able to develop algorithms
for jointly considering 3D and 2D simultaneouslywithmulti-
ple tasks like segmentation, reconstruction, self-localization
etc. These tasks are traditionally handled individually [9],
[12], or jointly handled offline with semantic SLAM [25]
which could be time consuming. However, from a more
practical standpoint, self-driving car needs to handle locali-
zation and parsing the environment on-the-fly efficiently.
Therefore, in this paper, we propose a deep learning based
online algorithm jointly solving localization and semantic
scene parsing when a 3D semantic map is available. In our
system, we assume to have (a) GPS/IMU signal to provide a
coarse camera pose estimation; (b) a semantic 3Dmap for the
static environment. The GPS/IMU signals serve as a crucial
prior for our pose estimation system. The semantic 3D map,
which can synthesize a semantic view for a given camera
pose, not only provides strong guidance for scene parsing,
but also helpsmaintain temporal consistency.

With our framework, the camera poses and scene seman-
tics are mutually beneficial. The camera poses help establish
the correspondences between the 3D semantic map and 2D
semantic label map. Conversely, scene semantics could help
refine camera poses. Our unified framework yields better
results, in terms of both accuracy and speed, for both tasks
than doing them individually. In our experiments, using a

single Titan Z GPU, the networks in our system estimates
the pose in 10ms with accuracy under 1 degree, and seg-
ments the image 512 � 608 within 90 ms with pixel accu-
racy around 96 percent without model compression, which
demonstrates its efficiency and effectiveness.

In summary, the contributions of this work are in three
folds,

1) We propose a large and rich dataset, named as
ApolloScape, which includes various tasks, e.g., 3D
reconstruction, self-localization, semantic parsing,
instance segmentation etc., supporting the training
and evaluation of vision-based autonomous driving
algorithms and systems.

2) For developing the dataset, we design an efficient
and scalable 2D/3D joint-labelling pipeline, where
various tools are developed for 2D segmentation, 3D
instance understanding etc. For example, compared
with fully manual labelling, our 3D/2D labelling
pipeline saves 70 percent labeling time for semantic
segmentation.

3) Based on ApolloScape, we developed a deep learning
based joint self-localization and segmentation algo-
rithm, which is relying on a semantic 3D map. The
system fuses sensors from camera and customer-
grad GPS/IMU, which runs efficiently and improves
the robustness and accuracy for camera localization
and scene parsing.

The structure of this paper is organized as follows. We
provide related work in Section 2, and elaborate the collec-
tion and labelling of ApolloScape in Section 3. In Section 4,
we explain the developed efficient joint segmentation and
localization algorithm. Finally, we present the evaluation
results of our algorithms, the benchmarks for multiple tasks
and corresponding baseline algorithms performed on these
tasks in Section 5.

2 RELATED WORKS

Autonomous driving datasets and related algorithms has
been an active research area for years. Here we summarize
the related works in aspects of datasets and most relevant

Fig. 1. A glance of ApolloScape with various properties. The images are cropped for better visualization.
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algorithms without enumerating them all due to space
limitation.

2.1 Datasets for Autonomous Driving

Most recently, various datasets targeting at solving each
individual visual task for robot navigation have been
released such as 3D geometry estimation [32], [33], localiza-
tion [9], [34], instance detection and segmentation [35], [36].
However, focusing on autonomous driving, a set of compre-
hensive visual tasks are preferred to be collected consis-
tently within a unified dataset from driving videos, so that
one may explore the mutual benefits between different
problems.

In past years, lots of datasets have been collected in vari-
ous cities, aiming to increase variability and complexity
of urban street views for self-driving applications. The
Cambridge-driving Labeled Video database (CamVid) [26]
is the first dataset with semantic annotated videos. The size
of the dataset is small, containing 701 manually annotated
images with 32 semantic classes. The KITTI vision bench-
mark suite [2] is later collected and contains multiple com-
puter vision tasks such as stereo, optical flow, 2D/3D
object detection and tracking. For semantics, it mainly
focuses on detection, where 7,481 training and 7,518 test
images are annotated by 2D and 3D bounding boxes, and
each image contains up to 15 cars and 30 pedestrians. Nev-
ertheless, for segmentation, very few images contain pixel-
level annotations, yielding a relatively weak benchmark for
semantic segmentation. Most recently, the Cityscapes data-
set [3] is specially collected for 2D segmentation which con-
tains 30 semantic classes. In detail, 5,000 images have
detailed annotations, and 20,000 images have coarse anno-
tations. Although video frames are available, only one

image out of each video is manually labelled. Thus, tasks
such as video segmentation can not be performed. Simi-
larly, the Mapillary Vistas dataset [28] provides a larger set
of images with fine annotations, which has 25,000 images
with 66 object categories. The TorontoCity benchmark [27]
collects LIDAR data and images including stereo and
panoramas from both drones and moving vehicles. Alth-
ough the dataset scale is large, which covers the Toronto
area. as mentioned by authors, it is not possible to manu-
ally do per-pixel labelling of each frame. Therefore, only
two semantic classes, i.e., building footprints and roads,
are provided for benchmarks of segmentation. BDD100K
database [29] contains 100K raw video sequences repre-
senting more than 1000 hours of driving hours with more
than 100 million images. Similarly with the Cityscapes,
one image is selected from each video clip for annotation.
100K images are annotated in bounding box level and 10K
images are annotated in pixel level.

Real data collection is laborious, to avoid the difficulties
in real scene collection, several synthetic datasets are also
proposes. SYNTHIA [30] builds a virtual city with Unity
development platform [37], and Play for benchmark [31]
extracts ground truth with GTA game engine. Though large
amount of data and ground truth can be generated, there is
still a domain gap [38] between appearance of synthesized
images and the real ones. In general, models learned in real
scenario still generalize better in real applications such as
object detection and segmentation [39], [40].

In Table 1, we compare the properties our dataset and
other SOTA datasets for autonomous driving, and show
that ApolloScape is unique in terms of data scale, granularity
of labelling, task variations within real environments. Later
in Section 3, we will present more details about the dataset.

TABLE 1
Comparison between Our Dataset and the Other Street-View Self-Driving Datasets Published

1. database is not open to public yet.
“pixel” represents 2D pixel-level annotations. “point” represents 3D point-level annotations. “box” represents bounding box-level annotations. “Video” indi-
cates whether 2D video sequences are annotated. “3D fitted cars” gives the number of car instance we already fitted in the images with a 3D mesh model, which
we will introduce in our future works.
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2.2 Self-Localization and Semantic Scene Parsing

As discussed in Section 1, we also try to tackle real-time self-
localization and semantic scene parsing back on ApolloScape
given a video or a single image. These two problems have
long been center focus for computer vision. Here we sum-
marize the related works on outdoor cases with street-view
images as input.

Visual Self-Localization. Traditionally, localizing an image
given a set of 3D points is formulated as a Perspective-
n-Point (PnP) problem [41], [42] by matching feature points
in 2D and features in 3D through cardinality maximization.
Usually in a large environment, a pose prior is required in
order to obtain good estimation [43], [44]. Campbell
et al. [45] propose a global-optimal solver which leverage
the prior. In the case that geo-tagged images are available,
Sattler et al. [46] propose to use image-retrieval to avoid
matching large-scale point cloud. When given a video, tem-
poral information could be further modeled with methods
like SLAM [47] etc, which increases the localization accu-
racy and speed.

Although these methods are effective in cases with dis-
tinguished feature points, they are still not practical for city-
scale environment with billions of points, and they may
also fail in areas with low texture, repeated structures, and
occlusions. Thus, recently, deep learned features with hier-
archical representations are proposed for localization. Pose-
Net [9], [48] takes a low-resolution image as input, which
can estimate pose in 10 ms w.r.t. a feature rich environment
composed of distinguished landmarks. LSTM-PoseNet [49]
further captures a global spatial context after CNN features.
Given an video, later works incorporate Bi-Directional
LSTM [50] or Kalman filter LSTM [51] to obtain better
results with temporal information. Most recently, many
works [10], [52] also consider adding semantic cues as more
robust representation for localization. However, in street-
view scenario, considering a road with trees aside, in most
cases, no significant landmark appears, which could fail the
visual models. Thus, signals from GPS/IMU are a must-
have for robust localization in these cases [53], whereas the
problem switched to estimating the relative pose between
the camera view from a noisy pose and the real pose. For
finding relative camera pose of two views, recently,

researchers [54], [55] propose to stack the two images as a
network input. In our case, we concatenate the real image
with an online rendered label map from the noisy pose,
which provides superior results in our experiments.

Street Scene Parsing. For parsing a single image of street
views (e.g., these from CityScapes [3]), most state-of-the-
arts (SOTA) algorithms are designed based on a FCN [11]
and a multi-scale context module with dilated convolu-
tion [12], pooling [56], CRF [57], or spatial RNN [58]. How-
ever, they are dependent on a ResNet [59] with hundreds of
layers, which is too computationally expensive for applica-
tions that require real-time performance. Some researchers
apply small models [60] or model compression [61] for
acceleration, with the cost of reduced accuracy. When the
input is a video, spatial-temporal informations are jointly
considered, Kundu et al. [62] use 3D dense CRF to get tem-
porally consistent results. Recently, optical flow [63]
between consecutive frames is computed to transfer label or
features [64], [65] from the previous frame to current one. In
our case, we connect consecutive video frames through 3D
information and camera poses, which is a more compact
representation for static background. In our case, we pro-
pose the projection from 3D maps as an additional input,
which alleviates the difficulty of scene parsing solely from
image cues. Additionally, we adopt a light weighted net-
work from DeMoN [55] for inference efficiency.

Joint 2D-3D for Video Parsing. Our work is also related to
joint reconstruction, pose estimation and parsing [25], [66]
through embedding 2D-3D consistency. Traditionally, reliant
on structure-from-motion (SFM) [66] from feature or photo-
metric matching, those methods first reconstruct a 3D map,
and then perform semantic parsing over 2D and 3D jointly,
yielding geometrically consistent segmentation between
multiple frames.Most recently, CNN-SLAM [67] replaces tra-
ditional 3D reconstruction module with a single image depth
network, and adopts a segment network for image parsing.
However, all these approaches are processed off-line and
only for static background, which do not satisfy our online
setting. Moreover, the quality of a reconstructed 3D model is
not comparablewith the one collectedwith a 3D scanner.

3 BUILD APOLLOSCAPE

In this section, we introduce our acquisition system, specifi-
cations about the collected data and efficient labelling pro-
cess for building ApolloScape.

3.1 Acquisition System

In Fig. 2, we visualize our collection system. To collect static
3D environment, we adopt Riegl VMX-1HA [68] as our
acquisition system that consists of two VUX-1HA laser scan-
ners (360 degree FOV, range from 1.2m up to 420m with tar-
get reflectivity larger than 80 percent), one VMX-CS6
camera system (two front cameras are used with resolution
3384� 2710), and a measuring head with IMU/GNSS (posi-
tion accuracy 20 � 50 mm, roll & pitch accuracy 0.005
degree, and heading accuracy 0:015�). The laser scanners
utilizes two laser beams to scan its surroundings vertically
that are similar to the push-broom cameras. Comparing
with common-used Velodyne HDL-64E [4], the scanners are
able to acquire higher density of point clouds and obtain

Fig. 2. Acquisition system consists of two laser scanners, up to six video
cameras, and a combined IMU/GNSS system.
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higher measuring accuracy / precision (5 mm / 3 mm). The
whole system has been internally calibrated and synchro-
nized, and is mounted on the top of a mid-size SUV.

Additionally, the system contains two high frontal cam-
era capturing with a resolution of 3384� 2710, and is well
calibrated with the LIDAR device. Finally, to obtain high
accurate GPS/IMU information, a temporary GPS basement
is set up near the collection site to make sure the localization
of the camera is sufficiently accurate for us to match the 2D
image and 3D point cloud. Commonly, our vehicle drives at
the speed of 30 km per hour and the cameras are triggered
once every meter, i.e., 30fps.

3.2 Specifications

Here, based on the acquisition system, we first present the
specifications of Apolloscapew.r.t. different tasks, e.g., prede-
fined semantic classes, lanemark classes and instance etc., to
allow better overview of the dataset. In Section 3.3, we will
introduce our active labelling pipeline which allows us to
efficiently produce the ground truth of multiple tasks
simultaneously.

Semantic Scene Parsing. In our current version released
online [20], [21], we have 143,906 video frames and their cor-
responding pixel-level semantic labelling, fromwhich 89,430
images contain instance-level annotations where movable
objects are further separated. Notice that our labelled images

contains temporal information which could also be useful
for video semantic and object segmentation.

To make the evaluation more comprehensive, similar to
the KITTI [2], we separate the recorded video with the level
of easy, moderate, and heavy scene complexities based on
the amount of movable objects, such as person and vehicles.
Table 2 compares the scene complexities between Apollo-
Scape, the Cityscapes [3] and KITTI [2], where we show the
statistics for each individual classes of movable objects.Apol-
loScape contains more objects than others in terms of both
total number and average number of object instances from
images. More importantly, it contains stronger challenging
environments, as shown in Fig. 3. For instance, high contrast
regions due to sun light and large area of shadows from the
overpass. Mirror reflections of multiple nearby vehicles on a
bus glass due to highly crowded transportation. We hope
these case can help and motivate researchers to develop
more robust models against environment changes.

For semantic scene parsing, we annotate 24 different
labels in four groups. The specifications of the classes are
partially borrowed from the Cityscapes dataset. Fig. 4 gives
the amount of labelled pixels for each class. As expected,
ApolloScape provides much higher amount of average anno-
tated pixels than Cityscapes, especially for some rare clas-
ses, e.g., traffic-light, pole. Here, we add several new classes
common in China. For instance, we add “tricycle” that is
one of the most popular means of transportation. This class
covers all kinds of three-wheeled vehicles that could be
both motorized and human-powered. The rider class in the
Cityscape is defined as the person on means of transporta-
tion. Here, we consider the person and the means of trans-
portation as a single moving object, and treat the two
together as one class. The three classes related to rider, i.e.,
bicycle, motorcycle, and tricycle, represent means of trans-
portation without rider and parked along the roads.

Semantic Lanemark Segmentation. Automatically under-
standing lane mark is perhaps the most important function
for autonomous driving since it is the guidance for possible
actions. In ApolloScape, 27 different lane markings are used
for evaluation as elaborated in Table 3 and Fig. 5. The labels
are defined based on lane mark attributes including color
(e.g., white and yellow) and type (e.g., solid and broken). To
be specific, 165949 images from 3 road sites are labelled and
released online [22], where 33760 images are withheld for

TABLE 2
Total and Average Number of Instances in KITTI [2], City-

scapes [3], BDD100K [29], and ApolloScape (Instance-Level)

Count Kitti Cityscapes BDD100K ApolloScape

(box) (pixel) (box) (pixel)

total ð�104Þ
person 0.6 2.4 12.9 54.3
vehicle 3.0 4.1 110.2 198.9

average per image e m h

person 0.8 7.0 1.3 1.1 6.2 16.9
vehicle 4.1 11.8 11.0 12.7 24.0 38.1

“pixel” Represents 2D Pixel-Level Annotations. “box” represents bounding
box-level annotations. The letters, e, m, and h, indicate easy, moderate, and
hard subsets in ApolloScape respectively.

Fig. 3. Examples with challenging environments for object detection and segmentation (Images are center-cropped for better visualization). We high-
light and zoom in the region of challenges in each image. (a) Objects with heavy occlusion and small scale. (b) Abnormal action by cyclist drivers. (c)
High contrast and overexposure due to shadows and strong sunlight. (d) Mirror reflection on bus glasses.
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testing. Comparing to other public available datasets such
as KITTI [2] or the one from Tusimple [69], ApolloScape is
the first large dataset containing rich semantic labelling for
lane marks with many variations.

Self-Localization. Each frame of our recorded video is
tagged with high accurate GPS/IMU signal automatically.
Therefore, the videos we released for segmentation are also
available for self-localization research. However, for setting
up a benchmark, we additionally collected a much larger
amount of videos, which has not been semantically labelled.
Specifically, videos for localization, as published at [23],
contain 6 more roads at 4 different cities, which include
roughly 300k images, and road of 28 km.

Our dataset has variations under different lighting, i.e.,
morning, noon and night, and driving conditions, i.e., rush
and non-rush hours, with stereo pair of images available. In
addition, each road has a survey-grade point cloud based 3D
map that can be used in finding matching pixels for both
supervised and unsupervised feature learning [70], [71] etc.
Finally, we record each road by driving from start-to-end and
then end-to-start, which means each position along a road
will be looked at from two opposite directions. This enables
the research of camera localization with large view changes
such as that proposed in semantic visual localization [10].

3.3 Labeling Process

In order to make our labeling of video frames accurate and
efficient, we propose an active labelling pipeline by jointly
consider 2D and 3D information, as shown in Fig. 6. The
pipeline mainly consists of two stages, 3D labeling and 2D
labeling, to handle static background/objects and moving
objects respectively. The basic idea of our pipeline is similar
to the one described in [72], which transfers the 3D labelled
results to 2D images by camera projection, while we need to
handle much larger amount of data and have different set
up of the acquisition vehicle. Thus some key techniques
used in our pipeline are re-designed, which we will elabo-
rate later.

Moving Object Removal. As mentioned in Section 3.1,
LIDAR scanner Riegl is accurate in static background, while
due to low scanning rate, the point clouds of moving
objects, such as vehicles and pedestrians running on the
road, could be compressed, expanded, or completely miss-
ing in the captured point clouds as illustrated in Fig. 8b.
Thus, we design to handle labelling static background and
moving object separately, as shown in Fig. 6. Specifically, in
the first step, we do moving object removal from our col-
lected point clouds by 1) scan the same road segment multi-
ple rounds; 2) align these point clouds based on manually
selected control points; 3) remove the points based on the
temporal consistency. Formally, the condition to kept a
point x in round j is,

Xr

i¼0

1ð9 xi 2 Pi s:t: kxi � xjk < �dÞ=r � d; (1)

Fig. 4. 24 semantic classes and corresponding numbers of annotated pixels. Bar colors indicate different semantic groups.

TABLE 3
Details of Lane Mark Labels in Our Dataset (y: yellow, w:white)

Type Color Use

solid w dividing
solid y dividing
double solid w dividing, no pass
double solid y dividing, no pass
solid & broken y dividing, one-way pass
solid & broken w dividing, one-way pass
broken w guiding
broken y guiding
double broken y guiding
solid w stopping
solid w chevron
solid y chevron
solid w parking
crosswalk w zebra
arrow w u-turn
arrow w thru
arrow w thru & left turn
arrow w thru & right turn
arrow w left turn
arrow w right turn
arrow w left & right turn
arrow w left & u-turn
bump n/a speed reduction
diamond w/y zebra attention
rectangle w/y no parking
visible old marking y/w others
other markings n/a others
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where d ¼ 0:6 and �d ¼ 0:025 m in our setting, and 1ðÞ is an
indicator function. It indicates that a 3D point will be kept if
it appears with high frequency in many rounds of record-
ing, i.e., 60 percent of all times. We keep the remained point
clouds as a static backgroundM for semantic labelling.

3D Labelling. Next, for labelling static background (3D
Labeling), rather than label each 3D point and loading all
the points, we first separate the 3D points into multiple
parts, and over-segment each part of point clouds into point
clusters based on spatial distances and normal directions
using locally convex connected patches (LCCP) [73] imple-
mented with PCL [74]. Then, we label these point clusters
manually using our in-house developed 3D labelling tool as
shown in Fig. 7, which can easily do point cloud rotation,
(inverse-)selection by polygons, matching between point
clouds and camera views, etc.. Notice at this stage, there
will be point clouds belonging to movable but static objects
such as bicycles and cars parking aside the road. These
point clouds are remained in our background, and also
labelled in 3D which are valuable to increase our label effi-
ciency of objects in 2D images.

To further improve 3D point cloud labelling efficiency,
after labelling of one road, we actively train a PointNet++
model [75] to pre-label the over-segmented point cloud clus-
ters of the next road. Labellers are then asked to refine and
correct the results by fixing wrong annotations, which often
occur near the object boundaries. With the growing number

of labelled point clouds, our learned model can label new
roads with increasing accuracy, yielding accelerated label-
ling process, which scales up to various cities and roads.

Splatting & Projection. Once the 3D annotations are gener-
ated, the annotations of static background/objects for all
the 2D image frames are generated automatically by 3D-2D
projections. In our setting, the 3D map is a point cloud
based environment. Although the density of the point cloud

Fig. 5. 27 lane mark labels and corresponding numbers of annotated pixels. Bar colors indicate 11 different lane mark usages. Here,“s_w_d” is short
for solid, white and dividing in Table 3 by combining the first letter of type, color and usage respectively, and other classes are named accordingly.

Fig. 6. Our 2D/3D labeling pipeline that label static background/objects and moving objects separately. We also adopt active strategies for accelerat-
ing the labelling process for scalability of the labelling process. For inputs, since GPS/IMU still has some errors, we manually add control points to
better align the point clouds and our image frames. In Section 3.3, we present the details of each components.

Fig. 7. The user interface of our 3D labeling tool. At left-top, we show the
pre-defined color code of different classes. At left-bottom, we show the
labelling logs which can be used to revert the labelling when mistakes
happen. At center part, labelled point cloud is shown indicating the label-
ling progress.
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is very high (one point per 25 mm within road regions),
when the 3D points are far away from the camera, the pro-
jected labels could be sparse, e.g., regions of buildings
shown in Fig. 8c. Thus for each point in the environment,
we adopt the point splatting technique, by enlarging the 3D
point to a square where the square size is determined by its
semantic class.

Formally, given a 6-DOF camera pose p ¼ ½q; t	 2 SEð3Þ,
where q 2 SOð3Þ is the quaternion representation of rota-
tion and t 2 R3 is translation, a label map can be rendered
from the semantic 3D map, where z-buffer is applied to find
the closest point at each pixel. For a 3D point x belonging a
class c, its square size sc is set to be proportional to the class’
average distance to the camera. Formally,

sc /
1

jPcj
X

x2Pc

min
t2T

dðx; tÞ; (2)

where Pc is the set of 3D points belong to class c, and T is
the set of ground truth camera poses. Then, given the rela-
tive square size between different classes, we define an
absolute range to obtain the actual square size for splatting.
This is non-trivial since too large size will result in dilated
edges, while too small size will yield many holes. In our
experiments, we set the range as ½0:025; 0:05	, and find that
it provides the highest visual quality. As shown in Fig. 8e,
invalid values in-between those projected points are well
in-painted, meanwhile the boundaries separating different
semantic classes are also well preserved, yielding the both
the background depth map and 2D labelled background.
With such a strategy, we increase labelling efficiency and
accuracy for video frames. For example, it could be very
labor-intensive to label texture-rich regions like trees, poles
and traffic lights further away, especially when occlusion
happens like fence on the road as illustrated in Fig. 8g.

2D Labelling of Objects and Backgrounds. Finally, to gener-
ate the final labels (Fig. 8f), we need to label the moving
objects in the environments, and fix missing parts at back-
ground like part of building regions. Similar with 3D point
cloud labelling, we also developed an in-house 2D labelling

tool with the same interface as 3D tool in Fig. 7. To speed up
the 2D semantic labeling, we also use a labelling strategy by
training a CNN network for movable objects and back-
ground [76] to pre-segment the 2D images. For segmenting
background, we test with original image resolution collected
by our camera, where the resolution is much higher than that
used in the original paper to increase the quality of predicted
region boundaries. For segment objects, similar with
MaskRCNN [13], we first do 2D object detection with faster
RCNN [77], and segment object masks inside. However, since
we consider high requirements for object boundaries rather
than class accuracy, for each bounding box with high confi-
dence (� 0:9), we enlarge the bounding box and crop out the
object region with context similar to [78]. Then, we upsample
the cropped image to a higher resolution by setting a mini-
mum resolution of prediction (minimum len greater than
512), and segment out themaskwith an actively trainedmask
CNNnetworkwith the same architecture in [76]. The two net-
works for segmenting background and objects are updated
when images in one road is labelled. Here, the learning
parameters from these networks follow the original papers.

Finally, the segmented results from the networks are fused
with our rendered label map from the semantic 3D point
clouds following two rules: 1) for fusing segmented label map
from the background network, we fill the predicted label in
the pixels without 3D projection, yielding a background
semantic map. 2) for fusing semantic object label segmented
by object network, we pasted the object mask over the fused
background map, without replacing the projected static mov-
able object mask rendered from 3D points asmentioned in 3D
labelling. We provided this fused label map for labellers to
further fine tuning when error happens especially around
object boundary or occlusion from the object masks. In addi-
tion, the user can omit any of the pre-segmented results from
CNNs to do relabelling if the segmented results are far from
satisfaction. Our label tool supports multiple actions such as
polygons and pasting brushes etc., which are commonly
adopted bymany popular open source label tools.1

Fig. 8. A labelled example of the labelling pipeline for semantic parsing, a subset of color coded labels are shown below. (a) Image. (b) Rendered
label map with 3D point cloud projection, with an inaccurate moving object (rider) circled in blue. (c) Rendered label map with 3D point cloud projec-
tion after points with low temporal consistency being removed. (d) & (e) Rendered depth map of background and rendered label map after class
dependent splatting in 3D point clouds (Section 3.3). (f) Merged label map with missing region in-painted, moving objects and sky. (g) Another label
map with very small traffic lights. Details are zoomed out highlighting the details of our rendered label maps. Other examples of our labeled videos is
shown online [20].

1. https://github.com/topics/labeling-tool
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A final labelled example is shown in Fig. 8f & 8g. Notice
that some background classes such as fence, traffic light, and
vegetation are annotated in details using our projection and
missing parts such as building glass can be fill in. Thanks to
3D and active learning, our overall pipeline save us signifi-
cant efforts in dense per-pixel and per-frame semantic label-
ling for background and objects. In practice, our labelling
pipeline can reduce the time cost of dense labelling task per-
image from nearly 1 hour to around 10 minutes, with the
guarantee of passing our quality control process.

Labelling of Lane Mark Segments on Road. In self-driving,
lane marks are information solely from static background.
Fortunately, our collected survey-grade 3D points not only
have high density, but also contain lighting intensity,
dependent on which we can distinguish the lane mark on
the roads. Specifically, we perform similar labelling process
as 3D labelling of rigid background by labelling each 3D
point to pre-defined lane mark labels listed in Table 3.

Nevertheless, different from labelling 3D point clusters
where point clouds from buildings and trees are important,
for lane marks, we only need to consider points on the road.
Therefore, we take out the road point clouds based on nor-
mal directions, and perform orthogonal projection of these
points from the bird view to a high resolution 2D image, as
shown in Fig. 9, over which labellers draw a polygon for
each lane mark on the road. In the meantime, our tool brings
out the corresponding images, and highlights the regions in
2D for each labelled polygon, where the color and type of
the labelled lanemark can be determined.

Labelling of Instance Segments. Thanks to an active label-
ling component with detection, it is easy for us to generalize
the segmentation label map to produce instance masks
given the segmented results from the object detection and
segmentation networks. Specifically, we ask the labellers to
refine the boundary between different instances when it is
necessary, i.e., visually significantly not aligned with true
object boundaries.

Control of Label Quality. Following the existing standard
work flows of crowdsourcing object annotations [79], [80],
[81], all our 2D/3D labeling tasks, e.g., 3D point cloud, 2D
background, 2D instance and 3D lanemark, contain verifica-
tion stages to control the label quality. Specifically, for each
task, we have a detailed instruction to train our labellers, and
a labeller is good to start labelling after passing a designed
quiz. We will publish all our instructions on our website to
benefit the community upon the publication of this paper.

After the labelling stage, we have a review stage, and
each reviewer is an experienced labeller had sufficient
labelled images (over 500) passed our label quality verifica-
tion. The reviewer will verify the quality and the coverage
of labelled regions. In addition, since we do video labelling,
we also have reviewer to visually verify the semantics are
temporally consistent in the next frame. Only if an image
has passed two reviewers, it could be accepted as a valid
ground truth.

Existing Issues. LiDAR scanners could fail on translucent
and highly reflective surfaces such as mirrors of buildings.
Though we fixed this problem in part of our recorded vid-
eos, shown in Fig. 8), we found it is still over laborious to fix
every frame in all our videos even with active labelling.
Therefore, part of video frames in our current release, pixels
without 3D projection or active labelling, e.g., sky and part
of building in Fig. 1, are set as void, so that they are ignored
during the training and evaluation. We leave labelling of
these pixels to our future work.

4 DEEP LOCALIZATION AND SEGMENTATION

As discussed in introduction (Section 1), ApolloScape con-
tains various ground truth which enables multitask learning.
In this paper, we show such a case by creating a deep learn-
ing based system for joint localization and semantic segmen-
tation given a semantic 3Dmap [82], which we call DeLS-3D,
as illustrated in Fig. 10. Specifically, at upper part, a pre-built
3D semantic map is available. During testing, an online
stream of images and corresponding coarse camera poses
from GPS/IMU are fed into the system. Firstly, for each
frame, a semantic label map is rendered out given the input
coarse camera pose, which is fed into a pose CNN jointly
with the respective RGB image. The network calculates the
relative rotation and translation, and yields a corrected cam-
era pose. To incorporate the temporal correlations, the cor-
rected poses from pose CNN are fed into a pose RNN to
further improves the estimation accuracy in the stream. Last,
given the rectified camera pose, a new label map is rendered
out, which is fed together with the image to a segment CNN.
The rendered label map helps to segment a spatially more
accurate and temporally more consistent result for the image
stream of video. In this system, since ApolloScape contains
ground truth for both camera poses and segments, it can be
trained with strong supervision at each end of outputs. The
code for our system has been released at https://github.

Fig. 9. Bird view of our projected road lane marks with labelling.
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com/pengwangucla/DeLS-3D. In the following, we elabo-
rate our network architectures and the loss functions to train
thewhole system.

4.1 Camera Localization with Motion Prior

Translation Rectification with Road Prior. One common locali-
zation priori for navigation is to use the 2D road map, by
constraining the GPS signals inside the road regions. We
adopt a similar strategy, since once the GPS signal is out of
road regions, the rendered label map will be totally different
from the street-view, and no correspondence can be found
by the network.

To implement this constraint, firstly we render a 2D road
map image with a rasterization grid of 0:05 m from our 3D
semantic map by using only road 3D points, i.e., points
belong to car-lane, pedestrian-lane and bike-lane etc. Then,
at each pixel ½x; y	 2 Z2 in the 2D map, an offset value fðx; yÞ
is pre-calculated indicating its 2D offset to the closest pixel
belongs to road through the breath-first-search (BFS) algo-
rithm efficiently.

During online testing, given a noisy translation t ¼
½tx; ty; tz	, we can find the closest road points w.r.t. t using
½tx; ty	 þ fðbtxc; btycÞ from our pre-calculated offset function.
Then, a label map is rendered based on the rectified camera
pose, which is fed to pose CNN.

CNN-GRU Pose Network Architecture. As shown in Fig. 10,
our pose networks contain a pose CNN and a pose GRU-
RNN. Particularly, the CNN of our pose network takes as
inputs an image I and the rendered label map L from corre-
sponding coarse camera pose pc

i . It outputs a 7 dimension
vector p̂i representing the relative pose between the image
and rendered label map, and we can get a corrected pose
w.r.t. the 3D map by pi ¼ pc

i þ p̂i. For the network architec-
ture of pose CNN, we follow the design of DeMoN [55],
which has large kernel to obtain bigger context while keep-
ing the amount of parameters and runtime manageable.
The convolutional kernel of this network consists a pair of
1D filters in y and x-direction, and the encoder gradually

reduces the spatial resolution with stride of 2 while increas-
ing the number of channels. We list the details of the net-
work in our implementation details at Section 5.

Additionally, since the input is a stream of images, in
order to model the temporal dependency, after the pose
CNN, a multi-layer GRU with residual connection [83] is
appended. More specifically, we adopt a two layer GRU
with 32 hidden states as illustrated in Fig. 11. It includes
high order interaction beyond nearby frames, which is pre-
ferred for improve the pose estimation performance. In tra-
ditional navigation applications of estimating 2D poses,
Kalman filter [84] is commonly applied by assuming either
a constant velocity or acceleration. In our case, because the
vehicle velocity is unknown, transition of camera poses is
learned from the training sequences, and in our experiments
we show that the motion predicted from RNN is better than
using a Kalman filter with a constant speed assumption,
yielding further improvement over the estimated ones from
our pose CNN.

Pose Loss. Following the PoseNet [48], we use the geomet-
ric matching loss for training, which avoids the balancing
factor between rotation and translation. Formally, given a

Fig. 11. The GRU RNN network architecture for modeling a sequence of
camera poses.

Fig. 10. DeLS-3D overview. The black arrows show the testing process, and red arrows indicate the rendering (projection) operation in training and
inference. The yellow frustum shows the location of cameras inside the 3D map. The input of our system contains a sequence of images and corre-
sponding GPS/IMU signals. The outputs are the semantically segmented images, each with its refined camera pose.
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set of point cloud in 3D P ¼ fxg, and the loss for each image
is written as,

Lðp;p
Þ ¼
X

x2P
vlx jpðx;pÞ � pðx;p
Þj2; (3)

where p and p
 are the estimated pose and ground truth
pose respectively. pðÞ is a projective function that maps a
3D point x to 2D image coordinates. lx is the semantic label
of x and vlx is a weight factor dependent on the semantics.
Here, we set stronger weights for point cloud belong to cer-
tain classes like traffic light, and find it helps pose CNN to
achieve better performance. In [48], only the 3D points visi-
ble to the current camera are applied to compute this loss to
help the stability of training. However, the amount of visible
3D points is still too large in practical for us to apply the
loss. Thus, we pre-render a depth map for each training
image with a resolution of 256� 304 using the ground truth
camera pose, and use the back projected 3D points from the
depth map for training.

4.2 Video Parsing with Pose Guidance

Having rectified pose at hand, one may direct render the
semantic 3D world to the view of a camera, yielding a
semantic parsing of the current image. However, the esti-
mated pose is not perfect, fine regions such as light poles
can be completely misaligned. Other issues also exist. For
instance, many 3D points are missing due to reflection, e.g.,
regions of glasses, and points can be sparse at long distance.
Last, dynamic objects in the input cannot be represented by
the projected label map, yielding incorrect labelling at corre-
sponding regions. Thus, we propose an additional segment
CNN to tackle these issues, while taking the rendered label
map as segmentation guidance.

Segment Network Architecture. As discussed in Section 2,
heavily parameterized networks such as ResNet are not effi-
cient enough for our online application. Thus, as illustrated
in Fig. 12, our segment CNN is a light-weight network con-
taining an encoder-decoder network and a refinement net-
work, and both have similar architecture with the
corresponding ones used in DeMoN [55] including 1D fil-
ters and mirror connections. However, since we have a

segment guidance from the 3D semantic map, we add a
residual stream (top part of Fig. 12), which encourages the
network to learn the differences between the rendered label
map and the ground truth. In [85], a full resolution stream
is used to keep spatial details, while here, we use the ren-
dered label map to keep the semantic spatial layout.

Another notable difference for encoder-decoder network
from DeMoN is that for network inputs, shown in Fig. 12,
rather than directly concatenate the label map with input
image, we transform the label map to a score map through
one-hot operation, and embed the score of each pixel to a 32
dimensional feature vector. Then, we concatenate this fea-
ture vector with the first layer output from image, where
the input channel imbalance between image and label map
is alleviated, which is shown to be useful by previous
works [86]. For refinement network shown in Fig. 12, we
use the same strategy to handle the two inputs. Finally, the
segment network produces a score map, yielding the
semantic parsing of the given image.

We train the segment network first with only RGB
images, then fine-tune the network by adding the input of
rendered label maps. This is because our network is trained
from scratch, therefore it needs a large amount of data to
learn effective features from images. However, the ren-
dered label map from the estimated pose has on average
70 percent pixel accuracy, leaving only 30 percent of pix-
els having effective gradients. This could easily drive the
network to over fit to the rendered label map, while slow-
ing down the process towards learning features from
images. Finally, for segmentation loss, we use the stan-
dard softmax loss, and add intermediate supervision
right after the outputs from both the encoder and the
decoder as indicated in Fig. 12.

5 EXPERIMENTS

In this section, we first evaluate our online deep localization
and segmentation algorithms (DeLS-3D) on two of our
released roads, which is a subset of our full data. We com-
pare it against other SOTA deep learning based visual local-
ization, i.e., PoseNet [9], and segmentation algorithms i.e.,
ResNet38 [76], which shows the benefits of multitask
unification.

Fig. 12. Architecture of the segment CNN with rendered label map as a segmentation priori. At bottom of each convolutional block, we show the filter
size, and at top we mark the downsample rates of each block w.r.t. the input image size. The ’softmax’ text box indicates the places a loss is calcu-
lated. Details are in Section 4.2.
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Then, we elaborate the benchmarks setup online with
ApolloScape and the current leading results, which follows
many standard settings such as the ones from KITTI [2] and
Cityscapes [3]. These tasks include semantic segmentation,
semantic instance segmentation, self-localization, lanemark
segmentation. Due to the “DeLS” algorithm proposed in
this work does not follow those standard experimental set-
tings, we could not provide its results for the benchmarks.
Nevertheless, for each benchmark, we either ran a baseline
result with SOTAmethods or launched a challenge for other
researchers, providing a reasonable estimation of the task
difficulties.

5.1 Evaluate DeLS-3D

In this section, we evaluate various settings for pose estima-
tion and segmentation to validate each component in the
DeLS-3D system. For GPS and IMU signal, despite we have
multiple scans for the same road segments, it is still very
limited for training. Thus, follow [53], we simulate noisy
GPS and IMU by adding random perturbation � w.r.t. the
ground truth pose following uniform distributions. Speci-
fically, translation and rotation noise are set as �t � U
ð0; 7:5 mÞ and �r � Uð0�; 15�Þ respectively. We refer to realis-
tic data [87] for setting the noisy range of simulation.

Datasets. Two roads early collected at Beijing in China are
used in our evaluation. The first one is inside a technology
park, named zhongguancun park (Zpark), and we scanned
6 rounds during different daytimes. The 3D map generated
has a road length around 3 km, and the distance between
consecutive frames is around 5 m to 10 m. We use 4 rounds
of the video camera images for training and 2 for testing,
yielding 2242 training images and 756 testing images. The
second one we scanned 10 rounds and 4km near a lake,
named daoxianghu lake (Dlake), and the distance between
consecutive frames is around 1 m to 3 m. We use 8 rounds
of the video camera images for training and 2 for testing,
yielding 17062 training images and 1973 testing images. The
existing semantic classes in the two datasets are shown in
Table 5, which are subsets from our full semantic classes.

Implementation Details. To quickly render from the 3D
map, we adopt OpenGL to efficiently render a label map
with the z-buffer handling. A 512 � 608 image can be gener-
ated in 70ms with a single Titan Z GPU, which is also the
input size for both pose CNN and segment CNN. For pose
CNN, the filter sizes of all layers are f32; 32; 64; 128;
256; 1024; 128; 7g, and the forward speed for each frame is 9

ms. For pose RNN, we sample sequences with length of 100
from our data for training, and the speed for each frame is
0.9 ms on average. For segment CNN, we keep the size the
same as input, and the forward time is 90 ms. Overall, the
inference speed is around 240 ms per-image for performing
joint localization and segmentation. Both of the network is
learned with ’Nadam’ optimizer [88] with a learning rate of
10�3. We sequentially train these three models due to GPU
memory limitation. Specifically, for pose CNN and segment
CNN, we stops at 150 epochs when there is no performance
gain, and for pose RNN, we stops at 200 epochs. For data
augmentation, we use the imgaug2 library to add lighting,
blurring and flipping variations. We keep a subset from
training images for validating the trained model from
each epoch, and choose the model performing best for
evaluation.

For testing, since input GPS/IMU varies every time, i.e.,
pc
t ¼ p
 þ �, we need to have a confidence range of predic-

tion for both camera pose and image segment, in order to
verify the improvement of each component we have is sig-
nificant. Specifically, we report the standard variation of the
results from a 10 time simulation to obtain the confidence
range. Finally, we implement all the networks by adopting
the MXNet [89] platform.

Evaluation Metrics. We use the median translation offset
and median relative angle [9]. For evaluating segment, we
adopt the commonly used pixel accuracy (Pix. Acc.), mean
class accuracy (mAcc.) and mean intersect-over-union
(mIOU) as that from [76].

Pose Evaluation. We first directly compare with the work
of PoseNet [9], [48], and use their published code and geo-
metric loss (Eq. (3)) to train a model on Zpark dataset. Due
to scene appearance similarity of the street-view, we did not
obtain a reasonable model with their methods [9], [48], bet-
ter than the noisy GPS/IMU signal. Then, we experimented
a leading open-source monocular SLAM algorithm, i.e.,
ORB-SLAM [90], to do self-localization. However, it also
provides no better result than provided initial poses, since
low-level ORB features fail to match robustly due to many
non-diffusion/reflective components in Zpark, such as glass
buildings and specular new roads, plus repetitive appear-
ance on trees. Therefore, in Table 4, we majorly list the per-
formance of estimated translation t and rotation r from our
model variations. At the 1st row, we show the median error
of GPS and IMU from our simulation. At the 2nd row, by
using our pose CNN with an additional input of projected
label map, the model can learn good relative pose between
camera and GPS/IMU, which significantly reduces the error
(60 percent for t, 85 percent for rÞ. By adding semantic cues,
i.e., road priori and semantic weights in Eq. (3), the pose
errors are further reduced, especially for rotation (from
0.982 to 0.727 at the 3rd row). In fact, we found the most
improvement is from semantic weighting, while the road
priori helps marginally. In our future work, we would like
to experiment larger noise and more data variations, which
will better validate different cues.

When having an video input, we first evaluate a simple
baseline which refines the GPS/IMUwith Kalman filter [84],
i.e., ’Noisy pose w KF’, which reasonably reduces the errors.

TABLE 4
Compare the Accuracy of Different Settings for Pose Estimation

from the Two Datasets

Noisy pose indicates the noisy input signal from GPS, IMU, and ’KF’ means
kalman filter. The number after � indicates the standard deviation (S.D.) from
10 simulations. # & " means lower the better and higher the better respec-
tively. We can see the improvement is statistically significant.

2. https://github.com/aleju/imgaug
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Then, we setup a baseline of performing RNN directly on
the GPS/IMU signal, and as shown at ’Pose RNN w/o
CNN’, the estimated t is even better than pose CNN, while r
is comparably much worse. This meets our expectation
since the speed of camera is easier to capture temporally
than rotation. Another baseline we adopt is performing to
the output from Pose CNN by assuming a constant speed
which we set as the averaged speed from training sequen-
ces. As shown at ’Pose CNN w KF’, it does improve slightly
for translation, but harms rotation, which means the filter
over smoothed the sequence. Finally when combining pose
CNN and RNN, it achieves the best pose estimation both
for t and r. We visualize some results at Fig. 13a, 13b, 13c.
Finally at bottom of Table 4, we list corresponding results
on Dlake dataset, which draws similar conclusion with that
from Zpark dataset.

Segment Evaluation. At top part of Table 5, we show the
scene parsing results of Zpark dataset. First, we adopt one
of the SOTA parsing network on the CityScapes, i.e.,
ResNet38 [76], and train it with Zpark dataset. It utilizes
pre-trained parameters from the CityScapes [3] dataset, and
run with a 1.03s per-frame with our resolution. As shown at
the 1st row, it achieve reasonable accuracy compare to our
segment CNN (2nd row) when there is no pose priori. How-
ever, our network is 10x faster. At 3rd row, we show the
results of rendered label map with the estimated pose after
pose RNN. Clearly, the results are much worse due to miss-
ing pixels and object misalignment. At 4th row, we use the
rendered label map with ground truth pose as segment

CNN guidance to obtain an upper-bound for our segmenta-
tion performance. In this case, the rendered label map aligns
perfectly with the image, thus significantly improves the
results by correct labelling most of the static background. At
5th and 6th row, we show the results trained with rendered
label map with pose after pose CNN and pose RNN respec-
tively. We can see using pose CNN, the results just improve
slightly compare to the segment CNN. From our observa-
tion, this is because the offset is still significant for some
detailed structures, e.g., light-pole. However, when using
the pose after RNN, better alignment is achieved, and the
segment accuracy is improved significantly especially for
thin structured regions like pole, as visualized in Fig. 13,
which demonstrates the effectiveness of our strategy.

Bottom part of Table 5 shows the results over the larger
Dlake dataset with more object labelling, where we see
clearer improvement, i.e., from 62.36 to 67.00, and here the
rendered label provides a background context for object
segmentation, which also improve the object parsing perfor-
mance. In all classes, we observe the performance of traffic-
light drops. In our opinion, the majorly reason is traffic-light
only exists in intersection of roads, which happens much
fewer than objects such as light-pole, yielding overfitting to
the projected label maps from pose. We may fix this issue
by training with even larger dataset or better class balancing
strategies, which is left to our future work.

In Fig. 13, we visualize several examples from our results
at the view of camera. In the figure, we can see the noisy
pose (a), is progressively rectified by pose CNN (b) and

TABLE 5
Compare the Accuracy of Different Segment Networks Setting over Zpark (top) and Dlake (bottom) Dataset

t is short for ’traffic’ in the table. Here we drop the 10 times S.D. to save space because it is relatively small (� 0:1). Our results are especially good at parsing of
detailed structures and scene layouts, which is visualized in Fig. 13.

Fig. 13. Results from each intermediate stage out of the system over Zpark dataset. Label map is overlaid with the image. Improved regions are
boxed and zoomed out (best in color). More results are shown in the online videos for Zpark and Dlake.
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pose RNN (c) from view of camera. Additionally, at (d) and
(e), we compare the segment results without and with cam-
era pose respectively. As can be seen at the boxed regions,
the segment results with rendered label maps provide better
accuracy in terms of capturing region details at the bound-
ary, discovering rare classes and keeping correct scene lay-
out. All of above could be important for applications, e.g.,
figuring out the traffic signs and tele-poles that are visually
hard to detect. For additional visualization, please check
our demo videos online.3,4

5.2 Benchmarks and Baselines

With various tasks and large amount of labelled data we
have proposed, it would be non-practical for us to exten-
sively explore algorithms over all of them. Therefore, we
release the data to research community, and set up standard
evaluation benchmarks. Currently, four challenges have
been set up online for evaluation by withholding part of our
labelled results as test set, which include semantic segmen-
tation [20], instance segmentation [21], self-localization [23],
lanemark segmentation [22].

For evaluation, in the tasks of semantic segmentation,
lanemark segmentation, we adopt mean IoU, and in the
task of self-localization, we adopt median translation and
rotation offset, which are described in evaluation of DeLS-
3D (Section 5.1). For the task of instance segmentation, we
use interpolated average precision (AP) [91] under various
IoU thresholds which is used for the COCO challenge [36].
Later, we elaborate the split of each dataset, the leading
method on each benchmark currently.

Semantic Segmentation. For video semantic segmentation,
until now, we haven’t receive valid results from the chal-
lenge. This probably is due to the extremely large amount
of training videos in ApolloScape, making training a model

with SOTA deep learning models such as ResNet [59] not-
practical. Thus, we select a subset from the whole data for
comparison of one model performance between Apollo-
Scape and Cityscapes. Specifically, 5,378 training images
and 671 testing images are carefully selected from our 140K
labelled semantic video frames for setting up the bench-
mark, which maintains the diversity and objects appeared
of the collected scenes. The selected images will be released
at our website [20].

We conducted our experiments using ResNet-38 net-
work [76] that trades depth for width comparing with the
original ResNet structure [59]. We fine-tune their released
model using our training with initial learning rate 0.0001,
standard SGD with momentum 0.9 and weight decay
0.0005, random crop with size 512� 512, 10 times data aug-
mentation that includes scaling and left-right flipping, and
we train the network for 100 epochs. The predictions are
computed with the original image resolution without any
post-processing steps such as multi-scale ensemble etc..
Table 6 shows the parsing results of classes in common for
these two datasets. Notice that using exactly same training
procedure, the test IoU with our dataset are much lower
than that from the Cityscapes mostly due to the challenges
we have mentioned at Section 3.2, especially for movable
objects, where mIoU is 34.6 percent lower than the corre-
sponding one for the Cityscapes.

Here, we leave the training a model with the our full
dataset to the research community and our future work.

Instance Segmentation. This task is an extension of seman-
tic object parsing by jointly considering detection and seg-
mentation. Specifically, we select 39212 training images and
1907 testing images, and set up a challenge benchmark
online [21] evaluating 7 objects in our dataset (Upper part of
Table 6) to collect potential issues within autonomous driv-
ing scenario. During the past few month, there are over 140
teams attended our challenge, which reveals our commu-
nity is much more interested in object level understanding
rather than scene segmentation.

The leading results from our participants are shown in
Table 8, where we can see in general the reported mAP of
winning teams are lower than those reported in Cityscapes
benchmarks [92], by using similar strategies [93] modified
from MaskRCNN [13]. Based on the challenge reports from
the winning team [94], comparing to Cityscapes, Apollo-
Scape contains more tiny and occluded objects (60 percent
object has scale less than 32 pixels), which leads to signifi-
cant drop of performance when transfer models trained on
other datasets.

Lanemark Segmentation. Lanemark segmentation task fol-
lows the same metric as semantic segmentation, which con-
tains 132189 training images and 33790 testing images. Our
in-house challenge benchmark [22] chooses to evaluate
35 most common lane mark types on the road as listed
in Table 3.

Until the submission of this paper, we only have one
work based on ResNet-38 network [76] evaluated, probably
due to the large amount of data (160K+ images). We show
the corresponding detailed results in Table 7, where we can
see the mIoU of each class are still very limited (40 percent)
comparing to the accuracy of leading semantic segmenta-
tion algorithms on general classes. We think this is mostly

TABLE 6
Results of Image Parsing Based on ResNet-38 Network

IoU

Group Class Cityscapes ApolloScape

movable car 94.67 87.12
object motorcycle 70.51 27.99

bicycle 78.55 48.65
person 83.17 57.12
rider 65.45 6.58
truck 62.43 25.28
bus 88.61 48.73

mIoU 77.63 43.07

surface road 97.94 92.03
sidewalk 84.08 46.42

infrastructure fence 61.49 42.08
traffic light 70.98 67.49

pole 62.11 46.02
traffic sign 78.93 79.60

wall 58.81 8.41
building 92.66 65.71

nature vegetation 92.41 90.53

3. Zpark: https://www.youtube.com/watch?v=fqglYBipNfQ
4. Dlake https://www.youtube.com/watch?v=fqglYBipNfQ
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because the high contrast, dimmed and broken lane marks
on the road such as the cases shown in Fig. 3.

Self-Localization. We use the same metrics for evaluating
camera pose, i.e., median offset of translation and rotation,
as described in Section 5.1. This task contains driving videos
in 6 sites from Beijing, Guangzhou, Chengdu and Shanghai
in China, under multiple driving scenarios and day times.
In total, we provide 153 training videos and 71 testing vid-
eos including over 300k image frames, and build an in-
house challenge benchmark website [23] most recently.

Currently, we also have few submissions, while the lead-
ing one published is from one of the SOTAmethod for large-
scale image based localization [97]. The method is based on
image retrieval with learned deep features via various triplet
losses. We show their reported number in Table 9, where
the localization errors are surprisingly small, i.e., translation
is around 15cm and rotation error is around 0.14 degree.
Originally, we believe image appearance similarity on
the street or highway can fail deep network models. How-
ever, from the participant results, especially designed fea-
tures distinguish minor appearance changes and provide
high accurate localization results. Another possibility is
that our acquisition vehicle always drives in a roughly
constant speed, reducing the issues from speed changing in
real applications. In the near future, hopefully, we can add
more challenging scenarios with more variations in driving
speed andweathers.

In summary, from the dataset benchmarks we set up and
evaluated algorithms, we found for low-level localization,

the results are impressively good, while for high level
semantic understanding, Apolloscape provides additional
challenges and new issues, yielding limited accuracy for
SOTA algorithms, i.e., best mAP is around 33 percent
for instance segmentation, and best mIoU is around
40 percent for lane segmentation. Comparing to human
perception, visual based algorithms for autonomous driv-
ing definitely need further research to handle extremely
difficult cases.

6 CONCLUSION AND FUTURE WORK

In this paper, we present the ApolloScape, a large, diverse,
and multi-task dataset for autonomous driving, which
includes high density 3D point cloud map, per-pixel, per-
frame semantic image label, lane mark label, semantic
instance segmentation for various videos. Every frame of our
videos is geo-tagged with high accurate GPS/IMU device.
ApolloScape is significantly larger than existing autonomous
driving datasets, e.g., KITTI [2] and Cityscapes [3], yielding
more challenges for computer vision research field. In order
to label such a large dataset, we developed an active 2D/3D
joint annotation pipeline, which effectively accelerate the
labelling process. Back on ApolloScape, we developed a joint
localization and segmentation algorithm with a 3D semantic
map, which fuses multi-sensors, is simple and runs effi-
ciently, yielding strong results in both tasks. We hope it may
motivate researcher to develop algorithms handling multi-
ple tasks simultaneously by considering their inner geomet-
rical relationships. Finally, for each individual task, we set
up an online evaluation benchmark where different algo-
rithms can compete with a fair platform.

Last but not the least, ApolloScape is an evolving dataset,
not only in terms of data scale, but also in terms of various
driving conditions, tasks and acquisition devices. For exam-
ple, firstly, we plan to enlarge our dataset to contain more
diversified driving environments including snow, and
foggy. Secondly, we also released our labelled 3D cars [19],
stereo images, 3D humans and tracking [98] of objects in 3D
recently. Thirdly, we plan to mount a panoramic camera
system, and Velodyne [4] in near future to generate depth
maps for objects and panoramic images.

ACKNOWLEDGMENTS

This work is supported by Baidu Inc. We also thank the
work of Xibin Song, Binbin Cao, Jin Fang, He Jiang, Yu
Zhang, Xiang Gu, and Xiaofei Liu for their laborious efforts
in organizing data, helping writing label tools, checking
labelled results and manage the content of benchmark web-
sites. We thank Alan L. Yuille, Hongdong Li and Andreas
Geiger for benchmark suggestions. Xinyu Huang and
Peng Wang contributed equally to this work.

TABLE 9
Detailed Localization Accuracy of the Leading Results on Our

Benchmark from [97]

Road ID Trans (m) # Rot (�Þ #
Road11 0.0476 0.0452
Road12 0.1115 0.0528
Road14 0.0785 0.0825
Road15 0.0711 0.1240
Road16 0.1229 0.2063
Road17 0.4934 0.3135

mean 0.1542 0.1374

TABLE 7
The IoU Using One SOTA Semantic Segmentation Architecture, i.e., ResNet38 [76]

Here the amount of class is less than that in Table 3 due to zero accuracy over some predefined labels.

TABLE 8
Results of Top Ranked Instance Segmentation Algorithms in
ApolloScape and Cityscapes (Numbers Are Obtained at the

Date of Submission)

Dataset metric 1st 2nd 3nd

ApolloScape
mAP

33.97 [94] 30.22 [95] 25.02 [96]

Cityscapes 38.0 37.2 36.4 [93]
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