How to stitch them together?

SSE, Tongji Univ.
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e Local Invariant Features
e Motivation
e Requirements
e [nvariance

e Harris Corner Detector

e Scale Invariant Point Detection
e Automatic scale selection
e Laplacian-of-Gaussian detector
e Difference-of-Gaussian detector
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@ Motivation

* Global representations have major limitations
* |Instead, describe and match only local regions

* |ncreased robustness to
— Occlusions

— Articulation

— Intra-category variations

SSE, Tongji Univ.



Motivation

Application: Image Matching

by Diva Sian

SSE, Tongji Univ.



@ Motivation

Application: Image Matching

Harder Case

by Diva Sian by scgbt

SSE, Tongji Univ.
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Motivation

Application: Image Matching

NASA Mars Rover Images

SSE, Tongji Univ.




Motivation

Application: Image Matching (Look for tiny colored squares)

NASA Mars Rover images with SIFT matches

SSE, Tongji Univ.



Motivation

e Panorama stitching
e \We have two images — how do we combine them?

SSE, Tongji Univ.



Motivation

e Panorama stitching
e \We have two images — how do we combine them?

* Procedure:
— Detect feature points in both images
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Motivation

e Panorama stitching
e \We have two images — how do we combine them?

* Procedure:
— Detect feature points in both images
— Find corresponding pairs
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@ Motivation

e Panorama stitching

e \We have two images — how do we combine them?

|
* Procedure:
— Detect feature points in both images
— Find corresponding pairs
— Use these pairs to alignh the images

SSE, Tongji Univ.




/ General Approach for Image Matching

N pixels

Source: B. Leibe

|

N pixels

Similarity

measure

d(ff5)<T

fg

e.g. c-:ulur

. Find a set of

distinctive key-
points

. Define a region

around each
keypoint

. Extract and

normalize the
region content

. Compute a local

descriptor from the
normalized region

. Match local

descriptors

SSE, Tongji Univ.



e Repeatability
e The same feature can be found in several images despite geometric and
photometric transformations

e Saliency
e Each feature has a distinctive description

e Compactness and efficiency
e Many fewer features than image pixels

e L|ocality

e A feature occupies a relatively small area of the image; robust to clutter and
occlusion

SSE, Tongji Univ.



Multiple View
Geometry

In CoOmauter vson

LERCT JRITE PO - P,

SSE, Tongji Univ.



@@@ Level of Geometric Invariance

simihrin proj ectn e

translation
.,-ﬂ""v

Eucl1dean 'tfﬁne

SSE, Tongji Univ.




J Invariance: Photometric Transformations

* Often modeled as a linear
transformation:

— Scaling + Offset

SSE, Tongji Univ.



@ Applications

Feature points are used for:
e Motion tracking
e Image alignment
e 3D reconstruction
e Object recognition
e Indexing and database retrieval
e Robot navigation

SSE, Tongji Univ.
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e Harris Corner Detector

e Scale Invariant Point Detection
e Automatic scale selection
e Laplacian-of-Gaussian detector
e Difference-of-Gaussian detector

SSE, Tongji Univ.



() Finding Corners

)’

My office,
5:30PM, Sep. 18, 2011

SSE, Tongji Univ.



@ Finding Corners

e Key property: in the region around a corner,
image gradient has two or more dominant

directions
e Corners are repeatable and distinctive

C. Harris and M. Stephens. “A Combined Corner and Edge Detector.”
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

SSE, Tongji Univ.



@@ Corner Detection: Basic Idea

e We should easily recognize the point by looking through
a small window

e Shifting a window in any direction should give a large
change in intensity

™

e

“flat” region: “edge”: “corner”:

no change in no change along significant change

all directions the edge in all directions
direction

SSE, Tongji Univ.



’ Harris Detector: Basic |dea

§ ===

Difference =3

Demo of a point + with well distinguished neighborhood.

Moving the window in any direction will result in a large
intensity change.

SSE, Tongji Univ.




’ Harris Detector: Basic |dea

o

Difference = 2

Demo of a point + with well distinguished neighborhood.

Moving the window in any direction will result in a large
intensity change.
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’ Harris Detector: Basic |dea

=

Difference =5

Demo of a point + with well distinguished neighborhood.

Moving the window in any direction will result in a large
intensity change.

SSE, Tongji Univ.




’ Harris Detector: Basic |dea

w8

Difference = 2

Demo of a point + with well distinguished neighborhood.

Moving the window in any direction will result in a large
intensity change.
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’ Harris Detector: Basic |dea
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Difference =3

Demo of a point + with well distinguished neighborhood.

Moving the window in any direction will result in a large
intensity change.
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’ Harris Detector: Basic |dea

o e

Difference = 2

Demo of a point + with well distinguished neighborhood.

Moving the window in any direction will result in a large
intensity change.
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& Harris Detector: Basic |dea

§

Difference =3

Demo of a point + with well distinguished neighborhood.

Moving the window in any direction will result in a large

intensity change.

SSE, Tongji Univ.




’ Harris Detector: Basic |dea

§ ==

Difference = 2

Demo of a point + with well distinguished neighborhood.

Moving the window in any direction will result in a large
intensity change.

SSE, Tongji Univ.




@@ Harris Corner Detection: Mathematics

Change in appearance of a local patch (defined by a
window w) centered at p for the shift (Ax,Ay):

S(AAY) = D0 (f(x, )= f(x, +Ax, y, +40Y))

1 in window, O outside Gaussian

SSE, Tongji Univ.



@@ Harris Corner Detection: Mathematics

SW(AxaAy) — Z (f(xiayi) — f('xi +AX, Y, +Ay))2 (1)
(x;,y;)ew
) i o Ger) o) [8x])
(xl;ew(f(xi,yi) f(x, ) { o ]MD
5 qaﬂxi,yi)ﬁf(w»MMU (Due to|u[* = u"u)
(x5 7 )ew Ox dy Ay
( Of (x,,),) ] \
_ Ox of (x,,y,) of (x;,),) Ax
_[Angy](%gim of (x.,7.) { O Oy } {Ay}
L R )
:[AxAy]M{Ax}
Ay

SSE, Tongji Univ.



@@ Harris Corner Detection

M =

' of (x,,3) o (x,3) o (x,5))

(xi%ew( Ox j (xi%ew( Ox 83/ j
o (x,,3) o (x,,3,) af(x,.,mjz

_(XZ;EW( ox 8)/ j (XI%EW[ ay _

SSE, Tongji Univ.



@@ Harris Corner Detection

—
S(Ax,Ay) = [Ax,Ay]M
JAN V)
A DI IIS]
Where, M = (x;,y; )ew (x;,y;)ew
> (L) Y )
| (X;,);)ew (x;,y;)ew

S(Ax,Ay) =1 actually is the ellipse equation.
The shape of the ellipse is determined by M.

Assignment

M can be proved to be a positive semi-definite matrix

. Ax
In practice, M is positive definite nearly for sure, then | Ax Ay]M{ } =1
represents an ellipse Ay

SSE, Tongji Univ.




t@ Harris Corner Detection

The “cornerness” of the window w is reflected in M

Suppose there are two local windows w, and w,; consider the
cases when the moving of the two windows leads to the
intensity change equals to 1. The moving vector [AX,A)/] of
each window satisfies the ellipse equation. Thus,

F Which window
or Wy, has higher
cornerness?
[ Ax, Ay | M, e
For w,,
| Ax,Ay| M,

SSE, Tongji Univ.



t@ Harris Corner Detection

- .
Diagonalization of M- M =R" ﬂq R @
0 4 *

The axis lengths of the ellipse are determined by the

eigenvalues and the orientation is determined by R
direction of the
fastest change

direction of the
slowest change

SSE, Tongji Univ.




&) Interpreting the eigenvalues

Classification of image points using eigenvalues of M.

A

A, and A, are small;
S is almost constant :>

in all directions

Ay

SSE, Tongji Univ.
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&) corner response function

Measure of corner response:

5000

(k— empirical constant, k = 0.04-0.06) |

ot

00000

SSE, Tongji Univ.




t@ Harris corner detector--illustration

Ellipse with equation :[Ax,Ay]M =1

flat region edge
both eigenvalues small one small, one large

SSE, Tongji Univ.



@@ Harris corner detector--illustration

Ellipse with equation :[Ax,Ay]M =1

corner
both eigenvalues large

SSE, Tongji Univ.



Harris corner detector-Algorithm

)

 Compute second moment matrix Y%
(autocorrelation matrix)

I}(o,) IJJ,(%)} 1. Image
I1.(c,) I,(0,) derivatives

M(o,.0,)=g(o,) {

2. Square of
derivatives
3. Gaussian ': ' \; I!
filter ¢(o; -
g(oy) (1] g(]lxz

4. Cornerness function - two strong eigenvalues
R=det[M(o,.0 ,)]-ealtrace(M (c,.0 )]’

= g(I)gI}) - [gU )T —alg(I})+ ()T

5. Perform non-maximum suppression

Slide credit: Krystian Mikolajczyk

SSE, Tongji Univ.



/) Harris Detector: Steps

SSE, Tongji Univ.
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Harris Detector: Steps

Compute corner response R

&

SSE, Tongji Univ.



@@ Harris Detector: Steps

Find points with large corner response: R>threshold

OO, 10nyj univ.




) Harris Detector: Steps

Take only the points of local maxima of R

SSE, Tongji Univ.




t@ Harris Detector: Some Properties

Rotation invariance

Ellipse rotates but its shape (i.e. eigenvalues)
remains the same

Corner response R is invariant to image rotation

SSE, Tongji Univ.



@@@ Harris Detector: Some Properties

Not invariant to image scale!
T~
| 8

All points will be
classified as edges Corner !

N

The underlying reason is that Harris corner detection scheme does
not provide an automatic and appropriate window size selection
method!

SSE, Tongji Univ.




& “block” descriptor (usually used for Harris corner)

e “Block” descriptor for a Harris corner x
e Take a region with a fixed size around x
e Stack the region into a vector and normalizeitas d
e This vector d serves as the descriptor for x

vectorize
~ 7 normalize
. the patch v,
- e d
V) (a unit vector)

SSE, Tongji Univ.



@@@ Distance between two descriptors (not limited to block descriptors)

Given two descriptors d,,d, e R", their distance can be computed in different ways

Sum of squared differences (SSD):
SSD

() =, ~d,f = > (e~

i=1
Or sum of absolute differences (SAD):

SAD,, (d,.d,) Z\dl d;|

Or normalized cross correlation (NCC):

1(dl_ (dl))°(d2_ (dz))
(dd) =17 gd(dl)std(dj

NCCy, (dladz) = EITCCOS(l (dl _'u(dl)) -(d2 _ﬂ(dZ))J

NCC

dist

n std (d,)std (d, )

where ,u(dl) returns the mean value of d, and std(d,) returns the standard
deviation of d,

SSE, Tongji Univ.
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&y Key points matching based on their descriptors

e

—
CIIRE.
N

Suppose [, and [, are two images

m

i=1
n

1,’s key points and the associated descriptors are {xi}il and Pz{di}

L,’s key points and the associated descriptors are {yj};and Q={ej}

j=1

If and only if x," and yj’s descriptors d; and e satisfy the following conditions, we

say the key points x; and y; match and form a correspondence pair,

1) dis«(d,, e;)<t,, where ¢, is a predefined threshold

2) d;and e satisify the “two-direction” confirmation criteria, i.e.,
VVEP,V;ﬁdi,diSt(V,ej) >a’ist(di,ej)
‘v’veQ,V;tej,dist(dl.,V) >dist(dl.,ej)

3) d;and ej’s matching is unambiguous

Let d, :dist(dl.,ej) . Suppose e, is the second best matching descriptor to d.and
let d, =dist(d,,e, ). Then, d,/d, <t,, where t,is another predefined threshold

SSE, Tongji Univ.
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Matching Harris corners using block descriptors

SSE, Tongji Univ.



t@ Re-investigate the “block” descriptor

e “Block” descriptor for a Harris corner x
e Take a region with a fixed size around x
e Stack the region into a vector and normalizeitas d
e This vector d serves as the descriptor for x

e Deficiencies of such simple descriptors
e Not rotation invariant

e Not scale invariant

SSE, Tongji Univ.



@@@ Re-investigate the “block” descriptor

e “Block” descriptor for a Harris corner x
e Take a region with a fixed size around x
e Stack the region into a vector and normalizeitas d
e This vector d serves as the descriptor for x
e \We want:
e Rotation and scale invariant feature points
e Rotation and scale invariant feature descriptors

SSE, Tongji Univ.
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e Scale Invariant Point Detection
e Automatic scale selection
e Laplacian-of-Gaussian detector
e Difference-of-Gaussian detector

SSE, Tongji Univ.



t@ From Points to Regions

e The Harris corner detector defines interest points
e Precise localization

e High repeatability

e |n order to match those points, we need to compute a
descriptor over a region

e How can we define such a region in a scale invariant
manner?

e That is how can we detect sale invariant regions?

SSE, Tongji Univ.



@ Scale Invariant Region Selection

Naive Approach: Exhaustive Search

* Multi-scale procedure

— Compare descriptors while varying the patch size

fA Similarity fB

measure
= [ullin
H bl il
e.g. color e.g. color

d(f4>15)

SSE, Tongji Univ.

Slide credit: Krystian Mikolajczyk



@ Scale Invariant Region Selection

Naive Approach: Exhaustive Search

* Multi-scale procedure

— Compare descriptors while varying the patch size

fA Similarity fB

measure
= [ullin
H bl il
e.g. color e.g. color

d(f4>15)

SSE, Tongji Univ.

Slide credit: Krystian Mikolajczyk




@ Scale Invariant Region Selection

Naive Approach: Exhaustive Search

* Multi-scale procedure

— Compare descriptors while varying the patch size

fA Similarity fB

measure
= [l
! bl il
e.g. color e.g. color

d([4:/5)

Slide credit: Krystian Mikolajczyk

SSE, Tongji Univ.




@@ Scale Invariant Region Selection
Naive Approach: Exhaustive Search

* Comparing descriptors while varying the patch size

— Computationally inefficient _
— Inefficient but possible for matching l|||||| ||||| &

g
|  d
.. 8
. color -

g

— Prohibitive for retrieval in large
databases [ |
il

— Prohibitive for recognition

[mlj_l

IIIIL
. color

g

Slide credit: Krystian Mikolajczyk

fA Similarity fB
] measure
m uillln. = illly
- e.g. color e.g. color
d(f4:/5)

SSE, Tongji Univ.



@@@ What do we want to do next?

e Naive approach for scale invariant local description is
not efficient (Detect Harris corners first, and then
exhaustively searching for regions with appropriate
sizes)

e Now we want to:

e Find scale invariant points in the image (location)

e At the same time, we want to know their characteristic
scales (used to determine the neighborhood for local

description)

SSE, Tongji Univ.



@@@ Achieving scale covariance

e Goal: independently detect corresponding regions in
scaled versions of the same image

e Need scale selection mechanism for finding
characteristic region size that is covariant with the
image transformation

gZimmrrrrrr T T T T T T T T T T T T L4 T T T T T T T T T T T T T T T
2.0 10.1 19. 2.0 3.89 scale 1a
scale

SSE, Tongji Univ.



@

@@@ Automatic Scale Selection

e Common approach

e Take a local extremum of this function

e Observation: region size for which the extremum is achieved
should be covariant to image scale; this scale covariant region
size is found in each image independently

(1]

=

@

f1 Image 1 f1 Image 2 o
o

Q

. scale = 12 : 7
: —> : <
! 1 [ =
= L=

: s, ="s, |' o
I - [ 3 =}
* L o - - i GJ‘

S4 Region size 52 Region size =
v

SSE, Tongji Univ.
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t@ Automatic Scale Selection

* Function responses for increasing scale (scale signature)

LARTTYTTTT T T YT T T T
03.89 9
2 scale !

1, , (x.0)

SSE, Tongji Univ.

Slide credit: Krystian Mikolajczyk
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Automatic Scale Selection

* Function responses for increasing scale (scale signature)

St scale 19 i ?‘-‘Ea}e

1, (x.0) fU, , (x.0)

SSE, Tongji Univ.

—
Slide credit: Krystian Mikolajczyk
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Automatic Scale Selection

* Function responses for increasing scale (scale signature)

AT T T T T T T T T T T T mr T T T T T
SIS scale 19 i dtale

1, , (x.0)) fU, , (x.0)

SSE, Tongji Univ.

Slide credit: Krystian Mikolajczyk
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Automatic Scale Selection

LARTTYTTTT T T T T T — T T T T T T T T T T T
SIS scale 19 i dtale

1, , (x.0)) fU, , (x.0)

SSE, Tongji Univ.

Slide credit: Krystian Mikolajczyk
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t@ Automatic Scale Selection

* Function responses for increasing scale (scale signature)

4dmTTTTTTTTT T T T T T T T T T ALLELLELE BLEL R B ) T Ll L] T L] T
2.0 19
Ly scale 18 .éi'a}e

1, . (x.0) f, , (x'.o))

SSE, Tongji Univ.

Slide credit: Krystian Mikolajczyk



t@ Automatic Scale Selection

* Function responses for increasing scale (scale signature)

scal

S, 4, (x.0)

SSE, Tongji Univ.

Slide credit: Krystian Mikolajczyk



@ Automatic Scale Selection

* Normalize: Rescale to fixed size

scale I : r.l:;ala; o
7, . (x.0) fd, . (*.c))

Slide credit: Tinne Tuytelaars

SSE, Tongji Univ.




@ Automatic Scale Selection

e A good function for scale selection

e |t should have one stable sharp peak response to

region size
A A
f f f Good!
bad
. 4 > 4
region size region size region size

The answer is scale-normalized Laplacian of Gaussian!

SSE, Tongji Univ.
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@@@ Scale-normalized LoG

2D isotropic Gaussian function,

1 x4y’
g(x,y) - 9% jom exp(— 20" j

LoG,

x> +)°

Vig= 0'g + 0'g — X +y —20
o’ oy 276"

2
620'

Scale-normalized LoG, e

2, .2 2
X" +y —-2o0
ik o= Y : o 20°

-0.02

-0.04

It can be used for blob structure detection

SSE, Tongji Univ.
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Blob detection using scale-normalized LoG

e For blob structures detection on image /
e We need to know their centers and their spatial extensions (blob sizes)

e For a blob point, its responses to scale-normalized LoGs with various
scales has a unique peak (valley) , and thus we can use the “peak scale”
to determine its size

4000

3500

3000
LoG
u[llll] 2500 -
Nz
(=1

2000 -
1500

1000

500

1 1.‘5 é 215 1; 3.5
(o2
Responses of a blob point to a series of scale-

normalized LoGs with various scales

SSE, Tongji Univ.




Blob detection using scale-normalized LoG

e For blob structures detection on image /
e We need to know their centers and their spatial extensions (blob sizes)

e For a blob point, its responses to scale-normalized LoGs with various
scales has a unique peak (valley) , and thus we can use the “peak scale”
to determine its size

e Thus, we can use I's responses to a set of scale-normalized LoGs with
various scales to find blobs

o ] tiadits o
TS L T T AR R N I AT A
P ; ‘t“-' }’ﬁ . 4"'«. " / \H % 'R ‘“[ ) ’7 . ‘.\. g ™ ‘.r
_ ¥ b &, T B -
LY o Sk b

Gﬁvzg(o'” )*1

o Vig(o)*1

/ AN

SSE, Tongji Univ.



Characteristic scale

* We define the characteristic scale as the scale that produces peak (or
valley) of scale-normalized Laplacian-of-Gaussian response

2000

Characteristic scale

T. Lindeberg (1998). "Feature detection with automatic scale selection." International Journal of
Computer Vision 30 (2): pp 77--116.

Slide credit: Svetlana Lazebnik

SSE, Tongji Univ.



Characteristic scale

An example

x’s characteristic scale obtained by y’s characteristic scale obtained by
scale-normalized LoGs is 1.5 scale-normalized LoGs is 3.0

scale-normalized LoG satisfy our requirement of automatic scale selection

SSE, Tongji Univ.



@@ Another Fact

Spatial selection: the magnitude of the scale-normalized
Laplacian-of-Gaussian response will achieve an extremum at
the center of the blob, provided that its scale is “matched”
to the scale of the blob

SSE, Tongji Univ.



/ Scale-Invariant Point Detection

* |nterest points:

— Local extremum in scale space 0.5
of scale- normallzed Laplacian-

Slide adapted from Krystian Mikolajczyk

SSE, Tongji Univ.
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Scale-Invariant Point Detection

* |nterest points:

— Local extremum in scale space g5 |
of scale-normalized Laplacian- |

SSE, Tongji Univ.



t@ Scale-Invariant Point Detection

* |nterest points:

— Local extremum in scale space 0.5
of scale- normallzed Laplacian-

SSE, Tongji Univ.



@ Scale-Invariant Point Detection

* |nterest points:

— Local extremum in scale space 0.5
of scale- normallzed Laplacian-

—> List of (x, y, 0)

(Positions of extrema in
the scale-spatial space)

SSE, Tongji Univ.



&) we have got want we want!

Note: local extrema is obtained as key points by comparing
the examined location with all the other 26 points around it

in the scale-space

If the local extrema of scale-normalized LoG is achieved at
p, two things of p can be determined: its spatial location
and characteristic scale!

SSE, Tongji Univ.



@@3 Scale-Invariant Point Detection: Example

SSE, Tongji Univ.



@@@ Scale-Invariant Point Detection: Example

sigma = 11.9912

SSE, Tongji Univ.
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&) Etficient implementation

Approximating the scale-normalized LoG with a
difference of Gaussians:

L=o" (Gxx (x,y,0)+G,, (x,y,O')) A

(scale-normalized LoG)

DoG = G(xayako-)_G(xayao-)

(Difference of Gaussians)

where Gaussian is

1 x%+y2\
Gy.0) = 2mo? P\ T 242

SSE, Tongji Univ.



* Difference of Gaussians as approximation of scale-normalized LoG
— This is used e.g. in Lowe’s SIFT pipeline
for feature detection.

* Advantages

— No need to compute 2"9 derivatives

— Gaussians are computed anyway, e.g.
in @ Gaussian pyramid.

Slide credit: Bastian Leibe

SSE, Tongji Univ.



@@ Scale-lnvariant Point Detection

* Given: Two images of the same scene with a large scale
difference between them.

* Goal: Find the same interest points independently in
each image.

e Solution: Search for maxima of suitable functions in
scale and in space (over the image).

* Two strategies
— scale-normalized LoG

— Difference-of-Gaussian (DoG) as a fast approximation

— These can be used either on their own, or in combinations
with single-scale keypoint detectors (Harris, Hessian).

SSE, Tongji Univ.
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