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SIFT

• Scale Invariant Feature Transform
• Proposed in [1]
• It uses extrema of DoG to detect key points and the 

associated characteristic scales
• It uses SIFT to describe a key point

[1] D.G. Lowe, Distinctive image features from scale-invariant 
keypoints, IJCV 60 (2), pp. 91-110, 2004

Prof. David Lowe
University of British Columbia 
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Assign Keypoints Orientations

• Assign orientation to the keypoint
• Find local orientation: dominant orientation of gradient for 

the image patch (its size is determined by the characteristic 
scale)

• Rotate the patch according to this angle; this can achieve 
rotation invariance description
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Assign Keypoints Orientations

• Orientation normalization
• Compute orientation histogram
• Select dominant orientation 
• Normalization: rotate the patch to the selected 

orientation
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SIFT



Lin ZHANG, SSE, Tongji Univ.

SIFT

• Building the descriptor
• Sample the points around the keypoint
• Rotate the gradients and coordinates by the previously 

computed orientation
• Separate the region in to           sub-regions
• Create gradient-orientation histogram for each sub-region 

with 8 bins (In real implementation, each sample point is 
weighted by a Gaussian)

4 4×
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SIFT

• Building the descriptor

• Actual implementation uses 4*4 sub regions which 
lead to a 4*4*8 = 128 element vector 
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SIFT
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Applications of SIFT

• Object recognition
• Robot localization and mapping
• Panorama stitching
• 3D scene modeling, recognition and tracking
• Analyzing the human brain in 3D magnetic resonance 

images
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Matrix differentiation

• Function is a vector and the variable is a scalar

[ ]1 2( ) ( ), ( ),..., ( ) T
nt f t f t f t=f

Definition

1 2 ( )( ) ( ), ,...,
T

ndf tdf t df td
dt dt dt dt

 =   

f
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• Function is a matrix and the variable is a scalar
11 12 1

21 22 2

1 2
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m
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• Function is a scalar and the variable is a vector

1 2( ), ( , ,..., )T
nf x x x=x x

Definition

1 2

, ,...,
T

n

df f f f
d x x x

 ∂ ∂ ∂
=  ∂ ∂ ∂ x

In a similar way,

1 2( ), ( , ,..., )nf x x x=x x

1 2

, ,...,
n

df f f f
d x x x

 ∂ ∂ ∂
=  ∂ ∂ ∂ x

Matrix differentiation
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• Function is a vector and the variable is a vector
[ ] [ ]1 2 1 2, ,..., , ( ), ( ),..., ( )T T

n mx x x y y y= =x y x x x
Definition

1 1 1

1 2

2 2 2

1 2

1 2

( ) ( ) ( ), ,...,

( ) ( ) ( ), ,...,

( ) ( ) ( ), ,...,

n

nT

m m m

n m n

y y y
x x x

y y y
d x x x
d

y y y
x x x

×

∂ ∂ ∂ 
 ∂ ∂ ∂
 
∂ ∂ ∂ 

 ∂ ∂ ∂=  
 
 ∂ ∂ ∂ 

∂ ∂ ∂  

x x x

x x x
y
x

x x x
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• Function is a vector and the variable is a vector
[ ] [ ]1 2 1 2, ,..., , ( ), ( ),..., ( )T T

n mx x x y y y= =x y x x x
In a similar way,

1 2

1 1 1

1 2

2 2 2

1 2

( ) ( ) ( ), ,...,

( ) ( ) ( ), ,...,

( ) ( ) ( ), ,...,

m

mT

m

n n n n m

y y y
x x x

y y y
d x x x
d

y y y
x x x

×

∂ ∂ ∂ 
 ∂ ∂ ∂
 
∂ ∂ ∂ 

 ∂ ∂ ∂=  
 
 ∂ ∂ ∂ 

∂ ∂ ∂  

x x x

x x x
y
x

x x x


Matrix differentiation
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• Function is a vector and the variable is a vector
Example:

1
1 2 2

2 1 1 2 2 3 2
2

3

( )
, , ( ) , ( ) 3

( )

x
y

x y x x y x x
y

x

 
   = = = − = +       

x
y x x x

x

1 2

1 1
1

1 2

2 2
3

1 2

3 3

( ) ( )

2 0
( ) ( ) 1 3

0 2
( ) ( )

T

y y
x x x

d y y
d x x

x
y y

x x

 ∂ ∂
 ∂ ∂   
 ∂ ∂  = = −   ∂ ∂     ∂ ∂
 ∂ ∂ 

x x

y x x
x

x x

Matrix differentiation
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Matrix differentiation

• Function is a scalar and the variable is a matrix

11 12 1

1 2

( ) n

m m mn

f f f
x x x

df
d

f f f
x x x

∂ ∂ ∂ 
 ∂ ∂ ∂
 

=  
 ∂ ∂ ∂ 
∂ ∂ ∂  

X
X







( ), m nf ×∈X X 

Definition



Lin ZHANG, SSE, Tongji Univ.

• Useful results
1, n×∈x a 

,
T Td d

d d
= =

a x x aa a
x x

Then,

How to prove?

(1)

Matrix differentiation
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Matrix differentiation

• Useful results

1,m n nA × ×∈ ∈x 

(4) Then, T
dA A
d

=
x

x
1,m n nA × ×∈ ∈x 

(5) Then,
T T

Td A A
d

=
x

x
1,n n nA × ×∈ ∈x 

(6) Then, ( )
T

Td A A A
d

= +
x x x

x
1 1, ,m n m n× × ×∈ ∈ ∈X a b  

(7) Then,
T

Td
d

=
a Xb ab

X

1n×∈x (2) Then, 2
Td

d
=

x x x
x

( ) ( ) TT

T

d d
d d

 =  
 

y yx x
x x(3)                      ， ，( ) 1m×∈y x 

1n×∈x 
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Matrix differentiation

• Useful results

,m n n mB× ×∈ ∈X  (9) Then, ( ) Td tr B B
d

=X
X

( )1 Td
d

−=
X

X X
X

(10) ,n n×∈X X

is invertible,

1 1, ,n m m n× × ×∈ ∈ ∈X a b  

(8) Then,
T T

Td
d

=
a X b ba

X



Lin ZHANG, SSE, Tongji Univ.

Content

• Scale Invariant Feature Transform
• Case Study: Homography Estimation

• Matrix Differentiation
• Lagrange Multiplier
• Least-squares for Linear Systems
• Problem of Homography Estimation
• RANSAC-based Homography Estimation



Lin ZHANG, SSE, Tongji Univ.

Lagrange multiplier

• Single-variable function

f(x) is differentiable in (a, b). At                      ,  f(x) achieves an 
extremum

0 ( , )x a b∈

0
| 0x

df
dx

=

• Two-variables function

f(x, y) is differentiable in its domain. At                , f(x, y)
achieves an extremum

0 0( , )x y

0 0 0 0( , ) ( , )| 0, | 0x y x y
f f
x y

∂ ∂
= =

∂ ∂
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Lagrange multiplier

• In general case

( )f xIf           ,                 achieves a local extremum at x0 and it is 
derivable at x0, then x0 is a stationary point of f(x), i.g.,

0 0 0
1 2

| 0, | 0,..., | 0
n

f f f
x x x

∂ ∂ ∂
= = =

∂ ∂ ∂x x x

Or in other words,

0
( ) |f =∇ =x xx 0

1n×∈x 



Lin ZHANG, SSE, Tongji Univ.

Lagrange multiplier

• Lagrange multiplier is a strategy for finding all the possible
extremum points of a function subject to equality constraints

Problem: find all the possible extremum points for 1( ), ny f ×= ∈x x 

under m constraints ( ) 0, 1, 2,...,kg k m= =x

Joseph-Louis Lagrange
Jan. 25, 1736~Apr.10, 1813

If x0 is an extremum point of f(x) under constraints

Solution:

a stationary point of F
0 10 20 0( , , ..., )mλ λ λ xmaking

1
1

( ; ,..., ) ( ) ( )
m

m k k
k

F f gλ λ λ
=

= + ∑x x x

10 20 0, ..., ,mλ λ λ∃

Thus, by identifying the stationary points of
F, we can get all the possible extremum
points of f(x) under equality constraints
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Lagrange multiplier

is a stationary point of F0 10 0( , ,..., )mλ λx

1 2 1 2

0, 0,..., 0, 0, 0,..., 0
n m

F F F F F F
x x x λ λ λ

∂ ∂ ∂ ∂ ∂ ∂
= = = = = =

∂ ∂ ∂ ∂ ∂ ∂

n + m equations!at that point

• Lagrange multiplier is a strategy for finding all the possible
extremum points of a function subject to equality constraints

Problem: find all the possible extremum points for 1( ), ny f ×= ∈x x 

under m constraints ( ) 0, 1, 2,...,kg k m= =x
Solution: 1

1
( ; ,..., ) ( ) ( )

m

m k k
k

F f gλ λ λ
=

= + ∑x x x

x0 is a possible extremum point of f(x) under equality constraints
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Lagrange multiplier

• Example
Problem: for a given point p0 = (1, 0), among all the points 
lying on the line y=x, identify the one having the least 
distance to p0.

y=x
p0

?

The distance is 
2 2( , ) ( 1) ( 0)f x y x y= − + −

Now we want to find the global minimizer 
of f(x, y) under the constraint

( , ) 0g x y y x= − =
According to Lagrange multiplier method, 
construct the Lagrange function 

2 2( , , ) ( , ) ( , ) ( 1) ( )F x y f x y g x y x y y xλ λ λ= + = − + + −
Find the stationary point of ( , , )F x y λ
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Lagrange multiplier

• Example 0

0

0

F
x
F
y
F
λ

∂
= ∂

∂ = ∂
∂

=
∂

2( 1) 0
2 0

0

x
y

x y

λ
λ

− + =
 − =
 − =

0.5
0.5
1

x
y
λ

=
 =
 =

( , , )F x y λ
(0.5,0.5,1)Thus,                       is the only 

stationary point of 
(0.5,0.5) is the only possible

extremum point of f(x,y)
under constraints

The global minimizer of f(x,y)
under constraints exists

(0.5,0.5) is the global minimizer of f(x,y) under constraints
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LS for Inhomogeneous Linear System

Consider the following linear equations system

1 2 1

1 2 2

3 1 1 3
2 4 2 1 4
x x x

x x x
+ =     

⇔ =     + =      

Matrix form: A =x b
A x b

It can be easily solved  1

2

1
2

x
x

=
 =
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LS for Inhomogeneous Linear System

How about the following one?  

1 2
1

1 2
2

1 2

3 1 1 3
2 4 2 1 4

1 2 62 6

x x
x

x x
x

x x

+ =    
     + = ⇔ =          + =    

It does not have a solution!  

What is the condition for a linear equation system               
can be solved?  

A =x b

Can we solve it in an approximate way?
A: we can use least squares technique!

Carl Friedrich Gauss
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LS for Inhomogeneous Linear System

Let’s consider a system of m linear equations with n unknowns

11 1 12 2 1 1

21 1 22 2 2 2
1 1

1 1 2 2

...
...

...
...

n n

n n
m n n m

m m mn n m

a x a x a x b
a x a x a x b

A

a x a x a x b

× × ×

+ + + =
 + + + = ⇔ =

 + + + =

x b

We consider the case: rank(A)=n, and rank([A; b])=n+1
In general case, there is no solution!

Instead, we want to find a vector x that minimizes the error:
22

1 1 2
1

( ) ( ... )
m

i in n i
i

E a x a x b A
=

≡ + + − = −∑x x b

unknowns
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LS for Inhomogeneous Linear System
2*
2

arg min ( ) arg minE A= = −
x x

x x x b

( ) 1T T
s A A A

−
=x bThe stationary point of E(x) is

Pseudoinverse of A

Since E(x) is a convex function, its stationary point is the
global minimizer[1]

( ) 1* T T
s A A A

−
= =x x b

[1] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge
University Press, 2004, pp. 69



Lin ZHANG, SSE, Tongji Univ.

LS for Homogeneous Linear System

Let’s consider a system of m linear equations with n unknowns

11 1 12 2 1

21 1 22 2 2
1

1 1 2 2

... 0
... 0

...
... 0

n n

n n
m n n

m m mn n

a x a x a x
a x a x a x

A

a x a x a x

× ×

+ + + =
 + + + = ⇔ =

 + + + =

x 0

We consider the case: m>=n, and rank(A)=n

unknowns

Theoretically, there is only a trivial solution: x = 0 

We can add a constraint               to avoid the trivial solution 
2

1x =
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LS for Homogeneous Linear System
We want to minimize                       , subject to 2

1x =2

2
( )x xE A=

*
2

arg min ( ), . ., 1
x

x x xE s t= =

Construct the Lagrange function,

( ) ( )2 2

2 2
, 1L Aλ λ= + −x x x

(1)

Solving the stationary point             of               ,

( )

( )

2 2

2 2

2 2

2 2

1

1
0

x x
0

x

x x

A

A

λ

λ

λ

  ∂ + −   = ∂


 ∂ + −
  =

 ∂

(2)

0 0 0

0 0 1

T

T

A A
=

λ =⇒ 


x x
x x

( )0 0,λx

Note: the stationary point of              is not unique

( ),L λx

( ),L λx
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LS for Homogeneous Linear System

Suppose that is a stationary point of L, then xi is a possible
extremum point of E(x) under the equality constraint and we have

( ) 2

2
T T T

i i i i i i i iE A A A λ λ= = = =x x x x x x

( ),i iλx

The global minimum of E(x) is and the global minimizer
of E(x) is the unit eigen-vector of ATA associated with its least
eigen value

{ }min iλ
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Problem of Homography Estimation

Problem definition: 
On two projective planes      and      , there is a set of 
corresponding points                  , and we suppose that there is 
a homography matrix linking the two planes, 

{ }'
1

,
n

i i i=
x x

' , 1, 2,...,i i ic H i n= =x x
Coordinates of           and           are known, { }n

i i
x { }'

1

n

i i=
x we need to find H

11 12 13

21 22 23

31 32 33

h h h
H h h h

h h h

 
 =  
  

Note: H is defined up to a scale factor. In other words, it has 8 DOFs

1π 2π
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Note: Theoretically speaking, homography can only be estimated
between two planes, i.e., when you use such a technique to stitch two
images, image contents should be roughly on the same plane

Problem of Homography Estimation
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4 point-correspondence pairs can uniquely determine a
homography matrix since each correspondence pair solves
two degrees of freedom

Problem of Homography Estimation

11 12 13

21 22 23

31 32 331 1

h h hx u
c y h h h v

h h h

    
    =    
        

11 12 13

21 22 23

31 32 33

h u h v h cx
h u h v h cy
h u h v h c

+ + =
 + + =
 + + =

11 12 13

31 32 33

21 22 23

31 32 33

h u h v h x
h u h v h
h u h v h y
h u h v h

+ + = + +
 + + =
 + +

Note: here we assume that the
matching points are all finite
points (no points at infinity)
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4 point-correspondence pairs can uniquely determine a
homography matrix since each correspondence pair solves
two degrees of freedom

Thus, four correspondence pairs 
generate 8 equations

Problem of Homography Estimation

11

12

13

21

22

23

31

32

33

1 0 0 0
0 0 0 1

h
h
h
h

u v ux vx x
h

u v uy vy y
h
h
h
h

 
 
 
 
 
 − − −   =  − − −  
 
 
 
  
 

0
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4 point-correspondence pairs can uniquely determine a
homography matrix since each correspondence pair solves
two degrees of freedom

(1)A =h 0

8 9× 9 1×

Normally,                           ; thus (1) has 1 (9-8) solution vector 
(linear independant) in its solution space

( ) 8Rank A =

Problem of Homography Estimation

In our case, since we have n>4 point pairs, we get

It is an overdetermined homogeneous linear equation system
2 9 9 1n× × =A h 0
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Problem of Homography Estimation
Since only the ratios among the elements of H take effect, in another way 
we can fix h33=1 (suppose that h33!=0),

11 12 13

21 22 23

31 321 11

h h hx u
c y h h h v

h h

    
    =    
        

11 12 13

21 22 23

31 32 1

h u h v h cx
h u h v h cy
h u h v c

+ + =
 + + =
 + + =

11 12 13

31 32

21 22 23

31 32

1

1

h u h v h x
h u h v

h u h v h y
h u h v

+ + = + +
 + + =
 + +

11

12

13

21

22

23

31

32

1 0 0 0
0 0 0 1

h
h
h
hu v ux vx x
hu v uy vy y
h
h
h

 
 
 
 
 

− −     =    − −    
 
 
 
 
 

Since we have n>4 point pairs, we get

2 8 8 1 2 1n n× × ×=A h b

It is an overdetermined inhomogeneous linear equation system
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• When there are more than 4 correspondence pairs, is 
it a proper way to use the LS method to solve the model 
directly?
NO! Because usually, outliers exist among the 

correspondence pairs

RANdom SAmple Consensus (RANSAC) is an iterative
framework to estimate a parametric model from observations
with noisy outliers

RANSAC-based Homography Estimation
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Objective
Robust fit a model to a data set S which contains outliers
Algorithm
(1) Randomly select a sample of s data points from S and instantiate the 

model from this subset
(2) Determine the set of data points Si which are within a distance 

threshold t of the model. The set Si is the consensus set of the 
sample and defines the inliers of S

(3) If the size of Si (the number of inliers) is greater than some threshold 
T, re-estimate the model using all points in Si and terminate

(4) If the size of Si is less than T, select a new subset and repeat the 
above

(5) After N trials the largest consensus set Si is selected, and the model is 
re-estimated using all points in the subset Si

RANSAC-based Homography Estimation
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RANSAC-based Homography Estimation
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RANSAC-based Homography Estimation
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Line fitting by RANSAC

RANSAC-based Homography Estimation
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Line fitting by RANSAC

• Randomly select two points

RANSAC-based Homography Estimation
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Line fitting by RANSAC

• Randomly select two points
• The hypothesized model is the 

line passing through the two 
points

RANSAC-based Homography Estimation
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Line fitting by RANSAC

• Randomly select two points
• The hypothesized model is the 

line passing through the two 
points

RANSAC-based Homography Estimation
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Line fitting by RANSAC

• Randomly select two points
• The hypothesized model is the 

line passing through the two 
points

RANSAC-based Homography Estimation
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Line fitting by RANSAC

• Test another two points

RANSAC-based Homography Estimation
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Line fitting by RANSAC

• The final fitting result

RANSAC-based Homography Estimation
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Line fitting by RANSAC

• The final fitting result

RANSAC-based Homography Estimation
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RANSAC-based Homography Estimation

Can you describe the steps of 
homography estimation when 

using RANSAC?
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Homography Estimation: Example 1
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Interest points detection

Homography Estimation: Example 1
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Correspondence estimation

Then, the homography matrix can be estimated by 
using the correspondence pairs with RANSAC

Homography Estimation: Example 1
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Transform image one using the estimated 
homography matrix

Homography Estimation: Example 1
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Finally, stitch the transformed image one 
with image two

Homography Estimation: Example 1
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Homography Estimation: Example 2
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Homography Estimation: Example 2
Interest points detection
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Correspondence estimation

Then, the homography matrix can be estimated by 
using the correspondence pairs with RANSAC

Homography Estimation: Example 2
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Transform image one using the estimated 
homography matrix

Homography Estimation: Example 2
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Finally, stitch the transformed image one 
with image two

Homography Estimation: Example 2
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Homography Estimation: Example 3
Project products of students from 2009 Media&Arts
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