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Why is least squares an important problem?

In engineering fields, some mathematical terminologies are often met
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e Non-linear Least Squares

e General Methods for Non-linear Optimization

e Basic Concepts
e Descent Methods

e Non-linear Least Squares Problems
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@@ Basic Concepts

Definition 1: Local minimizer

Given F:R" = R. Find x so that

F(X*)SF(X), for Hx—x* <o

where § 1s a small positive number
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&9 pasic Concepts

Assume that the function F'1s differentiable and so smooth that the Taylor expansion
1s valid,

F(x+h) :F(x)+hTF'(x)+%hTF"(x)h+0(||h||2)
where F'(x)is the gradient and F' (x) is the Hessian,
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/ Basic Concepts

Assume that the function F'1s differentiable and so smooth that the Taylor expansion
1s valid, |
F(x+h)=F (x)+hF (x)+ - h'F (x)h+ dy

where F'(x)is the gradient and F' (x) is the Hessian,

It 1s easy to verify that,
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@@ Basic Concepts

Theorem 1: Necessary condition for a local minimizer

If x is a local minimizer, then

F'(x*)zo

Definition 2: Stationary point
If F(x,)=0,

then x, 1s said to be a stationary point for F.

A local minimizer (or maximizer) is also a stationary point. A stationary point which
1s neither a local maximizer nor a local minimizer is called a saddle point
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@@ Basic Concepts

Theorem 2: Sufficient condition for a local minimizer

Assume that X, is a stationary point and that F (x_ ) is positive definite, then

X, 1s a local minimizer

If F(x,) is negative definite, then X, is a local maximizer. If F (x,) is indefinite (ie.
it has both positive and negative eigenvalues), then x_ is a saddle point
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e Non-linear Least Squares

e General Methods for Non-linear Optimization

e Descent Methods
e Non-linear Least Squares Problems
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@@ Descent Methods

« All methods for non-linear optimization are iterative: from a starting
point X, the method produces a series of vectors x,x,,..., which
(hopefully) converges to x°

* The methods have measures to enforce the descending condition,
F(Xk+1) < F(xk)
Thus, these kinds of methods are referred to as “descent methods”
* For descent methods, 1n each iteration, we need to

— Figure out a suitable descent direction to update the parameter
— Find a step length giving good decrease in the /' value
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@@ Descent Methods

Consider the variation of the F-value along the half line starting at x and with
direction h,

F(x+ah)=F(x)+ah'F (x)+O(a|nl)
=F(x)+ah'F (x) for sufficiently small a >0

Definition 3: Descent direction

h is a descent direction for F at x if

h'F (x)<0
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Descent Methods

Descent Methods
-
[ |
2-phase methods 1-phase methods
(direction and step length are (direction and step length are determined jointly)
determined in 2 phases separately) v’ Trust region methods
- \ v’ Damped methods
| Phase] Phase II | o Ex: Damped Newton method
Methods for Methods for
computing descent computing the
direction step length
v" Steepest descent v" Line search
method
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@@ 2-phase methods: General Algorithm Framework

Algo#1: 2-phase Descent Method (a general framework )
begin
k:=0; x:=xq; found := false {Starting point}
while (not found) and (k < kp,ax)
hy := search_direction(x) {From x and downhill }
if (no such h exists)
found := true {x is stationary }
else
o := step_length(x, hy) {from x in direction hgy }
x:=x+ahyg; k:=k+1 {next iterate }
end
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@@ 2-phase methods: steepest descent to compute the descent direction

When we perform a step ah with positive «, the relative gain in function value

satisfies,
o F(x)=F(xtah)  F(X)-[F(x)+ah'F(x)| n'F(x)
0 alh “0 o[l il
||h||HF (x)”cos 0 |
— ||h|| = —HF (X)HCOS %,

where @ is the angle between vectors h and F (x)

This shows that we get the greatest relative gain when 6 =z, 1.e., we use the
steepest descent direction hy, given by h , =-F (x)

This is called the steepest gradient descent method
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&g 2-phase methods: steepest descent to compute the descent direction

 Properties of the steepest descent methods

—The choice of descent direction 1s “the best” (locally) and we could
combine 1t with an exact line search

— A method like this converges, but the final convergence is linear and
often very slow

— For many problems, however, the method has quite good performance in
the initial stage of the iterative; Considerations like this have lead to the
so-called hybrid methods, which — as the name suggests — are based on
two different methods. One of which is good in the initial stage, like the
gradient method, and another method which is good in the final stage,
like Newton’s method
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/ 2-phase methods: Newton’s method to compute the descent direction

Newton’s method is derived from the condition that x™ is a stationary point, i.e.,
F (x*) =0

From the current point x, along which direction moves how far (a vector h,)), will it
be most possible to arrive at a stationary point? L.e., we solve h, from,

F(x+h,)=0

what 1s the solution to h,?
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2-phase methods: Newton’s met

hod to compute the descent direction
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So h,, is the solution to,
F'(x)h, =-F(x)

Suppose that F'(x) is positive
definite, then,

h/F (x)h,

~h/F (x)>0

1.e., |
h/F (x)<0

indicates that h_ 1s a descent
direction

In classical Newton method, the update is (then
it can be regarded as a 1-phase method),

x:=x+h,

However, in most modern implementations,

x:=xtah,

where a is determined by line search
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/ 2-phase methods: Newton’s method to compute the descent direction

 Properties of the Newton’s method

— Newton’s method 1s very good in the final stage of the iteration, where x is
close to x*

— Only when F'(x) 1s positive definite, it 1s sure that h, 1s a descent direction

— So, we can build a hybrid method, based on Newton’s method and the steepest
descent method,

In Algo#1, we can use a hybrid method to get the descent direction

if F'(x) is positive definite

h,=h
else
h, =h_

X =X+ah,
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@@ 2-phase methods: General Algorithm Framework

Algo#1: 2-phase Descent Method (a general framework )
begin
k:=0; x:=xq; found := false {Starting point}
while (not found) and (k < kp,ax)
hy := search_direction(x) {From x and downhill }
if (no such h exists)
found := true {x is stationary }
else
o := step_length(x, hy) {from x in direction hgy }
x:=x+ahyg; k:=k+1 {next iterate }
end
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/ 2-phase methods: Line search to find the step length

Given a point x and a descent direction h. The next iteration step 1s a move from x in
direction h. To find out, how far to move, we study the variation of the given function
along the half line from x in the direction h,

#(a)=F(x+ch), x and h are fixed, &> 0

Since h is a descent direction, when ¢ 1s small ¢(a) < ¢(O)

An example of the behavior of ¢(a),

y
y =90 /

y = d(a)

(04

Variation of the function value along the search line
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/ 2-phase methods: Line search to find the step length

e [ 1ne search to determine «

— «a 1s 1terated from an 1nitial guess, e.g., « =1, then three different situations can
arise

1. « 1s so small that the gain in value of the function is very small;
a should be increased

2. a s too large: ¢(a)=¢(0)
a should be decreased to satisfy the descent condition

3. a is close to the minimizer of ¢(«) . Accept this « value
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Descent Methods

Descent Methods
-
[ |
2-phase methods 1-phase methods
(direction and step length are (direction and step length are determined jointly)
determined in 2 phases separately) v’ Trust region methods
- \ v’ Damped methods
| Phase] Phase II | o Ex: Damped Newton method
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direction step length
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9 1-phase methods: approximation model for F
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A90 >
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Both trust region and damped methods assume that we have a model L of the behavior
of F'in the neighborhood of the current iterate x,

F(x+h):L(h):F(x)+th+%hTBh

where ¢e R" and B e R 1s symmetric

For example, the model can be a second order Taylor expansion of /' around x
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1-phase methods: trust region method

In a trust region method we assume that we know a positive number A such
that the model 1s sufficiently accurate inside a ball with radius A, centered
at x, and determine the step as

h=h, =argmin {L(h)}

‘ h, in an approximation way, such
as Dog Leg method

Usually, we do not need to solve
Eq. (1); instead, we can compute

h, =argminL(h), s.t.,h"h<A* (Eq.1)
h

Note that: h . consists of two parts of information, the direction and the step length
So, basic steps to update using a trust region method are,

compute h by (1)
if F(x+h)<F(x)
X:=x+h

update A < the core problem
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@@ 1-phase methods: trust region method

 For each iteration, we modify A
— If the step fails, the reason is A is too large, and should be reduced

— If the step 1s accepted, 1t may be possible to use a larger step from the new
iterate

* The quality of the model with the computed step can be evaluated by
the gain ratio,

Definition 4: Gain ratio
F ) F(xh)-
p:
L0 L) -

This part 1s constructed to be positive. Why?
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g 1-phase methods: trust region method

D

s
A0 >
OIS

 If o1s small, indicating that the step 1s too large

 If » 1s large, meaning that the approximation of L to £ is good and we
can try an even larger step

Algo#2 The updating strategy for trust region radius A

if p<0.25
A=A/2

elseif p>0.75
A:=max{A,3x|h]}
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@@ Descent Methods

Descent Methods
\
( |
2-phase methods 1-phase methods
(direction and step length are (direction and step length are determined jointly)
determined in 2 phases separately) v’ Trust re giOl’l methods
A v " Damped methods
| Phasc ] Phase II | o Ex: Damped Newton method
Methods for Methods for
computing descent computing the
direction step length
v’ Steepest descent v" Line search
method
v Newton’s method
v SD and Newton hybrid
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@@ 1-phase methods: damped method

In a damped method the step 1s determined as,

h=h, =argmin, {L(h)+%,uhTh} (Eq.2)
where 1 > 0 1s the damping parameter. The term % 1h'h is used to penalize large steps.

The step h,,, 1s computed as a stationary point for the function,

¢,(h) :L(h)+% p#h'h

Indicating that h , 1s a solution to,
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1-phase methods: damped method

d (L(h) + % ,uhThj d (F(x) +h'c +%hTBh +% yhThj

1
=c+5(B+BT)h+,uh:c+Bh+,uh:0

m) h,=—(B+u) c (Eq.3)

T

In a concrete algorithm, B+ul is usually constructed to be positive definite

When B+ul is positive definite, L(h)+1/2uh’h actually is a (strictly) convex
function, so its stationary point -(B+ul)-!c is the global minimizer
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@@ 1-phase methods: damped method

So, basic steps to update using a damped method are (similar to the trust region
method),

Algo#3 Basic steps using a damped method

compute h by Eq. 2

if F(x+h)<F(x)
X:=Xx+h

update H

\

the core problem
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@@ 1-phase methods: damped method

 If o1s small, we should increase # and thereby increase the penalty on
large steps

 If p 1s large, indicating that L(h) is a good approximation to F(x+h)
for the computed h, and # may be reduced

Algo#4 Algo#5
The 15t updating strategy for u The 2" updating strategy for u
v=2
M= X2 ,u::,uxmax{l,l—(Zp—lf};v:=2
elseif £ >0.75 olse 3
pi=pl3 W= UXV,V:=2XY ,
(Marquart 1963) (Nielsen 1999)
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@@ 1-phase methods: damped method

Ex: Damped Newton method
F(x+h)=L(h)= F(x)+th+%hTBh
where ¢ e R” and B e R™ 1s symmetric
‘ if c=F (x) and B=F (x)
(Eq. 3) takes the form,

b (F () 1) (3

If ¢ is very large,

| - : S N
h, =——F (x) , a short step in a direction close to the deepest descent direction

7
If ¢ 1s very small,

h, = —[F" (x)]_l F'(x) , a step close to the Newton step

We can think of the damped Newton method as a hybrid between the steepest descent method and the
Newton method
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e Non-linear Least Squares

e Non-linear Least Squares Problems
e Basic Concepts
e Gauss-Newton Method
e Levenberg-Marquardt Method
e Powell’s Dog Leg Method
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%’ Basic Concepts

e Formulation of non-linear least squares problems

Given a vector function f :R" > R". m>n

We want to find,
X' =argmin, {F(x)}

F()=3 2 (£0)) =5 =31 ("¢ (x)

1=

where,

« Non-linear least squares problems can be solved by general optimization
methods, which will have some specific forms 1n this special case
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@@ Basic Concepts

Taylor expansion for f(x),

f(xen) ] [AHVAX) b | TR ] [(VA)

e e B A

_fm (X+h)_ _fm (X)—I—(me (X))T h_ _fm (X)_ _(me (X))T_
(Eq. 4)

\

J(x)eR™ is called the Jacobian matrix of f(x)
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27 Basic Concepts

F(0) =23 (£ () =2 £ (x)+ £ (x) %t £2(x)]

ox 2 Ox;
T
ST
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&9 pasic Concepts
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&) asic Concepts

F(x)=(J(x)) 3(x)+ . £(x)f (x) (addition of a stack of matrices)
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e Non-linear Least Squares

e Non-linear Least Squares Problems
e Gauss-Newton Method

e Levenberg-Marquardt Method
e Powell’s Dog Leg Method
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@@ Gauss-Newton Method

s
A90 > 12
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The Gauss-Newton method 1s based on a linear approximation to the components
of f (a linear model of f) in the neighborhood of x (refer to Eq. 4),

f(x )= (x) 3 (x)h
¥

F(x+h)~L(h)= %(f(x+h))T f(x+h)= %fo +hTJ7f +%hTJTJh

The Gauss-Newton step h,,, minimizes L(h),

h,, =argmin, {L(h)]
h,, is the solution to,

1 It ' that th :

dL(h) 0 » JTf+_(JTJ+JTJ)h:0 . cz:.:n :be cc()inf}dereil a bte'GZui,s
Jh ) ewton’s updating step is obtained by
using the trust-region method with

N A=inf, or by the damped method with
» hgn = _(J J) Jt u=0 (compare with Eq. 3)
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@@ Gauss-Newton Method

 Some notes about Gauss-Newton methods

— The classical Gauss-Newton method uses « =1 1n all steps, then it can be regarded
as a 1-phase method)

We can use h,, for h, in Algo#1.
Solve (J7J)h,, =-J'f

x=x+h,
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@@ Gauss-Newton Method

 Some notes about Gauss-Newton methods

— The classical Gauss-Newton method uses « =1 1n all steps, then it can be regarded
as a 1-phase method)

— If « 1s elegantly searched by line search, it can be categorized as a 2-phase method

We can use h,, for h, in Algo#1.
Solve (JTJ) h, = ~J'f

x=Xx+ch,,

where ¢ is obtained by line search
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@@ Gauss-Newton Method

 Some notes about Gauss-Newton methods

— The classical Gauss-Newton method uses « =1 1n all steps, then it can be regarded
as a 1-phase method)

— If « 1s elegantly searched by line search, it can be categorized as a 2-phase method

— For each iteration step, it requires that the Jacobian J has full column rank

If J has full column rank, J7J is positive definite

Proof:

J has full column rank <> J’s columns are linearly unrelated

\ 4

vx#0,y=Jx=0 M) 0<y’y=(Jx) Jx=x"J"Jx

\ ¢

J1J is positive definite
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&9 Levenberg-Marquardt Method
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* L-M method can be considered as a damped Gauss-Newton method

Consider a linear approximation to the components of f (a linear model of f) in the
neighborhood of x, f (X + h) =1 (X) +J (X) il We don’t require J has full column rank

\
F(x+h)~L(h)= %(f(x+h))T f(x+h)= %fo +hTJ7f +%hTJTJh

Based on damped method (refer to Eq. 2),
: 1
h,, =argmin, L(h) +5 ph'h | where 4 > 0 is the damped coefficient

1s the solution to,

1
d| L(h)+—uh'h i
( (+y jzo ® h, =3I+ u1) I8
T

h

Im
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@@ Levenberg-Marquardt Method

Let A=J"J, then A + ul is positive definite for x>0
Proof: Vx =0,y =Jx
0<y'y=x"J"Jx=x"Ax = A is positive semi-definite
@
All A’s eigen-values {4, >0,i=1,...,n}
Av. = Av.
@
(A+pd)v, =(A +p)v,
$
Le., all (A+uI)s eigen-values {4, + u} >0
@
A+ ul is positive definite
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Levenberg-Marquardt Method

* L-M method can be considered as a damped Gauss-Newton method

L-M’s step:
h, =—(373+pd) It

That’s why we say L-M i1s a damped Gauss-

Gauss-Newton’s step (if o =1): Newton method

h, =—(373) J'f

—
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&9 Levenberg-Marquardt Method
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e Updating strategy of u

—  influences both the direction and the size of the step, and this leads L-M
without a specific line search

— The initial g—value is related to the elements in (J(x,)) J(x,) by letting,
U, =T -max, {(JTJ)@}

ii

— During iteration,  can be updated by Algo#4 or Algo#5
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Levenberg-Marquardt Method

« Stopping criteria

— For a minimizer x, ideally we will have F'(x")=0

S0, we can use
|F'(x)| <e

as the first stopping criterion
— If for the current iteration, the change of x 1s too small,
S tz <&, (HXHZ + 52)
— Finally, we need a safeguard against an infinite loop,

k>k
where £ 1s the current iteration index
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Levenberg-Marquardt Method

Algo#6: L-M Method

k:=0: v:=2; X:=Xg /
A=Jx)Jx): g:=Jx) f(x)
Jound := (||gl|loc < =1); p:=7 * max{a;}
while (not found) and (k < kpax)

k:=Fk+1; Solve (A + pulhy = —g

if [[hp| < eo(|x] + £2)

found := true

else

Xpew = X + hum

0:= (F(x) — F(Xpew))/(L(0) — L(hyy))

if o >0 {step acceptable}
X = Xnew
A=Jx)Ix):; g:=Jx f(x)
found := (||g]loc < 21)
poo=pxmax{t.1—(20—1)%} v:=2

else
=k, Vi=2%xU

end
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e Non-linear Least Squares

e Non-linear Least Squares Problems

e Powell’s Dog Leg Method
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Powell’s Dog Leg Method

« It works with combinations with the Gauss-Newton and the steepest
descent directions

o It is a trust-region based method

Powell is a keen golfer!

Michael James David Powell (29 July 1936 —
19 April 2015) was a British mathematician,
who worked at the University of Cambridge
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&9 powell’s Dog Leg Method

Gauss-Newton step h = —(J 'J )_1 J'f

gn

The steepest descent direction h, =—F (x)=—(J (x))T f(x)

This is the direction, not a step, and to see how far we should go, we look at the linear
model, f(x+ah,)=f(x)+ad(x)h,,

1

F(x+ah,,) —Hf (x)+ad (x)h, | = F (x)+ahl, (3(x)) £(x)+-ah], (I(x)) I (x)h,,

This function of « 1s minimal for,

W F(x)F(x)_ [F(f
h’J’Jh, h.J’ Jhs “hJ7Jh,

(Eq. 6)
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Powell’s Dog Leg Method

Now, we have two candidates for the step to take from the current point x,
a=ch,,b=h,,

Powell suggested to use the following strategy for choosing the step, when the trust
region has the radius A

Algo#6
if ||h,,[<A
hdl = hgn
elseif |ah,,|>A
A
hdl = ghsd
else
h, =ch,+p(h, -ch,)
with chosen g so that |h,,|=A —
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/ Powell’s Dog Leg Method

The name Dog Leg is taken from golf: The fairway at a “dog leg hole” has a shape
as the line from x (the tee point) via the end point of a to the end point of h ;, (the
hole)

Dog Leg hole
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Powell’s Dog Leg Method

Algo#7: Dog Leg Method

begin
E:=0; x:=x0; A:=Apn g:= J(X)Tf(x)
Jound := ([[f(x)[|oc < <3) or ([|gloc <<1)
while (not found) and (k < kyax)
k:=k+1; Compute a by (Eq.6)
hy = —ag; Solve J(x)hg ~ —f(x)
Compute hg by (Algo# 6)
if [[ha < eo(|x[ +22)
found := true
else
Xpew := X + hg
0= (F(x) — F(Xnew))/(L(0) — L(har))
if p >0
X = Xpew: &= J(X)Tf(x)
Jound := ([[f(x)[|oc <e3) or (||g]loc <<1)
if o> 0.75
A = max{A, 3x||hqg| }
elseif p < (.25
A:=A/2; found .= (A <szo(||x]| + 22))

end
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