Lecture 6
Measurement Using a Single Camera

(All materials in this lecture are limited to a single camera)
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If | have an image containing a coin, can you tell me the diameter of that coin?
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e What is Camera Calibration?

e Modeling for Imaging Pipeline

e General Framework for the Camera Calibration Algorithm
e |nitial Rough Estimation of Calibration Parameters

e Nonlinear Least-squares

e Bird’s-eye-view Generation
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7 What is camera calibration?

e Camera calibration is a necessary step in 3D computer vision in order
to extract metric information from 2D images

e |t estimates the parameters of a lens and image sensor of the
camera; you can use these parameters to correct for lens distortion,
measure the size of an object in world units, or determine the
location of the camera in the scene

e These tasks are used in applications such as machine vision to detect
and measure objects. They are also used in robotics, for navigation
systems, and 3-D scene reconstruction
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@@ What is camera calibration?

Example: PnP (Perspective N Points) problem
Suppose a camera is calibrated (its intrinsics are known)

From a set of spatial points with
known coordinates in the WCS and
their pixel positions on the image, the
pose of the camera with respect to the
WCS can be recovered. This 1s a
simple visual odometry.
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@@ What is camera calibration?

e Camera parameters include
e Intrinsics
e Distortion coefficients
e Extrinsics

To perform single camera calibration, you need to know:

How to model the imaging process?

What is the general workflow for camera calibration?

How to get the initial estimation of parameters?

How to solve a nonlinear optimization problem?
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Modeling for Imaging Pipeline

e For simplicity, usually we use a pinhole camera model
pP=(X,,Y,.Z2,)
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@@ Modeling for Imaging Pipeline

e To model the image formation process, 4 coordinate systems are
required
e World coordinate system (3D space)
e Camera coordinate system (3D space)
e Retinal coordinate system (2D space)
e Normalized retinal coordinate system (2D space)
* Pixel coordinate system (2D space)
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/ Modeling for Imaging Pipeline

e From the world CS to the camera CS

+t—\—

a 3x1 translation vector

a 3x 3 rotation matrix
(orthogonal, det(R)=1)
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/ Modeling for Imaging Pipeline

e From the camera CS to the retinal CS Z.t ol X Yo, Z, ]

We can use a pin-hole model to represent the /
mapping from the camera CS to the retinal CS retinal- - - - - Sy (S

_ X _ f ///

f—== X
X ZC optical
YC —> |: :| = center

Y
7 f_C
| TC _ I ZC ]
where f'is the distance between the retinal plane and the camera origin
The retinal plane is perpendicular to the optical axis.

Note: From the view of the camera CS, the coordinates of the point (x, y) on the retinal

plane are (x,).f)
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@@ Modeling for Imaging Pipeline

e From the camera CS to the retinal CS

fXC homogeneous [ . 7] B 7 B M v
x| Z. | form . 1 X 1 SO0 X
S|y | — |y =— [V, |=—|0f 0| Y. | (2
y f_C ZC ZC
Z 1] Tz, | TClooz. |
normalized inhomogeneous
homogeneous
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Modeling for Imaging Pipeline

. . A
e *From the camera CS to the normalized retinal CS Z plXe:YesZc ]
/
Normalized retinal plane is a virtual plane with a /
/
distance 1 to the optical center retinal- - - - - R (S —
?
/7 1
L X, 14|/
Xc —— | homogeneous v Do ’ X
Xn . ZC form " ¢ optical ¢
Y. | > = 1
C Y —) | | =—| ) (3) center
yn C n Z C
Zc 1 ‘|z
- Lo R Ratel
normalized
homogeneous
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&9 Modeling for Imaging Pipeline

T =
A90 > S
TN

e From the retinal CS to the pixel CS
The unit for retinal CS (x-y) is physical unit (e.g., mm, cm) while the unit for pixel CS
(u-v) is pixel
Suppose that one pixel represents dx physical units along the x-axis and represents dy
physical units along the y-axis, and the image of the optical center is (c,, ¢ ) (pixels)

|
= 0 c, -
u dx i X
v =0 —c, ||y
d y
/ 1 Y
normalized - 0O 01 |- -
homogeneous i ]
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Modeling for Imaging Pipeline

e From the retinal CS to the pixel CS

If the two axis, u and y, of the image plane are not perpendicular,

> U
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: 0’(Cxﬂcv)
I /
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dy 7 f}
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(4)
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/ Modeling for Imaging Pipeline

From Egs.1, 2, and 4, we can have

[ 1 tana . | [ £ ftana .
w9 fx [ £00] | X, | dx ;z’x | X | [ f fitana ¢, | X, |
v| =10 d_y Cy.OfO'Z_Yc =10 d_y ) 'Z_YC =10 fy Cy 'Z_YC
1| 0 o0 001] | Z. | 0 0 | “1Zc] o 0o 1| “|Z
_ _ X |
| fosoe y Image formation model without considering lens distortions,
= — O C R t v 1
Zc fy y [ ]3)(4 Zw u=—-: K3X3 [R t]3x4 P4><1 (5)
0 0 1 | | L
- Note: u is the normalized homogeneous coordinates
intrinscis  Extrinsics

matrix
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Modeling for Imaging Pipeline

e Some notes about the intrinsic matrix
in practical use
— In matlab, the skew parameter s is modeled

— In openCV, for ordinary cameras, s is not
modeled, meaning that it only considers
four intrinsic parameters

— In openCV, for fisheye cameras, s s

modeled (after -calibrating the fisheye
cameras, you really can get five
parameters); However, the related
document has a mistake by saying that
only four intrinsic parameters are
considered

Note: In this course, we do not consider s

anymore

T E TR O UPTITC T U= T T OpPTTICY TSIy CamDTa oA

U CPCITC VS TTSTIEy T CaTTeTa T = TrEopeTT

cv.org/4.2.0/db/d58/group  calib3d fisheye.html

+ calibrate()

double cv::fisheye::calibrate ( InputArrayOfArrays  objectPoints,

InputArrayOfArrays  imagePoints,
const Size & image_size,
InputOutputArray K,
InputOutputArray D,
QutputArrayOfArrays rvecs,
QutputArrayOfArrays tvecs,

int flags = e,
TermCriteria

)

criteria = TermCriteria(TermCriteria: :COUNT+TermCriteria::EPS, 100, DBL_EPSILON)

Python:
retval, K, D, rvecs, tvecs = cv.fisheye.calibrate( objectPoints, imagePoints, image_size, K, D[, rvecs], tvecs|, flags|, criteria]]]] )

#include <opencv2/calib3d.hpp>

Performs camera calibaration.

Parameters
objectPoints vector of vectors of calibration pattern points in the calibration pattern coordinate space.
imagePoints vector of vectors of the projections of calibration pattern points. imagePoints.size() and objectPoints.size() and imagePoints[i].size()
must be equal to objectPointsli].size() for each i.
image_size Size of the image used only to initialize the intrinsic camera matrix.

K fr 0 ¢
Output 3x3 floating-point camera matrix A = | 0 fy cy‘| . If fisheye::CALIB_USE_INTRINSIC_GUESS! is specified, some or
0 0 1
all of fx, fy, cx, cy must be initialized before calling the function.
D Output vector of distortion coefficients (ky, ka, ks, ky).
rvecs Qutput vector of rotation vectors (see Rodrigues ) estimated for each pattern view. That is, each k-th rotation vector together with the

corresponding k-th translation vector (see the next output parameter description) brings the calibration pattem from the model
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@@ Modeling for Imaging Pipeline

~ - XW
u /.0 c, -

|
v|=|0 f c |-—|R t
y y ZC[ ]3><4ZW ‘_\
1] {00 1 |

- Point on the normalized

retinal CS
X, | - -
x}’l
1 Y, ,
—[R t],, 2 = (according to Eq.3)
C w 1
_1 — ) )

Thus, we have a byproduct which states the relationship between the coordinates on the pixel CS
and the coordinates on the normalized retinal CS,

U | _fx 0 cx_ _xn_
Normalized e : (6)
v |=|0 c, | Normalized
homogeneous L& || | h
1| oo 1|1 omogeneous
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@@ Modeling for Imaging Pipeline

e To model the behavior of lens, we need to consider the distortion

— Radial distortion occurs when light rays bend more near the edges of a lens than
they do at its optical center; the smaller the lens, the greater the distortion

Fincushion distortion Mo distortion Barral distortion
Positive redial displacement Megative radial displacement
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Modeling for Imaging Pipeline

e To model the behavior of lens, we need to consider the distortion

— Tangential distortion occurs when the lens and the image plane are not parallel

Zero Tangential Distortion Tangential Distortion

Lens and sensor are parallel Lens and sensor are not parallel
ﬁ Cameralens (\Camera lens

Vertical plane Vertical plane

Camera ,
sensor Camera
Sensor

Lin ZHANG, SSE, Tongji Univ.



@,

&9 Modeling for Imaging Pipeline

T =
A90 > S
TN

e To model the behavior of lens, we need to consider the distortion

— Both the two types of distortions are modeled on the normalized retinal plane

To model radial distortion To model tangential distortion

X, =X, (1 + k7’ + kot + k3r6) X, = xn+(2p1xnyn + P, (r2 +2x; ))

y, =y (l—l—klr2 +k,r" +k3r6) V, =D, +(2p2xnyn + P (r2 +2y7 ))
where 7° =x, +, where ¥° = x> + y’
k. k,,k, are the radial distortion coefficients || o, p, are the tangential distortion coefficients

If they both need to be considered,

(

X, =X, (1 Jrklr2 +k2r4)+ 20x,y, + P, (r2 + 2x}f)+xnk3r6 Note: This step cannot
3 ; \ 6 WM be represented by matrix
Ya =DV, (1 +kr +k,r )+ 20,%,y, + Py (7”2 +2y, ) +y,ksr multiplication

.
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Modeling for Imaging Pipeline

e To model the behavior of lens, we need to consider the distortion

— Both the two types of distortions are modeled on the normalized retinal plane

— If the FOV is extremely large (larger than 100 degrees), i.g. the camera is a fisheye camera, we
need to use another model to characterize lens distortions

A typical image collected by a fisheye camera

Lin ZHANG, SSE, Tongji Univ.
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Modeling for Imaging Pipeline

e To model the behavior of lens, we need to consider the distortion

— Both the two types of distortions are modeled on the normalized retinal plane

— If the FOV is extremely large (larger than 100 degrees), i.g. the camera is a fisheye camera, we
need to use another model to characterize lens distortions

To model the fisheye distortion
€ = arctan ()

P
r, =0(1+ k6 +k,0" +k,6° +k,0°)
v, -
xd 7x” < Z(d/' X,
2 py
Yo =5V,
r
where > =x+y’
0
k., k,,k,,k,are the distortion coefficients O
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/ Modeling for Imaging Pipeline

The complete imaging pipeline is modeled as,

point on the normalized
KL retinal plane

o - X,
U /.0 c
YW

v| =0 fy c, -ﬂ<—[R t]34 < (8)

ZC " Zw
1 00 1
L — | _ | 1

|

distorted point on the

normalized retinal plane

fx,fy,cx,cy,kl,kz,,ol,,02,k3 are the intrinsics of the camera (suppose it is an ordinary camera)

R (three DOFs) and t (three DOFs) are the extrinsics of the camera
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/ Modeling for Imaging Pipeline

e The process to get the intrinsics and extrinsics of the camera is called
single camera calibration

— For most cases of single camera calibration, only the intrinsics are what we really
need

e To model radial and tangential distortions, we use 5 parameters;
Actually, more complicated models can be used, but the modeling
pipeline is the same

— E.g. the thin prism model, the tilted model used in OpenCV

Lin ZHANG, SSE, Tongji Univ.



e What is Camera Calibration?
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/ General Framework for the Camera Calibration Algorithm

I _— (X |

u /.0 c |

v =[0 f ¢ .p47[R t]3x4 ZW . (Eq. 8, the imaging pipeline)
1] |00 1 ‘ o

e General idea

— If we have a set of known points {P.}"_ in the WCS and their images{u,} , using Eq.
8, we could have 2n equations

— If the number of valid constraints (equations) are enough, Eq. 8 could be solved

e All the calibration algorithms follow the above general rules and among
them, Zhengyou Zhang’s ideal!l is the most widely used

[1] Z. Zhang, A flexible new technique for camera calibration, IEEE Trans. Pattern Analysis and Machine
Intelligence, 2000
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@@ General Framework for the Camera Calibration Algorithm

e Zhengyou Zhang’s calibration approach

— A calibration board with a chessboard
pattern is needed

— Several images of the board need to be
captured

— Detect the feature points (cross points) in
the images

— Based on the correspondence pairs (pixel
coordinate and world coordinate of a
feature point), equation systems can be
obtained

Aug. 1, 1965~, now is the director of

- B solvin the equation systems,
) 5 d Y Tencent AI Lab

parameters can be determined
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@@ General Framework for the Camera Calibration Algorithm

e Zhengyou Zhang’s calibration approach

T e - — v < T Y TR T e 1 oy - ’»w‘
{ &

x‘ o i e Lo e i Calibration board

|

|

The number of blocks of one side should be even and the number of blocks of the other side should be odd
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/ General Framework for the Camera Calibration Algorithm

e Zhengyou Zhang’s calibration approach

-~

(R m» tn'??)
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General Framework for the Camera Calibration Algorithm

. Zhenquu Zhang’s calibration _apprqach

o
7 ~ - ¥
g
[ Ny
T
\

WPl
.

A set of Calibration board images (20~30)
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Z General Framework for the Camera Calibration Algorithm

Suppose we have M board images and for each image we have N cross points, then
the calibration amounts to the following optimization problem,

2
N 1 |
_argmmZZE K'D{Z_C..[Ri ti]Pf}_“ij 9)
i 2

=1 j=1
where O = {fx,fy,cx,cy,kl,kz,,ol,,oz,lg,{Ri}Z1 ,{ti}il}denotes the parameters that needs to
be optimized

P]. is the WCS coordinates (determined by the physical calibration board) of the jth
cross-point, and u, is its projection (pixel coordinate) on ith image

_fx()cx_

K =|0 f, ¢, | denotes the intrinsics matrix

001
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/ General Framework for the Camera Calibration Algorithm

e About the rotation
— In 3D Euclidean space, a rotation has 3 DOFs (three Euler angles)

— If we use a 3*3 matrix to denote the rotation, we must add extra constraints
(the matrix should be orthonormal and its determinant should be 1) and that
will make the optimization complicated

— Thus, in all modern implementations, a rotation is finally represented by axis-

angle
d=no n is a unit 3D vector describing an axis of rotation according to
the right hand rule; 6 is the rotation angle
d=nd, a 3D vector denoting the rotation is called axis-angle
0

Lin ZHANG, SSE, Tongji Univ.



/ General Framework for the Camera Calibration Algorithm

e About the rotation

— Axis-angle can be uniquely converted to a rotation matrix and vice versa via

Rodrigues formula

From axis-angle d=né to rotation matrix R

R =cosOI+(1—cos@)nn’ +sin@n” (10)

where I 1s the identity matrix and

0 —n, n,
/\_
n=\n 0 —n
—n, n, 0 |

From rotation matrix R to axis-angle d=n6

0 = arccos(tr(lz)_lj

Rn =n
1.€., n 1s the eigenvector of R associated
with the eigenvalue 1

Lin ZHANG, SSE, Tongji Univ.




Z General Framework for the Camera Calibration Algorithm

Suppose we have M board images and for each image we have N cross points, then
the calibration amounts to the following optimization problem,

2
—argmanZ% K-ﬂ{ZL[R(di)tiJPJ}_“U (9)
=1 j=1 2

J= Cij
where & (d,) =R, and the parameters that need to be optimized are,

M M
= {fx,fyacxacy,kl k29p19p29k39{d }l 10 {t } 1} (d, is the axis-angle representation of R))

Altogether, we have 2 x M x N equations (error terms) and 9 + 6/ unknown
parameters

Eqg. 9 is a nonlinear optimization problem and does not have a closed-form solution.
It can be solved by iterative methods. But before that, we need to have a good
starting point, i.g. we need to have a rough estimate to ®

Lin ZHANG, SSE, Tongji Univ.



e What is Camera Calibration?
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e Bird’s-eye-view Generation
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Initial Rough Estimation of Calibration Parameters

e The task at this step

— Given us a set of M images of planar calibration board, estimate the intrinsics
(except the ones related to distortion) of the camera and the extrinsics of the
camera poses when taking each image

Lin ZHANG, SSE, Tongji Univ.



/ Initial Rough Estimation of Calibration Parameters

e The task at this step

— Given us a set of M images of planar calibration board, estimate the intrinsics
(except the ones related to distortion) of the camera and the extrinsics of the
camera poses when taking each image

O ={fonfyene, ki propris (A8

Distortion coefficients can be safely initialized as zeros

Thus, in initial estimation of other parameters, we use the imaging model without
considering distortions,

1
u= Z_.K3x3 [R t]3x4 P4><l (Eq 5) L

C

S ~

Given a calibration board, P is a cross-point on it, thus P has the form P =

U
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/ Initial Rough Estimation of Calibration Parameters

Result 1: In the camera coordinate system, the direction of the ray pointing from the
optical center O to the pixel u (in homogeneous form) on the imaging plane is

d=K'u
: : : d
The imaging model is o
1 : : .// LP
u=—-K,;[R t], P, (Eq.5 uis normalized homogeneous) P S c
C ‘ 0 - u ¢
| _XC_ _xn | \\
7 n n ging
¢ Z. 1 4 plane

Since X, should on the ray Ou ™ Ou s directionis d=x, —0=K'u

Actually, any kK 'u =K' (ku) (k 2 0) can reprient the direction of d

u actually does not need to be normalized homogeneous

Lin ZHANG, SSE, Tongji Univ.



=2 Initial Rough Estimation of Calibration Parameters

Result 2: In the camera coordinate system, the
angle between two rays, pointing from O to x,
and x, (x; and x, are the homogeneous
coordinates of two pixels on the imaging plane),
respectively, is determined as,

d,-d,
| [la, |
(K‘lx1 )T K™'x,
YO ) () ) (K 'x,)
_ X (KK ™)X,
JX (KK % %) (KTK)X,

cos @ =

Lin ZHANG, SSE, Tongji Univ.
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/ Initial Rough Estimation of Calibration Parameters

e Vanishing points

— A feature of perspective projection is that the image of an object that
stretches off to infinity can have finite extent. E.g., an infinite scene line is
imaged as a line terminating in a vanishing point

— Parallel world lines, such as railway lines, are imaged as converging lines and
their image intersection is the vanishing point for the direction of the railway

— Vanishing point: the vanishing point of a world line / is obtained by
intersecting the image plane with a ray parallel to / and passing through the
camera center
Another definition: the vanishing point of a world line / is the image of [’s
infinity point on the imaging plane

Lin ZHANG, SSE, Tongji Univ.



Initial Rough Estimation of Calibration Parameters

e Vanishing points: illustrations

The points X, i = 1, . . . , 4 are equally spaced on the world line, but their spacing on the image line
monotonically decreases. In the limit X — oo, the world point is imaged at x = v on the vertical image line, and
at X =V on the inclined image line. Thus the vanishing point of the world line is obtained by intersecting the
image plane with a ray parallel to the world line through the camera centre O.

Lin ZHANG, SSE, Tongji Univ.



Initial Rough Estimation of Calibration Parameters

e Vanishing points: illustrations

Two parallel world lines should have the same infinity point; For each line, its vanishing point is the image of
its infinity point; so the images of two parallel world lines would converge to the same vanishing point

Lin ZHANG, SSE, Tongji Univ.
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2 |nitial Rough Estimation of Calibration Parameters

e Properties of vanishing points
— The vanishing point is on the imaging plane (indicating that it is expressed in pixels)
— The vanishing point of the world line / depends only on its direction
— A set of parallel world lines have a common vanishing point on the imaging plane

— The ray Ov (O is the optical center) is parallel to the world lines who share the
same vanishing point v l,

Result 3: /, and /, are two world lines on the same plane and v, and v, are their
vanishing points on the imaging plane, respectively. O is the optical center. Let g = Wlﬁz

v (KTK)V,
Y (KTK ) vV (KK )V,

Then, lTl;:H or 1172:7z—6?

Lin ZHANG, SSE, Tongji Univ.
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/ Initial Rough Estimation of Calibration Parameters

Result 4: /, and /, are two world lines on the same plane perpendicular to each
other, and v, and v, are their vanishing points on the imaging plane, respectively.
We have,

v, (KTK')v,=0 (Using Result 3)

Note: This is a key result based on which camera calibration schemes roughly estimate

camera’s intrinsics

Lin ZHANG, SSE, Tongji Univ.



2 |nitial Rough Estimation of Calibration Parameters

On the projective plane defined by the calibration boards, consider the four lines,
I,: X-axis, its infinity point is P,= (1,0,0)”
[,: Y-axis, its infinity point is P,= (0,1,0) ”
I;: line(s) with the infinity point P, =(1,1,0)"
I;: line(s) with the infinity point P, =(1,—1,0)"

It can be verified: [, L[, [, L],

Lin ZHANG, SSE, Tongji Univ.



Initial Rough Estimation of Calibration Parameters

The plane of the calibration board and its Images of Py, P,, Py, P, are,
image is linked via a homography 1 0
j' CUy,y = H3><3P3><1<_\ Vi = [h1 h, h3] 0l=h,,v,= [hl h, hs] 1|=h,
: 0 0
point on the image homogeneous planar point - L
on the calibration board 1
- =|h, h, h.||] |=h +h
H can be estimated in advance for each calibration \E: _[ 12 3] — 2
board image using the techniques introduced in 0
Lect. 3 o
1
Denote H by, v, = [h1 h, h3] “1|=h, -h,
H,, = [h1 h, h3] 10

Lin ZHANG, SSE, Tongji Univ.




2~ Initial Rough Estimation of Calibration Parameters

Based on Result 4, we have

Vi (KTK™!)v, =0

Vi (KTK™!)v, =0

K’él is symmetric
If we have M calibration board images, we can finally have 2M such equations and
then we can solve the elements in K.

(11)

Lin ZHANG, SSE, Tongji Univ.



2 |nitial Rough Estimation of Calibration Parameters

e OpenCV’s implementation adopts a simplified strategy

— It does not estimate ¢, and c, at this step; instead, they are simply taken as
the width/2 and height/2 of the image

[ f.0c, | [10c |[£00]
0f,¢c,|={01c |[0f, 0 K=PQ K 'K'=(PQ) (PQ) =P (Q7Q")P"
001 ] (001 J/00T1
P Q
_ T _ _ —
M KTK)Y: =0, = (P™v) (@7Q")F™v, =0 (12)
Vs (KK ) vy =0 P7v.) (QTQ)P v, =0 oo
2
Cll d2 a3 a4 -T -1 )
QQ =/, 1
P'v, 2| b [,P'v,2|b, |,P 'V, 2| b, |,P 'V, 2|5, 0 ?0
C, C, Cy Cy 10 0 1

Lin ZHANG, SSE, Tongji Univ.



2 |nitial Rough Estimation of Calibration Parameters

e OpenCV’s implementation adopts a simplified strategy

] b L
a}iz 4 }22 :_clcz iz
(12) becomes { g way bby || Jo|_|-ec
a.a, bb = | aa, bb 1 —c.C
374 3 _ s 3% 3% ]| 3¢4
A i
L X y | )
If we have M calibration board images, we can finally have 2M such equations,
_L_
‘](XZ
Asyo 1 =b,ya
3
1 1 ‘fy -
We can solve {FF} using the least squares technique, and at last /. andfy are
x y

obtained
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Initial Rough Estimation of Calibration Parameters

e |nitial estimation of extrinsics

We know that the plane of the calibration
board and its image on the normalized retinal
plane is linked via a homography

X, X, X
Cj ynj :H3><3 )/] ZC] ynj
1 1] 1

\

On the other hand, based on the imaging model,

[R ]

J
Y
Zj

~

1

X,

=[rr, 1, t]

l

H and [l’1 r, t] map (X, Y, 1)’ to the same point on the normalized retinal plane

W

H and [r1 r, t] actually represent the same homography

¢

[h,,h,,h,|[=H=A[r , t]

U
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Initial Rough Estimation of Calibration Parameters

e |nitial estimation of extrinsics
Ar, =h,Ar,=h,, At =h,

\ 4

1 |
I =—h1,r2=zh2,t :Zh3

since [ = e[| =1 mb [ 2 1= I, || = |
— 1
Note: In OpenCV, A is estimatedas A = 5(”111” + ||h2||)

r,|=Ldet([r, r, ;])=1 mpr, =1 X1,

Then, r,, r,, r;, and t are all initialized

Sincer, Lr,r, L1,

Finally, R=[r, r, r;] is converted to its axis-angle representation

Note: Initial estimation of extrinsics needs to be performed to every calibration board image
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e What is Camera Calibration?

e Modeling for Imaging Pipeline

e General Framework for the Camera Calibration Algorithm
e |nitial Rough Estimation of Calibration Parameters

e Nonlinear Least-squares

e Bird’s-eye-view Generation
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Nonlinear Least-squares

e For nonlinear least-square solutions, please refer to Lecture 5

The camera calibration problem is to solve, p;

| | o)

. . M N 1 1
o cargmind YUK 2 S [R@)R |
© i=1 j=1 2 Cij 2
\ Y J
err_term;
In all modern Lerr_term, (@) |  derr _term,, / dO" ] dp,, /dO" ]

implementations, Eq. 9 is

solved by L-M method err _term,, (®) derr _term,, | dO" dp,,/d®"
whose updating step is  |OUF Cas€ ; ; ;

| —) f=|err term,(®) |+ J=|derr term,, /dO" =|dp,, /dO"
h, = _(JTJ"'/UI) J'f err _term,, (©) derr _term,, / dO®" dp,, /d®"

T T
err _term,,, (@)LMle | derr _term,,, / d©® Lovvsonenn) | dp,,y /dO Jostvconenn)
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@@ Nonlinear Least-squares

The core problem is to determine dpij ,

de’
i.e, to determine l,

dp. dp, dp. dp, dp. dp. dp, dp. dp. dp, dp. dp . dp ..
pl]a pl]a plja le’ pl]a pl]a pl]a pl]a le’ pljj"ﬂ p]l{ Note that: p;]":()’ p;"]:()’vm:/__i
df . dfy dc, dcy dk, dk, dp, dp, dk, dd; dt ad, dt,
For derivation simplicity, in the following, we denote o
d1 211
u A
P={ }épy,d: d, |2d, .
v J R,
’ Ry Ry Ry Ry,
Denote d’s rotation matrix representation by Z(d) =| R,, R,, R,, |and its vector form by r=| R,,
Ry Ry, R Ry
R3l
R32
| Ry ]
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Nonlinear Least-squares

Denote the 3D point corresponding to p; in the WCS (determined by the physical calibration board)
by P=[X,Y,Z]"

Denote P’s position w.r.t the camera coordinate system by P ~[X,Y,Z-]"

Denote P’s ideal projection on the normalized retinal plane by p =[x,, v,]*

Denote P’s distorted projection on the normalized retinal plane by p =[x, v,|*

Let’s derive the above-mentioned derivatives one by one......

Lin ZHANG, SSE, Tongji Univ.



@,

L ]
A0 > N\
B
&y
(3 L
o
L ONiSS

Nonlinear Least-squares

According to Eg. 6 (from the projection on the normalized retinal plane to the final pixel position), we

have - _f;CO Cx_ %, ]
u=fx,+c,
V=10 el v=fy, +c
1] (o0 1 |[1 | YT
[ Ou | _a_u_ [ Ou | [ Ou |
dp || |x d_p_afy |0 ] ap |0 | |1 dp |9, | [0
df, |ov| |0 ]'df, |ov| |y,)de, |3 | [0]de, |ov| |1
O, | o, | | Oc, | | Oc, |
We also have a byproduct which will be used later,
Ou ou
dp ox, oy, _|:f;c 0}
dp, | v v | [0,
| Ox, Oy, |
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@@ Nonlinear Least-squares

According to Eq. 7 and the notation k = |k &, p p, K, ]Twe have

ox, Ox, Ox, Ox, Ox, |
dp, | Ok, Ok, Op, Op, Ok, {xnrz xrt 2xy  ri+2x xnr6:|

dk’ Wa Wy Wy Wy Oy
Ok, Ok, Op, Op, Ok, |

vt oyt P2y 25y,

Then we have,

dp dp dp, _{fxxnrz fxrt 2fxy L0 +2x3) fxxnﬁ}

dk' dp, dk" | £yt Lyt L0742y 2fxy, fyr
Also based on Eqg. 7, we can have
_% %_ Its concrete form is a little complicated, but not difficult
dp, _| O &, | — o~ b
dp, |, .| Assignment! @
| Ox, Oy, | I — . AL
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Nonlinear Least-squares

According to Eq. 3, we have Cox ox ox ] [ 1 . —X.
dp, |0X. 0Y. dZ, zZ. Z

| 0X, 0Y,. OZ, | Z. Z} |

According to Eq. 1, we have ]
X, aX,. aX,. dX,. X, X, X, X, OX,

OR,, OR,, OR; OR,, OR,, OR,; OR,, OR,, OR,,

X, R X+R,Y+R,Z+t, XYZ00 0000
dP. | oY, oY. oY, oY, 0Y. oY, oY, oY, oY,

P.=\Y. |=|R,X+R,Y+R,Z+t, m) - =1000X Y Z0O00O
dr OR,, OR,, OR; OR,, OR,, OR,, OR,, OR,, OR,,

Z, R, X+R,Y+R,Z+t, 00000 OXY Z

0Z. 0Z. 0Z. 0Z. 0Z. O0Z. 0Z. OZ. OZ,
_aRll aRlz aR13 aRzl 8R22 8R23 aRSI aR32 aR33
[ 0X, 0X, 0X, |

ot Ot, o,
100
dP. | 0¥ 0¥ oY, | _ 010
dat’ ot, ot, o,
001
0Z. 0Z. OZ,
ot, ot, ot |
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D
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A0 >
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According to Rodrigues formula (Eg. 10), we can derive the form of

I - J

dr c R - . | /.«"‘
Y | Assignment! ‘
— L0 B

Then, we can compute,

dp _dp dp, dp, dP. dr
dd" dp! dp! dP. dr" dd’

dp _ dp .dpd .dpn .dPC
at" dp, dp. dP. dt’
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Nonlinear Least-squares

With the calibrated camera, many amazing applications can be continuously
performed....

One naive example, the distorted image can be undistorted

One point on the The corresponding point on the
undistorted image original image with distortion
( u
u -1
ammmm) KD\ K'|v
v
L)
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e What is Camera Calibration?

e Modeling for Imaging Pipeline

e General Framework for the Camera Calibration Algorithm
e |nitial Rough Estimation of Calibration Parameters

e Nonlinear Least-squares

e Bird’s-eye-view Generation
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Bird’s-eye-view Generation

e Our task is to measure the geometric properties of
objects on a plane (e.g., conveyor belt)

e Such a problem can be solved if we have its bird’s-
eye-view image; bird’s-eye-view is easy for object
detection and measurement

Lin ZHANG, SSE, Tongji Univ.



Bird’s-eye-view Generation

e Three coordinate systems are required
e Bird’s-eye-view image coordinate system
e World coordinate system
e Undistorted image coordinate system
e Original fisheye image

Bird’s-eye-view World CS Undistorted Fisheye
image CS ) w) | image CS —) image
| | | |
I Asimilarity matrix 1 A homography matrix | undistortion I
| f%aW’ I f%;ﬂ . 5(27(5CAXQ) |
Xy X,

a look-up table 7, ,.

Xp *Xp
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Bird’s-eye-view Generation

e Basic idea for bird’s-eye-view generation

Suppose that the transformation matrix from bird’s-eye-view to WCS
is P, , ,the transformation matrix from WCS to the undistorted
image is B,_ ,, and the camera intrinsics are known

) - T . )
Then, given a position (xB,yB,l) on bird’s-eye-view, we can get
its corresponding position in the original fisheye image as

Xp
X, =K2 K_IPW—HPB—)W VB
1

Then, the intensity of the pixel (x,,y,,1)" can be determined
using some interpolation technique based on the
neighborhood around x,. on the fisheye image
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Bird’s-eye-view Generation

e Basic idea for bird’s-eye-view generation

Suppose that the transformation matrix from bird’s-eye-view to WCS
is P, , ,the transformation matrix from WCS to the undistorted

image is B,_ ,, and the camera intrinsics are known

The key problem is how to obtain £ and £, _,;?

Lin ZHANG, SSE, Tongji Univ.



Bird’s-eye-view Generation

e Determine 55,

N (pixels) _ﬂ E Y, ﬂ E
( I | IM’ 2 2M’ 2
» » X
H - ———» X
i ) (0
M
(pixels) _
HN H HN H
. M 2 2M’ 2

Y

Note: It is valid only when you think the origin of the world CS
is at the center of the bird’s-eye-view image
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Bird’s-eye-view Generation

e Determine F,_,,

For a point (x,,¥,,1) on bird’s-eye-view, the corresponding
point on the world coordinate system is,

H  _HN
X, M 2M X, X,
H H B
Yw |=10 _ﬁ ? Vs | =By | Vs
1 0 0 | 1 1

Please verify!!
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Bird’s-eye-view Generation

e Determine £, _,

The physical plane (in WCS) and the undistorted image plane

can be linked via a homography matrix £, _,
X, =5, Xy,
N

i=1"7

If we know a set of correspondence pairs {x,.,x,, |

F, ., can be estimated using the least-square method

Lin ZHANG, SSE, Tongji Univ.



Bird’s-eye-view Generation

e Determine B, _,,
A set of point correspondence pairs; for each pair, we know its coordinate on
the undistorted image plane and its coordinate in the WCS

4] main - x
FAHWA2birdView2UndistList\undistimgs Choose Folder Read
Grid Coord X | Grid Coord ¥ Lk =
1 -1 o
2 - ! 4 images found!
3 -1 2
4 -1 3
5 -1 4
6 -1 5
7 2 E3
8 -2 1
9 -2 o
10 -2 1
11 -2 2
12 -2 3
13 -2 4
1
4 > = Load Success!
15 -3 A
16 -3 [
17 -3 1
18 -3 2
19 -3 3
20 3 4
Save
Previous
Mouse Coordinate
(5197.40,2585.46)
Turn to Page Next
Go

No.2: image1.jpg
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Bird’s-eye-view Generation

When P, , and B, _, are known, the bird’s-eye-view can be
generated via,

Xp
X, =K2 K_IPW—>1PB—>W VB
1
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Bird-view Generation

Another example

Original fish-eye image Undistorted image
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Bird-view Generation

Another example

Original fish-eye image Bird’s-eye-view
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