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) Shapes VS Images

Geometry Parametrization Sampling
Euclidean (flat) Global
Non-Euclidean Local “Uniform” is not
(curved) well-defined
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Shapes VS Images

Representation Deformations

Array of pixels

Cloud of points, Rotation, affine, Wealth of non-rigid

mesh, etc, etc. projective, etc. deformations
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Metric spaces Canonical forms
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Metric geometry Fast marching Iterative closest pI)int algorithms

Multidimensional scaling Convex optimization
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Materials

MONOGRAPHS IN COMPUTER SCIENCE

Alexander M. Bronstein
Michael M. Bronstein

Ron Kimmel

A. M. Bronstein et al., Numerical geometry of non-rigid shapes,
Springer 2008
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Afunction 4: X x X — R satisfyingforall x1,zo0,x3 € X

Non-negativity: d(xq,z5) >0

Indiscernability: d(xq,x2>) = 0 ifandonlyif x1 = x5
Symmetry: d(xq1,x>5) = d(x>,x1)

Triangle inequality: d(zq,23) < d(x1,z5) + d(zo, 23)

(X, d) is called a metric space

C
AB <BC + AC
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@@ Metric balls

Openball: B,.(zp) ={zc X :d(z,zp) <7}
Closed ball: B, (zg) = {z € X : d(z,zq) <1}

-
—
L0

Euclidean ball L, ball L, ball
|z — xollo = |z —zoll1 = |z — 20loc =
k k
Z|$k—x8|2§r Zk:|99 —zg| <7 m}?X|mk—m8|§r
k
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@ Connectivity

The space X is connected if it cannot be divided into two disjoint nonempty

open sets, and disconnected otherwise

i

Connected Disconnected
Stronger property: path connectedness
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) Examples of metrics

Euclidean Path length
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@ Homeomorphisms

A bijective (one-to-one and onto)
continuous function with a continuous
inverse is called a homeomorphism -

\, "|

Homeomorphisms copy topology —

homeomorphic spaces are topologically

equivalent

Torus and cup are
homeomorphic

Lin ZHANG, SSE, Tongji U



@ Homeomorphisms

Topology of Latin alphabet
q C f hklm
ab%e prs u ;
op 4 VWY

homeomorphic to o homeomorphic to ‘

o o
homeomorphic to
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) |lsometries

T p(x1)

d(z1,22) = 6(p(x1), p(x2))

©(x2)
(X,d) (Y, 6)

L2

Two metric spaces (X, d) and (Y, §)are equivalent if there exists a

distance-preserving map (isometry) » : (X,d) — (Y, §) satisfying

§o(¢(x1),gp(x2))=d(x1,x2)
Such (X, d) and (Y, §) are called isometric, denoted (X, d) ~ (Y, 4)

Isometries copy metric geometries — isometric spaces are equivalent

from the point of view of metric geometry
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/ Isometries

Euclidean isometries
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Y7 lsometries

Euclidean isometries

Rotation Translation Reflection
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Isometries

Geodesic isometries
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@ Similarity as metric
8
human are equivalent

Nd(X, 7X)=0
Human and monkey are / | P

Two deformations of a

c-similar

Human is twice more similar to

monkey than to dog

Shape space

Lin ZHANG, SSE, Tongji U
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&) Metric for discrete geometry

Discretization

Continuous world Discrete world
Surface X Sampling
X'={xq1,...,ey} C X
Metric d x Discrete metric (matrix of

distances) Dx = (dx (=, z;))

Topology Discrete topology (connectivity)

Lin ZHANG, SSE, Tongji U



&) Metric for discrete geometry

How to compute the intrinsic metric?

So far, we represented X itself.
Our model of non-rigid shapes as metric spaces (X, dy ) involves

the intrinsic metric

dy(xz,2') = I_Ig;ig/)/l_dﬁ

Sampling procedure requires d x as well.

We need a tool to compute geodesic distances on X .

Lin ZHANG, SSE, Tongji U



@@ Metric for discrete geometry

Shortest path problem

Pari;c, o N a&q&éﬁl : J

A

I_I-:J':' s IniCh i I ]
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t@ Metric for discrete geometry

Shapes as graphs

Sample the shape at v vertices X = {z1,...,zn} -

Represent shape as an undirected graph
G = (X,E)

FE C X x X setof edges
representing adjacent vertices.
Define length function L : £ — R
measuring local distances as

Euclidean ones,

L(x;, ;) = ||z; — xj|2

Lin ZHANG, SSE, Tongji U



&) Metric for discrete geometry

Shapes as graphs

Path between z;,2; € X is an ordered set of connected edges

{e1,e2,...,ex} C E

{(wila aj’ig)a (xiga $i3)7 ey (w’ik_la xik)a (mika xik+1)}

M (z,x;)

where z;, = x; and Tifq = Tj-
Path length = sum of edge lengths
k k

L(M(zg25)) = ) Llen) = ) L(wi, i, )

Lin ZHANG, SSE, Tongji U



&) Metric for discrete geometry

Geodesic distance

Shortest path between z;,x; € X

M (x5,2;) = arg _min L(I (x4, 2;))
M (x;,25)

Length metric in graph

dr(zi,x;) = r("gig_)ll(r(fl?z‘,xj))
[2hady|

Approximates the geodesic distance dx =~ dj on the shape.
Shortest path problem: compute *(z;, :cj) and dL(a:'Z-,a:j)
between any z;,z; € X .

Alternatively: given a source point x5 € X, compute the

distance map d(xz;) = d;(xg, ;) -
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&) Metric for discrete geometry
Bellman’s principle of optimality
Let *(x;,x;) be shortest path between

xi,x; € X and xy, € I (x;, ;) apoint on the path.
Then, I(z;,z;) and [(xg,x;) are

shortest sub-paths between z;, x;, , and zp, x; .

(@i, z,) (x4, ;)

x; Lj Richard Bellman
(g, zp,) zg  (wg, ) (1920-1984)

Suppose there exists a shorter path ' (x;, x}.) .
L(M(zj25)) = L(M(2,21)) + L(T (2, 25))
Contradiction to *(z;, ;) being shortest path.

Lin ZHANG, SSE, Tongji U



&) Metric for discrete geometry

Edsger Wybe Dijkstra (7930-2002)
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&) Metric for discrete geometry

Dijkstra’s algorithm

Initialize d(zg) = 0 and d(x;) = oo for the rest of the graph;
Initialize queue of unprocessed vertices () = X.

While Q = 0

Find vertex x with smallest value of d ,

xr = argmind(x)
reQ)

C For each unprocessed adjacent vertex =z’ ¢ N (z) N Q ,
d(«") = min{d(z'),d(z) + L(z,z")}
Remove = from ().

Return distance map d(x;) = d; (xq, x;) -

Lin ZHANG, SSE, Tongji U



&) Metric for discrete geometry

Troubles with the metric

Grid with 4-neighbor connectivity.

True Euclidean distance

Shortest path in graph (not unique)

dL:2

Increasing sampling density does

not help.

Lin ZHANG, SSE, Tongji U



&) Metric for discrete geometry

Z B

4-neighbor topology 8-neighbor topology Continuous R?

Metrication error

Manhattan distance Euclidean distance

dr, =3 |z — ab] dp, = \/Z(mg )2
1 ()

Graph representation induces an inconsistent metric.
Increasing sampling size does not make it consistent.

Neither does increasing connectivity.
Lin ZHANG, SSE, Tongji U
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&) Metric for discrete geometry

\

Discrete solution

2!

\

Continuous solution

Stick to graph representation Stick to given sampling
Change connectivity Compute distance map
Consistency guaranteed under on the surface

certain conditions New algorithm!

Lin ZHANG, SSE, Tongji U



&) Metric for discrete geometry

To solve the above issue, we can use fast marching
methods

A continuous variant of Dijkstra’s
algorithm
Consistently approximate the

intrinsic metric on the surface

Source point

Lin ZHANG, SSE, Tongji U



/ Metric for discrete geometry

Usages of fast marching

Geodesic Minimal Voronoi Offset
distances geodesics tessellation & curves
sampling

Lin ZHANG, SSE, Tongji U
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&) How good is a sampling?
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) Sampling density

How to quantify density of sampling?

x'’ isan r-covering of X if

x; €X'’

Alternatively:
dx(z,X") <r
forall x € X , where

dx (x, X") = inf dx(x,z;)
x; €X'

is the point-to-set distance.

Lin ZHANG, SSE, Tongji U




) Sampling efficiency

Are all points necessary?

An r-covering may be unnecessarily

dense (may even not be a discrete set).
Quantify how well the
samples are separated.

X' is r’-separated if
d (x,x;)=r
for all X, X; € X

For ' > 0, an r’-separated

set is finite if X is compact.

Also an r-covering!

Lin ZHANG, SSE, Tongji U



) E5rthest point sampling

Good sampling has to be dense and efficient at the same time.
Find a r-separated and r-covering X’ of .X.

Achieved using farthest point sampling.

Lin ZHANG, SSE, Tongji U
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&) Farthest point sampling

Start with some X' = {z; € X} .

Determine sampling radius

r = maxdx(z, X"
zeX

If r S Ttarget StOp
Find the farthest point from Y

¢ = argmaxdy(z, X))
X

eX

Add 7’ to X’

Lin ZHANG, SSE, Tongji U



) E5rthest point sampling

Outcome: r-separated r-covering of X.
Produces sampling with progressively increasing density.
A greedy algorithm: previously added points remain in X/

There might be another r-separated r-covering containing less points.

In practice used to sub-sample a densely sampled shape.
Straightforward time complexity: O (M N)
M number of points in dense sampling, N number of points in X".

Using efficient data structures can be reduced to O(N log M) .

Lin ZHANG, SSE, Tongji U



@ Sampling as representation

Sampling represents a region on X as a single point x; € X'

Region of points on X closer to z; than to any other z;

Voronoi region (Dirichlet or Voronoi-Dirichlet region, Thiessen

polytope or polygon, Wigner-Seitz zone, domain of action).

Lin ZHANG, SSE, Tongji U



&) voronoi decomposition

Voronoi region Voronoi edge Voronoi vertex
A point gz € X can belong to one of the following

Voronoi region V,; ( z iscloserto g, than to any other  ; ).

Voronoi edge Vij = VN Vj ( = Is equidistant from z, and x ).

Voronoi vertex Viig=V;NV,;NVy (  is equidistant from

three points x;, z;, zj, ).

Lin ZHANG, SSE, Tongji U



&) voronoi decomposition
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&) voronoi decomposition

Voronoi regions are disjoint.

Their closure

Jv, = X
)

covers the entire X.

Cutting X along Voronoi edges produces
a collection of tiles {V; }.

The tiles are topological disks

(are homeomorphic to a disk).

Lin ZHANG, SSE, Tongji U
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@ Delaunay tessellation

Define connectivity as follows: a pair of points

whose Voronoi cells are adjacent are connected

The obtained connectivity graph is dual to the

Voronoi diagram and is called Delaunay tesselation

‘ Boris Delaunay (1890-1980)

VA
VAV

Voronoi regions Connectivity Delaunay tesselation
Lin ZHANG, SSE, Tongji U




@ Delaunay tessellation

For a set P of points in the (d-dimensional) Euclidean space, a Delaunay
triangulation is a triangulation DT(P) such that no point in P is inside the
circumhypersphere of any simplex in DT(P)

It is known that there exists a unique Delaunay triangulation for P if P is
a set of points in general position

In the plane, the Delaunay triangulation maximizes the minimum angle

Lin ZHANG, SSE, Tongji U
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@ Delaunay tessellation

This triangulation does not meet the Flipping the common edge
Delaunay condition (the produces a Delaunay triangulation
circumcircles contain more than for the four points

three points)

Lin ZHANG, SSE, Tongji U
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@ Triangular meshes

A structure of the form (I, E/, T") consisting of

Vertices = {1,...,N}
Edges FE = {(i,j)elIxI:xz;cN(z;)}
Faces TZ{(Z,j,k)EIXIXI (Z,j),(%,k),(k,j)EE}

Is called a triangular mesh

The mesh is a purely topological object and does not contain any geometric

properties

The faces can be represented as an N x 3 matrix of indices, where each

row is a vector of the form ¢, = (t,%,t,%,tg) , t}% clandk=1,.. Np

Lin ZHANG, SSE, Tongji U



@ Example of triangular mesh

3
Vertices 1 2 3 4

Edges (1,2) (1,3) (1,4)
(4,2) (4,3) (2,3)

Faces (2,4,3) (1,4,2)
(3,4,1) (2,3,1)

Topological

T4
L3
L]
L2
Coordinates (0.5,0.86,0)
(0,0,0)
(1,0,0)

(0.5,0.28,0.86)

Geometric

Lin ZHANG, SSE, Tongji U
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&) Extrinsic shape similarity
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&) Extrinsic shape similarity

Given two shapes X and Y, find the degree of their incongruence.
Compare X and Y as subsets of the Euclidean space R3.

Invariance to rigid motion: rotation, translation, (reflection):

¥ = Rx+t

R is arotation matrix, RTR =T

t is a translation vector

Lin ZHANG, SSE, Tongji U



&) How to get rid of Euclidean isometries?

How to remove translation and rotation ambiguity?
Find some “canonical” placement of the shape X in R3

Extrinsic centroid (center of mass, or center of gravity):

IX xdx
X. =
0
J dx
X
Set t+ = —x toresolve translation ambiguity.

Three degrees of freedom remaining...

Lin ZHANG, SSE, Tongji U



&) How to get rid of Euclidean isometries?

Find the direction d; in which the surface has maximum extent.

Maximize variance of projection of X onto d4

di = arg max /(dTaz)de
di:l|di][2=1/X

= arg max d_lr /a:a:Tda:)dl
di:||d1]2=1 X

arg  max d{ xdy
di:lld1]l2=1

> v is the covariance matrix

d1 is the first principal direction

Lin ZHANG, SSE, Tongji U



&) How to get rid of Euclidean isometries?

Project X on the plane orthogonal to d- .

Repeat the process to find second and third principal directions d5, ds3.

Lin ZHANG, SSE, Tongji U



&) How to get rid of Euclidean isometries?

Canonical basis

A
d1Ld>_1d3 span a canonical orthogonal basis for X in R3

Lin ZHANG, SSE, Tongji U



&) How to get rid of Euclidean isometries?

Direction maximizing leZXdl = largest eigenvector of 3 .

d> and d3 correspond to the second and third eigenvectors of 3~ .
>  admits unitary diagonalization >, = UTAU.

le
where [J = dzT
(4
Principal component analysis (PCA), or Karhunen-Loéve

transform (KLT), or Hotelling transform.

Lin ZHANG, SSE, Tongji U



&) second-order geometric moments

Eigenvalues of 3 5 are second-order moments o;; of X.

Second-order geometric moments of X : o;; = / x'z!dx
X

In the canonical basis, mixed moments o;; vanish.

Ratio 011 022 1 033 describe eccentricity of X .

Magnitudes of 0J;; express shape scale.

011 = 022 X 033 011 K 022 ® 033 011 = 022 K 033

Lin ZHANG, SSE, Tongji U
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) How to get rid of Euclidean isometries?

Examples
300}
L300
|- 200}
100 1000 [ - -
oy 0
L 100 o0l
L 200 ]
| | | |
200 2100 0 100
300}

-’lIZI]D D ’1IZIJD QIZIJD
Without self-alignment With self-alignment by using PCA

Lin ZHANG, SSE, Tongji U



%
@/ A202. 3
&9 outli
Z £y
& Qutline
s’

e |[ntroduction

e Basic concepts in geometry

e Discrete geometry
e Metric for discrete geometry
e Sampling

e Rigid shape analysis
e Euclidean isometries removal

e |CP-based shape matching

Lin ZHANG, SSE, Tongji U



& lterative closest point (ICP) algorithms

Given two point sets {ml,}fil and {nj}jj‘il , find the best motion (s, R, ¢)

bringing {SR(nj) + t} as close as possible to {mi}i]il:

d,p ({ml},{nj}) = mind({SR(nj)th},{ml.})

s,R.t

d ({SR(nj) + t} , {ml}) is some shape-to-shape distance.
. _ c . T N M
Minimum = extrinsic dissimilarity of {ml,}i:1 and {”j}j:r
e . N M
Minimizer = best alignment between {ml,}l,:1 and {nj}jzl'
|ICP is a family of algorithms differing in
The choice of the shape-to-shape distance.

The choice of the numerical minimization algorithm.

Lin ZHANG, SSE, Tongji U



& lterative closest point (ICP) algorithms

[s,R,T] = ICP ({nle.}l.]\i1 {n]}i‘il ) (suppose N<M)

calculate the point correspondences {ml. N/ }Z(closest point)

N
calculate the error: 2 =" (m, —n,)’

i=l
While not convergent

Evaluate s, R and T according to the pairs {ml.,nl.}il
Apply s, R and Tto {n,} to get {n,|
et {n,} = {n
Re-calculate the point correspondences {ml., ni}?vl
N 1=

re-calculate the error: 52 =% (m, —n,)’

End =

Return s, R, T

Lin ZHANG, SSE, Tongji U



& lterative closest point (ICP) algorithms

[,R,71 = IcP ({m,}", ,{n }"") (suppose N<M)

calculate the point correspondences {ml. N/ }Z(closest point)

calculate the error: £* =" (m,-»,)" [Can be efficiently computed by using

. - Delaunay triangulation
While not convergent

N

Evaluate s, R and T according to the pairs {ml.,nl.}i:1

Apply s, R and Tto {n,} to get {n,|

Let {n]} = {n]}

Re-calculate the point correspondences {ml., ni}?vl
N 1=
re-calculate the error: 52 =% (m, —n,)’
End -
Returns, R, T

Lin ZHANG, SSE, Tongji U



& lterative closest point (ICP) algorithms

[s,R,T] = ICP ({nle.}l.]\i1 {n]}i‘il ) (suppose N<M)

calculate the point correspondences {ml. N/ }Z(closest point)

N
calculate the error: 2 =" (m, —n,)’

i=1
While not convergent

Evaluate s, R and T according to the pairs {ml.,nl.}il How?
Apply s, R and T to {nj} to get {n]}

Let {n]} = {n]}

Re-calculate the point correspondences {mi, ni}?vl
N =
re-calculate the error: 52 =% (m, —n,)’
End =
Returns, R, T

Lin ZHANG, SSE, Tongji U



& lterative closest point (ICP) algorithms

Problem definition:

Given a set of point correspondence pairs

N ° ° ]
{m,-,"l,-},-zl, how to evaluate s, R and 7 to minimize

Z\

SR(n )+ T)H

Lin ZHANG, SSE, Tongji U



& lterative closest point (ICP) algorithms

We assume that there is a similarity transform between point

sets {m,}" and {n}"

Find s, R and T to minimize Note: R is an orthogonal matrix.
) N , N 5
2 =Y e =Y lm—(sR(n)+T)| (1)
i=1 i=1

Let

| |

m =—Zmi,n :—Zni,ml. =m, —m,n, =n,—n
N5 N5

N

Note that: iml = O,Zn; =0
i=1 i=1

Lin ZHANG, SSE, Tongji U



& lterative closest point (ICP) algorithms

Then:
e.=m —SsR(n,)-T = m+m sR(n, +n) T = m+m sR(n.)— SR(n) T

=m. —sR(n.)— (T m+SR(n))— —sR(n.)—e,
=T - m+SR(n) is independent from {m.,n.}

(1) can be rewrltten as:

Ze —Z”m —sR(n,)— 60” —Z”m —SR(n, )” —2e, - ( ;—SR(I’I;.))+N€§

l'_

:i” . —sR(n, )” —2e, - ( ;)+260.ZN:(SR(n;))+Ne§

i=1 i=1

Variables are separated and can be minimized separately.

eg =0< T =m—sR(n)|If we have s and R, T can be determined.

Lin ZHANG, SSE, Tongji U




& lterative closest point (ICP) algorithms

Then the problem simplifies to: how to minimize
N
. NP
3 = ZHml —sR(n,)
i=1

We revise the error item as a symmetrical one:

Consider its geometric meaning here.

N 1 ’ ' 2 1 N 2 N ' ' Ui
3 = —ml.—\/ER(nl.) :—Z‘ml. —ZZml.-R(nl.)+s
i=1 \/; S =l i=1 '
Iy 2
:—Z mi
S =1 ,
p Variables are separated.
1 4 2 A\
2 =—P-2D+s0 \/Fj +2(JPO - D)
S
Thus,

Lin ZHANG, SSE, Tongji U



& lterative closest point (ICP) algorithms

(\/;\/é\/l;\/FTOQS\/gV’ngZZ Determined!.

n.
i=1

Then the problem simplifies to: how to maximize

2

D= Zml -R(n.) Note that: D is a real number.
JZVZI ' ' N T ' N ' T

D= Zml. -Rn;, = Z(ml) Rn, = tmce(ZRni (ml) j = trace(RH)
i=1 i=1 i=1
N

Now we are looking for an orthogonal matrix R to maximize the trace
of RH.

Lin ZHANG, SSE, Tongji U



&) |terative closest point (ICP) algorithms

Lemma

For any positive semi-definite matrix C and any orthogonal matrix B:
tmce(C) > tmce(BC)

Proof:

From the positive definite property of C, 34,C = AA"
where A is a non-singular matrix.
Let @ be the ith column of A. Then

tmce(BAAT) = trace(ATBA) = ZaiT (Bal.)

According to Schwarz inequality: |< X, yl>| < ||x||||Y||
al (Bal.) < HaiTHHBaZ.

= \/(aiTai)(aiTBTBai) = al.Tal.
Hence,
tmce(BAAT ) < Zal.T a, = tmce(AAT ) that is, trace( BC) < trace(C)
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& lterative closest point (ICP) algorithms

Consider the SVD of H = Zn( )T H=UAV"

According to the property of SVD UJand J are orthogonal
matrices, and A is a diagonal matrix with nonnegative elements.

Now let ¥ = yy” |Notethat: Xis orthogonal.

We have XH =VU ' UAV" =V AV" which is positive semi-definite.

Thus, from the lemma, we know: for any orthogonal matrix B

trace(XH) > trace(BXH )

for any orthogonal matrix \J

trace(XH) > trace(WH )

It’s time to go back to our objective now... R should be X
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Now, s, R and T are all determined.

Al T
H Ean(ml) =UAV"
i=1
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&7 ICP Matching—An Example

i\

bottlel bottle2

bottlel~bottle2: 0.8131
acl~ac2: 0.8939

bottlel~acl: 9.8462
bottlel~ac2: 10.3231
bottle2~acl: 7.9172
bottle2~ac2: 10.3362

acl
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