

Lecture 9 Introduction to Numerical Geometry

Lin ZHANG, PhD
School of Software Engineering
Tongji University
Fall 2024

- Introduction
- Basic concepts in geometry
- Discrete geometry
 - Metric for discrete geometry
 - Sampling
- Rigid shape analysis
 - Euclidean isometries removal
 - ICP-based shape matching

Landscape

"HORSE"

Shapes VS Images

Geometry

Euclidean (flat)

Non-Euclidean (curved)

Parametrization

Global

Local

Sampling

Uniform Cartesian

"Uniform" is not well-defined

Shapes VS Images

Representation

Array of pixels

Cloud of points, mesh, etc, etc.

Deformations

Rotation, affine, projective, etc.

Wealth of non-rigid deformations

Non-rigid world from macro to nano

Invariant similarity

Local features

Shape Repressions

A. M. Bronstein et al., Numerical geometry of non-rigid shapes, Springer 2008

- Introduction
- Basic concepts in geometry
- Discrete geometry
 - Metric for discrete geometry
 - Sampling
- Rigid shape analysis
 - Euclidean isometries removal
 - ICP-based shape matching

Euclidean

Manhattan

Geodesic

A function $d: X \times X \to \mathbb{R}$ satisfying for all $x_1, x_2, x_3 \in X$

- Non-negativity: $d(x_1, x_2) \ge 0$
- Indiscernability: $d(x_1, x_2) = 0$ if and only if $x_1 = x_2$
- **Symmetry:** $d(x_1, x_2) = d(x_2, x_1)$
- Triangle inequality: $d(x_1, x_3) \le d(x_1, x_2) + d(x_2, x_3)$

(X, d) is called a **metric space**

- **Open ball:** $B_r(x_0) = \{x \in X : d(x, x_0) < r\}$
- Closed ball: $\bar{B}_r(x_0) = \{x \in X : d(x, x_0) \le r\}$

Euclidean ball

$$||x - x_0||_2 = ||x - x_0||_1 =$$

$$\sqrt{\sum_k |x^k - x_0^k|^2} \le r \qquad \sum_k |x^k - x_0^k| \le r$$

L₁ ball

$$||x - x_0||_1 = \sum_{k} |x^k - x_0^k| \le r$$

L_{∞} ball

$$||x - x_0||_{\infty} =$$

$$\max_k |x^k - x_0^k| \le r$$

The space X is **connected** if it cannot be divided into two disjoint nonempty

open sets, and **disconnected** otherwise

Connected

Stronger property: path connectedness

Examples of metrics

Euclidean

Path length

A **bijective** (one-to-one and onto)
continuous function with a continuous
inverse is called a **homeomorphism**

Homeomorphisms copy topology – homeomorphic spaces are **topologically** equivalent

Torus and cup are homeomorphic

Topology of Latin alphabet

a b d e o p q

homeomorphic to

homeomorphic to

homeomorphic to

- Two metric spaces (X,d) and (Y,δ) are equivalent if there exists a **distance-preserving** map (**isometry**) $\varphi:(X,d)\to (Y,\delta)$ satisfying $\delta\circ (\varphi(x_1),\varphi(x_2))=d(x_1,x_2)$
- Such (X,d) and (Y,δ) are called **isometric**, denoted $(X,d) \sim (Y,\delta)$
- Isometries copy **metric geometries** isometric spaces are equivalent from the point of view of metric geometry

Euclidean isometries

Euclidean isometries

Rotation Translation Reflection

Geodesic isometries

Similarity as metric

Shape space

- Introduction
- Basic concepts in geometry
- Discrete geometry
 - Metric for discrete geometry
 - Sampling
- Rigid shape analysis
 - Euclidean isometries removal
 - ICP-based shape matching

Discretization

Continuous world

- \blacksquare Surface X
- \blacksquare Metric d_X
- Topology

Discrete world

Sampling

$$X' = \{x_1, ..., x_N\} \subset X$$

- Discrete metric (matrix of distances) $D_X = (d_X(x_i, x_j))$
- Discrete topology (connectivity)

How to compute the intrinsic metric?

- So far, we represented X itself.
- Our model of non-rigid shapes as metric spaces (X, d_X) involves the **intrinsic metric**

$$d_X(x,x') = \min_{\Gamma(x,x')} \int_{\Gamma} d\ell$$

- **Sampling** procedure requires d_X as well.
- lacktriangle We need a tool to **compute geodesic distances** on X.

Shortest path problem

Shapes as graphs

- Sample the shape at N vertices $X = \{x_1, ..., x_N\}$.
- Represent shape as an undirected graph

$$G = (X, E)$$

- $E \subseteq X \times X$ set of **edges** representing **adjacent** vertices.
- Define length function $L: E \to \mathbb{R}$ measuring local distances as Euclidean ones,

$$L(x_i, x_j) = ||x_i - x_j||_2$$

Shapes as graphs

■ Path between $x_i, x_j \in X$ is an ordered set of connected edges

$$\Gamma(x_i, x_j) = \{e_1, e_2, ..., e_k\} \subset E$$
$$= \{(x_{i_1}, x_{i_2}), (x_{i_2}, x_{i_3}), ..., (x_{i_{k-1}}, x_{i_k}), (x_{i_k}, x_{i_{k+1}})\}$$

where $x_{i_1} = x_i$ and $x_{i_{k+1}} = x_j$.

Path length = sum of edge lengths

$$L(\Gamma(x_i, x_j)) = \sum_{n=1}^k L(e_n) = \sum_{n=1}^k L(x_{i_n}, x_{i_{n+1}})$$

Geodesic distance

■ Shortest path between $x_i, x_j \in X$

$$\Gamma^*(x_i, x_j) = \arg\min_{\Gamma(x_i, x_j)} L(\Gamma(x_i, x_j))$$

Length metric in graph

$$d_L(x_i, x_j) = \min_{\Gamma(x_i, x_j)} L(\Gamma(x_i, x_j))$$

- lacksquare Approximates the **geodesic distance** $d_X pprox d_L$ on the shape.
- Shortest path problem: compute $\Gamma^*(x_i,x_j)$ and $d_L(x_i,x_j)$ between any $x_i,x_j\in X$.
- Alternatively: given a source point $x_0 \in X$, compute the distance map $d(x_i) = d_L(x_0, x_i)$.

Bellman's principle of optimality

- Let $\Gamma^*(x_i, x_j)$ be **shortest path** between $x_i, x_j \in X$ and $x_k \in \Gamma^*(x_i, x_j)$ a point on the path.
- Then, $\Gamma(x_i,x_k)$ and $\Gamma(x_k,x_j)$ are shortest sub-paths between x_i,x_k , and x_k,x_j .

Richard Bellman (1920-1984)

Suppose there exists a **shorter** path $\Gamma'(x_i, x_k)$.

$$L(\Gamma'(x_i, x_j)) = L(\Gamma'(x_i, x_k)) + L(\Gamma(x_k, x_j))$$

$$< L(\Gamma(x_i, x_k)) + L(\Gamma(x_k, x_j)) = L(\Gamma^*(x_i, x_j))$$

■ Contradiction to $\Gamma^*(x_i, x_j)$ being shortest path.

Edsger Wybe Dijkstra (1930–2002)

Dijkstra's algorithm

- Initialize $d(x_0) = 0$ and $d(x_i) = \infty$ for the rest of the graph; Initialize queue of unprocessed vertices Q = X.
- While $Q \neq \emptyset$
 - \blacksquare Find vertex x with **smallest value** of d,

$$x = \arg\min_{x \in Q} d(x)$$

lacksquare For each **unprocessed adjacent vertex** $x' \in \mathcal{N}(x) \cap Q$,

$$d(x') = \min\{d(x'), d(x) + L(x, x')\}$$

- **Remove** x from Q.
- \blacksquare Return distance map $d(x_i) = d_L(x_0, x_i)$.

Troubles with the metric

- Grid with 4-neighbor connectivity.
- True Euclidean distance

$$d_{\mathbb{R}^2} = \sqrt{2}$$

Shortest path in graph (not unique)

$$d_{L} = 2$$

Increasing sampling density does not help.

Metrication error

4-neighbor topology

Manhattan distance

$$d_{L_1} = \sum_{i} |x_1^i - x_2^i|$$

8-neighbor topology

Continuous \mathbb{R}^2

Euclidean distance

$$d_{L_2} = \sqrt{\sum_i (x_1^i - x_2^j)^2}$$

- Graph representation induces an inconsistent metric.
- Increasing sampling size does not make it consistent.
- Neither does increasing connectivity.

- Stick to graph representation
- Change connectivity
- Consistency guaranteed under certain conditions

- Stick to given sampling
- Compute distance map on the surface
- New algorithm!

Metric for discrete geometry

To solve the above issue, we can use *fast marching methods*

A continuous variant of Dijkstra's

algorithm

Consistently approximate the

intrinsic metric on the surface

Source point

Metric for discrete geometry

Usages of fast marching

- Introduction
- Basic concepts in geometry
- Discrete geometry
 - Metric for discrete geometry
 - Sampling
- Rigid shape analysis
 - Euclidean isometries removal
 - ICP-based shape matching

How good is a sampling?

Sampling density

- How to quantify **density** of sampling?
- lacksquare X' is an r-covering of X if

$$\bigcup_{x_i \in X'} B_r(x_i) = X$$

Alternatively:

$$d_X(x, X') \le r$$

for all $x \in X$, where

$$d_X(x, X') = \inf_{x_i \in X'} d_X(x, x_i)$$

is the point-to-set distance.

Sampling efficiency

- Are all points necessary?
- An r-covering may be unnecessarily dense (may even not be a discrete set).
- Quantify how well the samples are separated.
- \blacksquare X' is r'-separated if

$$d_{X'}(x_i, x_j) \ge r'$$

for all
$$X_i, X_j \in X'$$
.

For r' > 0, an r'-separated set is **finite** if X is **compact**.

Also an *r*-covering!

- Good sampling has to be **dense** and **efficient** at the same time.
- Find a r-separated and r-covering X' of X.
- Achieved using farthest point sampling.

- Start with some $X' = \{x_1 \in X\}$.
- Determine sampling radius

$$r = \max_{x \in X} d_X(x, X')$$

- If $r \leq r_{\text{target}}$ stop.
- \blacksquare Find the **farthest point** from X

$$x' = \arg\max_{x \in X} d_X(x, X')$$

 \blacksquare Add x' to X'

- \blacksquare Outcome: r-separated r-covering of X.
- Produces sampling with progressively increasing density.
- \blacksquare A **greedy algorithm**: previously added points remain in X'.
- There might be another r-separated r-covering containing less points.
- In practice used to sub-sample a densely sampled shape.
- Straightforward time complexity: $\mathcal{O}(MN)$ M number of points in dense sampling, N number of points in X'.
- Using efficient data structures can be reduced to $\mathcal{O}(N \log M)$.

Sampling as representation

- Sampling **represents** a region on X as a single point $x_i \in X'$.
- lacktriangle Region of points on X closer to x_i than to any other x_j

$$V_i(X') = \{x \in X : d_X(x, x_i) < d_X(x, x_j), x_{j \neq i} \in X'\}$$

■ **Voronoi region** (Dirichlet or Voronoi-Dirichlet region, Thiessen polytope or polygon, Wigner-Seitz zone, domain of action).

Voronoi decomposition

Voronoi region

Voronoi edge

Voronoi vertex

- \blacksquare A point $x \in X$ can belong to one of the following
 - lacksquare Voronoi region V_i (x is closer to x_i than to any other x_j).
 - \blacksquare Voronoi edge $\ V_{ij}=\overline{V}_i\cap\overline{V}_j$ (x is equidistant from x_i and x_j).
 - Voronoi vertex $V_{ijk}=\overline{V}_i\cap\overline{V}_j\cap\overline{V}_k$ (x is equidistant from three points x_i,x_j,x_k).

Voronoi decomposition

Voronoi decomposition

- Voronoi regions are disjoint.
- Their closure

$$\bigcup_{i} \overline{V}_{i} = X$$

covers the entire X.

- Cutting X along Voronoi edges produces a collection of **tiles** $\{V_i\}$.
- The tiles are topological disks (are homeomorphic to a disk).

Delaunay tessellation

Define connectivity as follows: a pair of points whose Voronoi cells are adjacent are connected

The obtained connectivity graph is **dual** to the Voronoi diagram and is called **Delaunay tesselation**

Voronoi regions

Connectivity

Delaunay tesselation

- For a set P of points in the (d-dimensional) Euclidean space, a Delaunay triangulation is a triangulation DT(P) such that no point in P is inside the circumhypersphere of any simplex in DT(P)
- It is known that there exists a unique Delaunay triangulation for P if P is a set of points in general position
- In the plane, the Delaunay triangulation maximizes the minimum angle

Delaunay tessellation

This triangulation does not meet the Delaunay condition (the circumcircles contain more than three points)

Flipping the common edge produces a Delaunay triangulation for the four points

Shape representation

A structure of the form (I, E, T) consisting of

- **Vertices** $I = \{1, ..., N\}$
- Edges $E = \{(i,j) \in I \times I : x_j \in \mathcal{N}(x_i)\}$
- Faces $T = \{(i, j, k) \in I \times I \times I : (i, j), (i, k), (k, j) \in E\}$

is called a triangular mesh

The mesh is a purely **topological** object and does not contain any geometric properties

The faces can be represented as an $N_F \times 3$ matrix of indices, where each row is a vector of the form $t_k = (t_k^1, t_k^2, t_k^3)$, $t_k^i \in I$ and $k = 1, ..., N_F$

Example of triangular mesh

Vertices	1	2		3	4	
Edges	(1	2)	(1	3)	(1	1

Edges	(1, 2)	(1,3)	(1,4)
	(4,2)	(4,3)	(2,3)

Faces	(2,4,3)	(1,4,2)
	(3,4,1)	(2, 3, 1)

Coordinates	(0.5, 0.86, 0)	
	(0,0,0)	
	(1,0,0)	
	(0.5, 0.28, 0.86)	

Geometric

- Introduction
- Basic concepts in geometry
- Discrete geometry
 - Metric for discrete geometry
 - Sampling
- Rigid shape analysis
 - Euclidean isometries removal
 - ICP-based shape matching

Extrinsic shape similarity

Extrinsic shape similarity

- \blacksquare Given two shapes X and Y, find the degree of their **incongruence**.
- Compare X and Y as subsets of the Euclidean space \mathbb{R}^3 .
- Invariance to rigid motion: rotation, translation, (reflection):

$$x' = Rx + t$$

- \blacksquare R is a rotation matrix, $R^{\top}R = I$
- t is a translation vector

- How to remove translation and rotation ambiguity?
- Find some "canonical" placement of the shape X in \mathbb{R}^3
- Extrinsic centroid (center of mass, or center of gravity):

$$x_0 = \frac{\int_X x dx}{\int_X dx}$$

- \blacksquare Set $t = -x_0$ to resolve translation ambiguity.
- Three degrees of freedom remaining...

- Find the direction d_1 in which the surface has **maximum extent**.
- Maximize **variance** of projection of X onto d_1

$$d_{1} = \arg \max_{d_{1}:||d_{1}||_{2}=1} \int_{X} (d^{\mathsf{T}}x)^{2} dx$$

$$= \arg \max_{d_{1}:||d_{1}||_{2}=1} d_{1}^{\mathsf{T}} \left(\int_{X} xx^{\mathsf{T}} dx \right) d_{1}$$

$$= \arg \max_{d_{1}:||d_{1}||_{2}=1} d_{1}^{\mathsf{T}} \Sigma_{X} d_{1}$$

- lacksquare Σ_X is the covariance matrix
- lacksquare d_1 is the first **principal direction**

- Project X on the plane orthogonal to d_1 .
- lacksquare Repeat the process to find second and third principal directions d_2, d_3 .

Canonical basis

 \blacksquare $d_1 \perp d_2 \perp d_3$ span a canonical orthogonal basis for X in \mathbb{R}^3 .

- Direction maximizing $d_1^T \Sigma_X d_1$ = largest eigenvector of Σ_X .
- \blacksquare d_2 and d_3 correspond to the second and third eigenvectors of Σ_X .
- \blacksquare Σ_X admits unitary diagonalization $\Sigma_X = U^{\top} \wedge U$.

where
$$U = \begin{pmatrix} d_1^T \\ d_2^T \\ d_3^T \end{pmatrix}$$
.

■ Principal component analysis (PCA), or Karhunen-Loéve transform (KLT), or Hotelling transform.

Second-order geometric moments

- Eigenvalues of Σ_X are second-order moments σ_{ii} of X.
- lacksquare Second-order geometric moments of X : $\sigma_{ij} = \int_X x^i x^j dx$
- In the canonical basis, **mixed moments** σ_{ij} vanish.
- Ratio σ_{11} : σ_{22} : σ_{33} describe eccentricity of X .
- Magnitudes of σ_{ii} express shape scale.

Examples

Without self-alignment

With self-alignment by using PCA

- Introduction
- Basic concepts in geometry
- Discrete geometry
 - Metric for discrete geometry
 - Sampling
- Rigid shape analysis
 - Euclidean isometries removal
 - ICP-based shape matching

Given two point sets $\{m_i\}_{i=1}^N$ and $\{n_j\}_{j=1}^M$, find the best motion (s,R,t) bringing $\{sR(n_j)+t\}$ as close as possible to $\{m_i\}_{i=1}^N$:

$$d_{ICP}\left(\left\{m_{i}\right\},\left\{n_{j}\right\}\right) = \min_{s,R,t} d\left(\left\{sR(n_{j}) + t\right\},\left\{m_{i}\right\}\right)$$

- $d(\{sR(n_j)+t\},\{m_i\})$ is some shape-to-shape distance.
- Minimum = extrinsic dissimilarity of $\{m_i\}_{i=1}^N$ and $\{n_j\}_{j=1}^M$.
- Minimizer = best alignment between $\{m_i\}_{i=1}^N$ and $\{n_j\}_{j=1}^M$.
- ICP is a family of algorithms differing in
 - The choice of the **shape-to-shape distance**.
 - The choice of the numerical minimization algorithm.

$$[s,R,T] = \text{ICP} (\{m_i\}_{i=1}^N,\{n_j\}_{j=1}^M) (\text{suppose } N < M)$$
 calculate the point correspondences $\{m_i,n_i\}_{i=1}^N (\text{closest point})$ calculate the error: $\Sigma^2 = \sum_{i=1}^N (m_i - n_i)^2$

While not convergent

Evaluate s, R and T according to the pairs $\left\{m_i, n_i\right\}_{i=1}^N$

Apply s, R and T to $\{n_j\}$ to get $\{n_j\}$

$$\mathsf{Let}\ \left\{n_{j}\right\} = \left\{n_{j}^{'}\right\}$$

Re-calculate the point correspondences $\left\{m_i, n_i\right\}_{i=1}^N$ re-calculate the error: $\Sigma^2 = \sum_{i=1}^N \left(m_i - n_i\right)^2$

End

Return s, R, T

 $[s,R,T] = ICP(\{m_i\}_{i=1}^N, \{n_i\}_{i=1}^M) \text{ (suppose } N < M)$

calculate the point correspondences $\{m_i, n_i\}_{i=1}^N$ (closest point)

calculate the error: $\Sigma^2 = \sum_{i=1}^{n} (m_i - n_i)^2$ Can be efficiently computed by using

Delaunay triangulation

While not convergent

Evaluate s, R and T according to the pairs $\{m_i, n_i\}_{i=1}^N$

Apply s, R and T to $\{n_i\}$ to get $\{n_i'\}$

$$\mathsf{Let}\ \left\{n_{j}\right\} = \left\{n_{j}^{'}\right\}$$

Re-calculate the point correspondences $\{m_i, n_i\}_{i=1}^N$ re-calculate the error: $\Sigma^2 = \sum_{i=1}^{N} (m_i - n_i)^2$

End

Return s, R, T

$$[s,R,T] = \text{ICP} (\{m_i\}_{i=1}^N,\{n_j\}_{j=1}^M) (\text{suppose } N < M)$$
 calculate the point correspondences $\{m_i,n_i\}_{i=1}^N (\text{closest point})$ calculate the error: $\Sigma^2 = \sum_{i=1}^N (m_i - n_i)^2$

While not convergent

Evaluate s, R and T according to the pairs $\{m_i, n_i\}_{i=1}^N$ How?

Apply s, R and T to $\left\{n_{j}\right\}$ to get $\left\{n_{j}^{'}\right\}$

$$\mathsf{Let}\ \left\{n_{j}\right\} = \left\{n_{j}^{'}\right\}$$

Re-calculate the point correspondences $\left\{m_i, n_i\right\}_{i=1}^N$ re-calculate the error: $\Sigma^2 = \sum_{i=1}^N (m_i - n_i)^2$

End

Return s, R, T

Problem definition:

Given a set of point correspondence pairs $\{m_i, n_i\}_{i=1}^N$, how to evaluate s, R and T to minimize

$$\Sigma^{2} = \sum_{i=1}^{N} \| m_{i} - (sR(n_{i}) + T) \|^{2}$$

We assume that there is a similarity transform between point sets $\{m_i\}_{i=1}^N$ and $\{n_i\}_{i=1}^N$

Find s, R and T to minimize

Note: *R* is an orthogonal matrix.

$$\Sigma^{2} = \sum_{i=1}^{N} e_{i}^{2} = \sum_{i=1}^{N} \left\| m_{i} - \left(sR(n_{i}) + T \right) \right\|^{2}$$
 (1)

Let

$$\overline{m} = \frac{1}{N} \sum_{i=1}^{N} m_i, \overline{n} = \frac{1}{N} \sum_{i=1}^{N} n_i, m_i' = m_i - \overline{m}, n_i' = n_i - \overline{n}$$

Note that:
$$\sum_{i=1}^{N} m'_{i} = \mathbf{0}, \sum_{i=1}^{N} n'_{i} = \mathbf{0}$$

Then:

$$e_{i} = m_{i} - sR(n_{i}) - T = m_{i}' + m - sR(n_{i}' + n) - T = m_{i}' + m - sR(n_{i}') - sR(n) - T$$

$$= m_{i}' - sR(n_{i}') - \left(T - m + sR(n)\right) = m_{i}' - sR(n_{i}') - e_{0}$$

$$e_{0} = T - m + sR(n) \text{ is independent from } \{m_{i}', n_{i}'\}$$

(1) can be rewritten as:

$$\Sigma^{2} = \sum_{i=1}^{N} e_{i}^{2} = \sum_{i=1}^{N} \left\| m_{i}^{'} - sR(n_{i}^{'}) - e_{0} \right\|^{2} = \sum_{i=1}^{N} \left\| m_{i}^{'} - sR(n_{i}^{'}) \right\|^{2} - 2e_{0} \cdot \sum_{i=1}^{N} \left(m_{i}^{'} - sR(n_{i}^{'}) \right) + Ne_{0}^{2}$$

$$= \sum_{i=1}^{N} \left\| m_{i}^{'} - sR(n_{i}^{'}) \right\|^{2} - 2e_{0} \cdot \sum_{i=1}^{N} \left(m_{i}^{'} \right) + 2e_{0} \cdot \sum_{i=1}^{N} \left(sR(n_{i}^{'}) \right) + Ne_{0}^{2}$$

$$= \sum_{i=1}^{N} \left\| m_{i}^{'} - sR(n_{i}^{'}) \right\|^{2} + Ne_{0}^{2}$$

Variables are separated and can be minimized separately.

$$e_0^2 = 0 \Leftrightarrow T = \overline{m} - sR(\overline{n})$$
 If we have *s* and *R*, *T* can be determined.

Then the problem simplifies to: how to minimize

$$\Sigma^{2} = \sum_{i=1}^{N} \left\| m_{i}^{'} - sR(n_{i}^{'}) \right\|^{2}$$
 Consider its geometric meaning here.

We revise the error item as a symmetrical one:

Thus,

$$\left(\sqrt{s}\sqrt{Q} - \frac{1}{\sqrt{s}}\sqrt{P}\right)^{2} = 0 \Leftrightarrow s = \sqrt{\frac{P}{Q}} = \sqrt{\frac{\sum_{i=1}^{N} \left\|m_{i}^{'}\right\|^{2}}{\sum_{i=1}^{N} \left\|n_{i}^{'}\right\|^{2}}}$$
There the appropriate since different each power as proving in a

Then the problem simplifies to: how to maximize

$$D = \sum_{i=1}^{N} m_i' \cdot R(n_i')$$
 Note that: D is a real number.

$$D = \sum_{i=1}^{N} m_{i}^{'} \cdot Rn_{i}^{'} = \sum_{i=1}^{N} (m_{i}^{'})^{T} Rn_{i}^{'} = trace \left(\sum_{i=1}^{N} Rn_{i}^{'} (m_{i}^{'})^{T} \right) = trace (RH)$$

$$H \equiv \sum_{i=1}^{N} n_i' \left(m_i' \right)^T$$

Now we are looking for an orthogonal matrix R to maximize the trace of RH.

Lemma

For any positive semi-definite matrix C and any orthogonal matrix B:

$$trace(C) \ge trace(BC)$$

Proof:

From the positive definite property of C, $\exists A, C = AA^T$ where A is a non-singular matrix.

Let a_i be the *i*th column of A. Then

$$trace(BAA^{T}) = trace(A^{T}BA) = \sum_{i} a_{i}^{T}(Ba_{i})$$

According to Schwarz inequality: $|\langle x, y' \rangle| \le ||x|| ||y||$

$$a_{i}^{T}(Ba_{i}) \leq ||a_{i}^{T}|| ||Ba_{i}|| = \sqrt{(a_{i}^{T}a_{i})(a_{i}^{T}B^{T}Ba_{i})} = a_{i}^{T}a_{i}$$

Hence,

$$trace(BAA^T) \le \sum_i a_i^T a_i = trace(AA^T)$$
 that is, $trace(BC) \le trace(C)$

Consider the SVD of
$$H \equiv \sum_{i=1}^{N} n_i' \left(m_i' \right)^T$$
 $H = U \Lambda V^T$

According to the property of SVD, U and V are orthogonal matrices, and Λ is a diagonal matrix with nonnegative elements.

Now let $X = VU^T$ | Note that: X is orthogonal.

We have $XH = VU^TU\Lambda V^T = V\Lambda V^T$ which is positive semi-definite.

Thus, from the lemma, we know: for any orthogonal matrix B

$$trace(XH) \ge trace(BXH)$$

for any orthogonal matrix $\,\Psi\,$

$$trace(XH) \ge trace(\Psi H)$$

It's time to go back to our objective now...

R should be X

Now, s, R and T are all determined.

$$H \equiv \sum_{i=1}^{N} n_i' \left(m_i' \right)^T = U \Lambda V^T$$

$$R = VU^{T} \qquad s = \sqrt{\frac{\sum_{i=1}^{N} ||m_{i}||^{2}}{\sum_{i=1}^{N} ||n_{i}||^{2}}} \qquad T = \overline{m} - sR(\overline{n})$$

ICP Matching—An Example

bottle2

ac2

bottle1~ac1: 9.8462

bottle1~ac2: 10.3231

bottle2~ac1: 7.9172

bottle2~ac2: 10.3362

