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ABSTRACT 
 
In this paper, we present a simple yet efficient and effective 
multi-resolution approach to gray-scale and rotation 
invariant texture classification. Given a texture image, we at 
first convolve it with J Gabor filters sharing the same 
parameters except the parameter of orientation. Then by 
binarizing the obtained responses, we can get J bits at each 
location. Then, each location can be assigned a unique 
integer, namely “rotation invariant binary Gabor pattern 
(BGPri)”, formed from J bits associated with it using some 
rule. The classification is based on the image’s histogram of 
its BGPris at multiple scales. Using BGPri, there is no need 
for a pre-training step to learn a texton dictionary, as 
required in methods based on clustering such as MR8. 
Extensive experiments conducted on the CUReT database 
demonstrate the overall superiority of BGPri over the other 
state-of-the-art texture representation methods evaluated. 
The Matlab source codes are publicly available at 
http://sse.tongji.edu.cn/linzhang/IQA/BGP/BGP.htm 

Index Terms— texture classification, Gabor filter
 

1. INTRODUCTION 
Recent years have witnessed a growing interest in designing 
effective schemes for texture classification. Most of the 
methods [1-7] in this field adopt a common two-stage 
structure. In the first stage, texture images are represented as 
histograms over a discrete dictionary. In the second stage, 
the sample texture image will be assigned a class label 
based on the matching results between its histogram and the 
model histograms. From such a two-stage structure, we can 
know that the key issue in texture classification is how to 
represent texture images properly. Several representative 
works in this area will be reviewed in the following. 

In [1], Ojala et al. proposed the “Local Binary Pattern 
(LBP)”. In that method, the dictionary is a set of pre-defined 
uniform local binary patterns. Given a texture image, each 
of its location can be assigned with an integer representing a 
specific local binary pattern. Then the occurrence histogram 
of the uniform LBPs can be constructed for the image. 
Recently, Zhang et al. [4] extended the traditional LBP to 
Monogenic-LBP by incorporating other two rotation 
invariant measures, the local phase and the local surface 

type extracted using Riesz transforms. In [5], Crosier and 
Griffin proposed to use basic image features for texture 
representation. In their method, the dictionary is a set of 
pre-defined Basic Image Features (BIFs) [8], each 
corresponding to a qualitatively different type of local 
geometric structure. It needs to be noted that in methods [1, 
4, and 5] there is no need for a pre-training step to learn a 
dictionary. Varma and Zisserman [6] proposed a statistical 
learning based algorithm, namely Maximal Response 8 
(MR8), using a group of filter banks, where a rotation 
invariant texton dictionary is build first from a training set 
and then an unknown texture image is classified according 
to its histogram of texton frequencies. Later, under the same 
framework, Varma and Zisserman [7] proposed a new 
statistical learning based algorithm, in which, instead of 
responses of filter banks, compact image patches were used 
directly to represent local patterns. 

In this paper, we propose a novel training-free rotation 
invariant texture representation scheme. Here training-free 
means that in our method there is no need for a pre-training 
step to learn a texton dictionary as MR8 does. Our idea is 
inspired by the success of LBP, such a simple yet powerful 
texture descriptor. From the definition of LBP it can be 
known that LBP for a central pixel is totally decided by the 
signs of differences between it and its neighboring pixels. 
But, each sign used in LBP is binarized from the difference 
of two single pixels so it may be sensitive to noise. To 
improve it, we can use difference between regions to 
replace difference between two single pixels, which will be 
more robust intuitively. Gabor filter [9] is an ideal tool to 
this end, which can calculate the difference between regions 
covered by its support. In our method, the dictionary is a set 
of pre-defined rotation invariant binary patterns called as 
“rotation invariant binary Gabor patterns (BGPris)”. The 
occurrence histogram of BGPris can be formed to a given 
image. Then, the classification is based on the matching 
results between the sample histogram and the model 
histograms. Experiments are conducted on CUReT database 
[10, 11] to show the superiority of the proposed BGPri 

texture feature extractor. 
The rest of this paper is organized as follows. Section 2 

discusses the extraction of BGPris. Section 3 presents the 
texture classification scheme using BGPris. Section 4 reports 
the experimental results and Section 5 concludes the paper. 
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2. ROTATION INVARIANT  

BINARY GABOR PATTERNS 
 
Here we present our novel texture feature extractor, namely 
rotation invariant binary Gabor pattern (BGPri), in detail.  
 
2.1. Rotation invariant binary Gabor patterns 
Let’s briefly review Gabor filters at first. 2D Gabor filters 
are usually expressed as even-symmetric and odd-
symmetric ones separately. They are defined as 
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where x' = xcos  + ysin , y' = xsin  + ycos .  represents 
the frequency of the sinusoid factor,  represents the 
orientation of the normal to the parallel stripes of the Gabor 
function,  is the sigma of the Gaussian envelope and  is 
the spatial aspect ratio. 

Suppose that g0 ~ gJ-1 are J Gabor filters (even-
symmetric or odd-symmetric) sharing the same parameters 
except the parameter for orientation. Their orientations are 
{ j = j  / J :| j = 0, 1,…, J-1}. Let R denote the radius of the 
filter masks used. Now we want to define BGPri at the 
location x on a given image. Consider a circular image 
patch p with a radius R centering at x. After applying g0 ~ 

gJ-1 to the patch p (that means multiplying p with g0 ~ gJ-1 in 
a point-wise manner and then summing up all the elements), 
we can get a response vector r = {rj :| j = 0 ~ J-1}. Then by 
binarizing r, we can get a binary vector b = {bj :| j = 0 ~ J-1}. 
Each bj is either 0 or 1. By assigning a binomial factor 2j for 
each bj, we can transform b into a unique binary Gabor 
pattern (BGP) number that characterize the spatial structure 
of the local image texture 
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The BGP operator produces 2J different output values, 
corresponding to the 2J different binary patterns that can be 
formed by the J elements in b. In order to achieve rotation 
invariance, i.e., to assign a unique identifier to each rotation 
invariant binary Gabor pattern, we adopt a similar strategy 
as used in LBP [1]. We define the “rotation invariant binary 
Gabor pattern (BGPri)” as 

max{ ( , ) | 0,1,..., 1}riBGP ROR BGP j j J  (4)
where ROR(x, j) performs a circular bitwise right shift on 
the J-bit number x j times and the subscript ri means 
“rotation invariant”. For example, if the bits string b0 ~ b7 
has eight bits as 00001010, then BGP = 7 

j=0(2j·bj) = 80 
while BGPri = 160 (that is 000001012). If J = 8, BGPris can 
have 36 different values, which are listed in Table 1. 

We illustrate the calculation process of BGP and BGPri 
through an example shown in Fig. 1. To calculate BGPri, 8 
even-symmetric Gabor filters g0 ~ g7 are utilized. The radius 
of the filter masks is 101. In Fig. 1a, the circular image 
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(a) (b) 

Fig. 1: Illustration for the calculation process of BGPris, which consists of three steps, including Gabor filtering, binarization, and 
rotation invariant coding. The image patch p' used in (b) is a rotated version of p used in (a). BGPris derived from p and p' are the same, 
which validates that BGPri has the characteristics of rotation invariance. 
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patch p is of the radius 101 and we want to calculate the 
BGP and BGPri of its central position. At first, by applying  
g0 ~ g7 to p, we can get the responses r0 ~ r7. Then binarize 
r0 ~ r7 to get the binary vector {bj :| j = 0 ~ 7}. Based on {bj}, 
we can calculate BGP and BGPri for the central position of 
the image patch p according to formulas Eqs. (3) and (4), 
respectively. In this case BGPri = 252. The image patch p' 
used in Fig. 1b is rotated from p by 45° anticlockwise. The 
process to calculate BGP and BGPri from p' is similar to the 
process shown in Fig. 1a. We can clearly see that after a 
rotation, BGPs derived from p and p' are not the same 
anymore while BGPris remain unchanged. This 
demonstrates that BGPri can rotation invariantly 
characterize the spatial structure of a local image patch.  

 
Table 1: 36 unique BGPris extracted using 8 Gabor filters 

00000000 00000001 00010001 00001001 00000101 00100101
00010101 01010101 00000011 01000011 00100011 00010011
01010011 00110011 00001011 01001011 00101011 00011011
01011011 00000111 01000111 00100111 01100111 00010111
01010111 00110111 01110111 00001111 01001111 00101111
01101111 00011111 01011111 00111111 01111111 11111111

 
2.2. Multi-resolution analysis 
In real applications, a multi-resolution analysis can usually 
lead to better results. With our BGPri operator, such a multi-
resolution analysis can be easily achieved since the Gabor 
filter used in BGPri is inherently an excellent tool for the 
multi-resolution analysis. To this end, by varying 
parameters  and , we can have Gabor filters at different 
resolutions. For each selected resolution, we can have a 
specific BGPri operator. The multi-resolution analysis can 
then be accomplished by combining the information 
provided by these BGPri operators at different resolutions. 

 
3. CLASSIFICATION SCHEME 

For a fixed resolution, we can have two specific BGPri 
operators, one is based on even-symmetric Gabor filters, 
and the other is based on odd-symmetric ones. If s different 
resolutions are considered, we will have 2s BGPri operators 
in total. Using each BGPri operator, a normalized histogram 
can be constructed by counting the frequencies of BGPri 

responses over the whole image. So altogether we will have 
2s such kinds of histograms. Then, we can concatenate them 
together to form a large histogram h, and regard it as the 
descriptor of the image.  

We use the 2 distance to measure the dissimilarity of 
sample and model histograms. Thus, a test sample T will be 
assigned to the class of model L that minimizes  
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where M is the number of bins, and Tm (Lm) is the value of 
the sample (model) histogram at the mth bin.  
 

4. EXPERIMENTS AND DISCUSSIONS 
 
4.1. Determination of parameters 
Parameters involved in BGPri are empirically determined. 
Specifically, we make use of Gabor filters at three 
resolutions, and the corresponding {( i, i) :| i = 0, 1, 2} are 
set as (1.3, 0.7), (5.2, 2.5), and (22, 4.5). The spatial aspect 
ratio  of all the Gabor filters used is set as 1.82. For each 
selected resolution, Gabor filters along 8 different 
orientations are used and their orientations are { j = j  / 8 :| 
j = 0, 1,…, 7}. That means J is set as 8. Thus, the 
normalized histogram generated by using a BGPri operator 
has 36 bins (see Table 1). At each resolution, two BGPri 
operators are generated, one of which is based on even-
symmetric Gabor filters and the other is based on odd-
symmetric ones. Thus, altogether there are 6 BGPri 
operators and they can generate 6 histograms 
correspondingly. Then, these 6 histograms are concatenated 
together directly to form a large histogram h with 216 bins, 
which is regarded as the descriptor of the image and is used 
for the classification purpose.  
 
4.2. Database and methods for comparison 
We conducted experiments on a modified CUReT database 
provided at [10, 11]. It contains 61 textures and each texture 
has 92 images obtained under different viewpoints and 
illumination directions. The proposed BGPri was compared 
with the other five state-of-the-art rotation invariant texture 
representation methods, LBP [1], MR8 [6], Joint [7], BIF [5] 
and M-LBP [4]. For LBP, we combined the information 
extracted by three operators LBPriu2 

8,1 , LBPriu2 
16,3 , and LBPriu2 

24,5

together. For MR8, 40 textons were clustered from each of 
the 61 texture classes using the training samples and thus 
the texton dictionary was of the size 2440 (61×40). In Joint, 
the size of the image patch was selected as 7×7, and also 40 
textons were clustered from each class. For BIF, we 
implemented it by ourselves and the parameters were set the 
same as the ones described in [5].  
 
4.3. Classification results 
In order to get statistically significant classification results, 
N training images were randomly chosen from each class 
while the remaining 92 – N  images per class were used as 
the test set. The partition was repeated 1000 times 
independently. The average accuracy along with one 
standard deviation for each method is reported in Table 2. 

In addition to the classification accuracy, we also care 
about the feature size and the classification speed of each 
method. At the classification stage, the histogram of the test 
image will be built at first and then it will be matched to all 
the models generated from the training samples. In Table 3, 
we list the feature size (number of histogram bins), the time 
cost for one test histogram construction and the time cost 
for one matching at the classification stage by each method. 
All the algorithms were implemented with Matlab 2010b 
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except that a C++ implemented kd-tree (encapsulated in a 
MEX function) was used in MR8 and Joint to accelerate the 
labeling process. Experiments were performed on a Dell 
Inspiron 530s PC with Intel 6550 processor and 2GB RAM. 

 
Table 2: Classification results (%) 

 N = 46 N = 23 N = 12 N = 6 
LBP 95.74±0.84 91.95±1.43 86.45±2.23 78.06±3.31
MR8 97.79±0.68 95.03±1.28 90.48±1.99 82.90±3.45
Joint 97.66±0.68 94.58±1.34 89.40±2.39 81.06±3.74
BIF 97.38±0.68 94.95±0.99 90.67±2.09 83.52±3.55

M-LBP 98.12±0.53 95.80±1.17 91.27±2.46 83.32±3.94
BGPri 98.70±0.46 96.80±1.00 93.09±2.03 86.52±3.43

  
Table 3: Feature size and time cost (msec) 

 Feature 
size 

Time cost for one 
histogram construction  

Time cost for 
one matching 

LBP 54 87 0.022 
MR8 2440 4960 0.089 
Joint 2440 13173 0.089 
BIF 1296 157 0.056 

M-LBP 540 221 0.035 
BGPri 216 136 0.027 

 
Based on Table 2 and Table 3, we can have the 

following findings. First of all, BGPri can achieve higher 
classification accuracy than all the other methods evaluated, 
especially in the case of less training samples. Secondly, the 
proposed BGPri scheme requires a moderate feature size, a 
little bigger than LBP but much smaller than MR8, Joint, 
BIF, and M-LBP. The numbers of histogram bins for MR8, 
Joint, BIF, and M-LBP are 2400, 2400, 1296, and 540, 
while BGPri only needs 216 bins. Although the feature size 
of BGPri is a little bigger than LBP, considering the 
significant gain in the classification accuracy, it is deserved. 
Thirdly, these six schemes have quite different classification 
speeds. LBP runs fastest while BGPri ranks the second. 
Especially, BGPri works much faster than the two clustering 
based methods, MR8 and Joint. BGPri is nearly 40 times 
faster than MR8 and 100 times faster than Joint. In MR8 
and Joint, to build the histogram of the test image, every 
pixel on the test image needs to be labeled to one item in the 
texton dictionary, which is quite time consuming. Such a 
process is not required in LBP, M-LBP, BIF, and BGPri. 
Besides, an extra training period is needed in MR8 and Joint 
to build the texton dictionary, which is also not required in 
LBP, M-LBP, GIF, and BGPri. 

Therefore, in general, the proposed texture 
representation scheme BGPri has the merits of high 
classification accuracy, small feature size and fast 
classification speed. Compared with LBP, although it has a 
slightly larger feature size and works a little slower, its 
classification accuracy is remarkably better. Compared with 
MR8, Joint, BIF, and M-LBP, BGPri behaves better in all 
aspects, including the classification accuracy, the feature 
size and the running speed. 

 
5. CONCLUSION 

 
In this paper, we presented a novel rotation invariant texture 
representation method, namely BGPri. In our method, the 
dictionary is a set of pre-defined rotation invariant binary 
patterns called as “rotation invariant binary Gabor patterns 
(BGPris)”. BGPri is strongly robust to image’s rotations and 
is theoretically gray-scale invariant. Experiments indicate 
that BGPri can achieve higher classification accuracy than 
the other methods evaluated, especially at the occasions 
where the training set is small. Compared with the other 
state-of-the-art methods, in addition to the higher 
classification accuracy, BGPri also has advantages of 
smaller feature size and faster classification speed, which 
makes it a more suitable candidate in real applications. 
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