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ABSTRACT 

Recent years have witnessed a growing interest in 
developing objective image quality assessment (IQA) 
algorithms that can measure the image quality consistently 
with subjective evaluations. For the full reference (FR) IQA 
problem, great progress has been made in the past decade. 
On the other hand, several new large scale image datasets 
have been released for evaluating FR IQA methods in recent 
years. Meanwhile, no work has been reported to evaluate 
and compare the performance of state-of-the-art and 
representative FR IQA methods on all the available datasets. 
In this paper, we aim to fulfill this task by reporting the 
performance of eleven selected FR IQA algorithms on all 
the seven public IQA image datasets. Our evaluation results 
and the associated discussions will be very helpful for 
relevant researchers to have a clearer understanding about 
the status of modern FR IQA indices. Evaluation results 
presented in this paper are also online available at 
http://sse.tongji.edu.cn/linzhang/IQA/IQA.htm. 

Index Terms— Image quality assessment, SSIM, FSIM. 

1. INTRODUCTION 
Rapid proliferation of digital imaging and communication 
technologies has rendered the image quality assessment 
(IQA) an important issue in numerous applications. To this 
end, the scientific community has developed numerous 
automatic IQA methods in the past decades. According to 
the availability of a reference image, objective IQA indices 
can be classified as full reference (FR), no reference (NR) 
and reduced reference (RR) methods [1]. In this paper, our 
discussion is confined to FR methods. 

It has been widely acknowledged that the conventional 
IQA indices, such as the peak signal-to-noise ratio (PSNR), 
which operate directly on the intensity of the image, do not 
correlate well with the subjective fidelity ratings. Thus, 
many efforts have been made on designing sophisticated 
computational IQA models and great progress has been 
achieved in this area in the past decade. 

Due to historical reasons, most of the representative 
IQA indices were designed based on and evaluated only by 
the Laboratory for Image and Video Engineering (LIVE) 
dataset [2]. On seeing that LIVE only comprises limited 
distortion types (5 types of distortions in total), in order to 
provide more comprehensive test beds, several large scale 
image datasets for evaluating FR IQA algorithms have been 
established in recent years, such as the Tampere Image 
Database 2008 (TID2008) [3] and the Categorical Image 
Quality Database (CSIQ) [4]. In order to figure out clearly 
the status of the current FR IQA research, it is necessary to 
have a thorough evaluation of those state-of-the-art FR IQA 
metrics on all the available datasets. However, to the best of 
our knowledge, so far there is no work reported to conduct 
such a comprehensive evaluation. 

In this paper, we try to fulfill this task by providing 
comprehensive evaluations of eleven selected representative 
FR IQA indices on all the seven publicly available datasets. 
For each selected IQA index, its prediction capability and 
running speed are both evaluated. The results provided will 
benefit a lot the interesting researchers to have a clearer 
understanding about the current research and development 
status of FR IQA methods. In addition, the elicited 
discussions based on the evaluation results are expected to 
inspire new thoughts for designing new IQA algorithms. 

The rest of this paper is organized as follows. Section 2 
briefly reviews the FR IQA indices selected for evaluation.  
Section 3 introduces the benchmark IQA image datasets and 
the performance metrics adopted. Section 4 presents in 
detail the evaluation results and the associated discussions. 
Finally, Section 5 concludes the paper. 

2. FULL REFERENCE IQA ALGORITHMS 
In the past decade, various FR IQA indices were proposed. 
From them, we select ten salient ones plus PSNR for 
evaluation in this paper. Generally speaking, the selected 
IQA indices are widely cited in the literature and have been 
reported to have reliable performance by researchers. In 
addition, for all of these selected IQA indices, their authors 
have released the source codes so that the results can be 
easily reproduced. The 11 FR IQA indices used in our 
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evaluation include PSNR, the noise quality measure (NQM) 
index [5], the universal quality index (UQI) [6], the 
structural similarity (SSIM) index [1], the multi-scale SSIM 
(MS-SSIM) index [7], the information fidelity criterion 
(IFC) index [8], the visual information fidelity (VIF) index 
[9], the visual signal to noise ratio (VSNR) index [10], the 
information content weighted SSIM (IW-SSIM) index [11], 
the Riesz transforms based feature similarity (RFSIM) index 
[12], and the feature similarity (FSIM) index [13]. We 
briefly review them in the following. 

NQM [5] and VSNR [10] are two representative 
Human Visual System (HVS)-based IQA models. They 
emphasize the importance of HVS’s sensitivity to different 
visual signals, such as the luminance, the contrast, and the 
frequency content. SSIM [1] can be considered as a 
milestone of the development of FR IQA models. It was 
extended from its predecessor, the UQI index [6], and it is 
based on the hypothesis that HVS is highly adapted to 
extract the structural information from the visual scene. In 
their later work, Wang et al. proposed a multi-scale 
extension of SSIM, namely MS-SSIM [7], and it has been 
corroborated that MS-SSIM could produce better results 
than its single scale counterpart. In [11], Wang and Li 
improved the original MS-SSIM to IW-SSIM by 
introducing an information-content weighting (IW) based 
quality score pooling strategy. In IW-SSIM, local weights 
are assigned to SSIM map based on the total amount of 
information that can be extracted from the examined local 
patches in the reference and the distorted images. In [9], 
Sheikh et al. proposed the VIF index, which was an 
extension of its former version, i.e., the IFC index [8]. In 
VIF, Sheikh et al. treated the FR IQA problem as an 
information fidelity problem and the fidelity were quantified 
by the amount of information shared between the reference 
image and the distorted image. In [12], Zhang et al.
proposed the RFSIM index. In RFSIM, 1st-order and 2nd-
order Riesz transforms are used to characterize image’s 
local structures and the Canny edge detector is employed to 
generate the mask for quality score pooling. The FSIM 
index proposed in [13] employs two features to compute the 
local similarity map, the phase congruency and the gradient 
magnitude. At the quality score pooling stage of FSIM, 
phase congruency map is utilized again as a weighting 
function since it can roughly reflect how perceptually 
important a local patch is to the HVS. 

3. DATASETS AND PERFORMANCE METRICS 

To the best of our knowledge, there are seven publicly 
available image datasets for evaluating FR IQA indices. 
They are TID2008 [3], CSIQ [4], LIVE [2], Image and 
Video Communication Database (IVC) [14], Media 
Information and Communication Technology Database 
(MICT) [15], Wireless Imaging Quality Database (WIQ) 
[16], and Cornell-A57 Database (A57) [10]. The important 

information of these seven datasets, in terms of the number 
of reference images, the number of distorted images, the 
number of quality distortion types, the image format 
(grayscale or colorful) and the number of subjects, is 
summarized in Table 1. Totally, there are 3832 distorted 
images with all these datasets. 

Table 1: Benchmark image datasets for IQA 

Dataset
Ref. 

Images 
No. 

Distorted 
Images 

No. 

Distortion 
Types No. 

Image 
Format

Subjects 
No. 

TID2008 25 1700 17 color 838
CSIQ 30 866 6 color 35 
LIVE 29 779 5 color 161 
IVC 10 185 4 color 15 

MICT 14 168 2 color 16 
WIQ 7 80 5 gray 60 
A57 3 54 6 gray 7 

Four commonly utilized performance metrics [11] to 
evaluate IQA indices are employed to evaluate the selected 
FR IQA indices in this paper, including Spearman rank-
order correlation coefficient (SROCC), Kendall rank-order 
correlation coefficient (KROCC), Pearson linear correlation 
coefficient (PLCC), and Root Mean Squared Error (RMSE). 

4. EVALUATION RESULTS AND DISCUSSIONS 

4.1. Evaluation of prediction performance 
In this section, the prediction performance measured by 
SROCC, KROCC, PLCC, and RMSE of each selected IQA 
index on each benchmark dataset is given. The results are 
listed in Table 2. For each performance measure, the two 
IQA indices producing the best results are highlighted in 
boldface. From the results listed Table 2, it can be seen that 
an IQA index may have quite different prediction 
performance on different datasets. Thus, in order to provide 
an evaluation of the overall performance of the FR IQA 
indices, in Table 3 we present their weighted-average 
SROCC, KROCC and PLCC results over seven datasets and 
the weight assigned to each dataset linearly depends on the 
number of distorted images contained in that dataset. The 
overall performance ranking of the evaluated IQA indices 
based on three different performance metrics, SROCC, 
KROCC, and PLCC, is presented in Table 4. 

4.2. Evaluation of running speed 
We also evaluated the running speed of each selected IQA 
index. Experiments were performed on a Dell Inspiron 530s 
PC embedded with an Intel E6550 processor and 2GB RAM. 
The software platform was Matlab R2009a. The average 
time cost consumed by each IQA index for measuring the 
similarity of a pair of 384×512 color images (taken from 
TID2008) is listed in Table 5. 
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Table 3: Overall performance of IQA indices over 7 datasets 
IQA Index SROCC KROCC PLCC 

PSNR 0.6874 0.5161 0.7020 
NQM 0.7355 0.5649 0.7349 
UQI 0.7137 0.5398 0.7602 

SSIM 0.8430 0.6593 0.8407 
MS-SSIM 0.8885 0.7087 0.8831 

IFC 0.7128 0.5524 0.8084 
VIF 0.8423 0.6827 0.8728 

VSNR 0.7875 0.6132 0.7776 
IW-SSIM 0.8955 0.7215 0.8960 
RFSIM 0.8866 0.7092 0.8845 
FSIM 0.9094 0.7409 0.9050 

Table 4: Overall performance ranking of IQA indices 
IQA Index SROCC KROCC PLCC 

PSNR 11 11 11 
NQM 8 8 10 
UQI 9 10 9 

SSIM 5 6 6 
MS-SSIM 3 4 4 

IFC 10 9 7 
VIF 6 5 5 

VSNR 7 7 8 
IW-SSIM 2 2 2 
RFSIM 4 3 3 
FSIM 1 1 1 

Table 5: Time cost of each IQA index 
IQA Index Time (milliseconds) 

PSNR 14.3 
NQM 545.2 
UQI 105.8 

SSIM 45.2 
MS-SSIM 141.7 

IFC 3352.9 
VIF 3399.9 

VSNR 382.8 
IW-SSIM 870.6 
RFSIM 219.4 
FSIM 705.3 

4.3. Discussions 
Based on the evaluation results, we can have the following 
findings. First of all, all the IQA indices deliberately 
designed to have a quality prediction capability consistent 
with human perceptions can get better performance than 
PSNR, which is a widely used pixel-based quality index. 

Secondly, objective scores predicted by three recently 
proposed indices, FSIM [13], IW-SSIM [11], and RFSIM 
[12], are highly consistent with the subjective evaluations. 
They can provide statistically better prediction accuracy 
than the other methods evaluated. Especially, no matter 
which criterion is used, FSIM can always achieve the best 
overall performance. The superiority of FSIM, IW-SSIM, 

Table 2: Performance comparison of 11 IQA indices on 7 benchmark datasets 
  PSNR NQM UQI SSIM MS-SSIM IFC VIF VSNR IW-SSIM RFSIM FSIM

SROCC 0.5531 0.6243 0.5851 0.7749 0.8542 0.5675 0.7491 0.7046 0.8559 0.8680 0.8805
KROCC 0.4027 0.4608 0.4255 0.5768 0.6568 0.4236 0.5860 0.5340 0.6636 0.6780 0.6946
PLCC 0.5734 0.6142 0.6643 0.7732 0.8451 0.7340 0.8084 0.6820 0.8579 0.8645 0.8738

TID 
2008

RMSE 1.0994 1.0590 1.0031 0.8511 0.7173 0.9113 0.7899 0.9815 0.6895 0.6746 0.6525
SROCC 0.8058 0.7402 0.8098 0.8756 0.9133 0.7671 0.9195 0.8106 0.9213 0.9295 0.9242
KROCC 0.6084 0.5638 0.6188 0.6907 0.7393 0.5897 0.7537 0.6247 0.7529 0.7645 0.7567
PLCC 0.8000 0.7433 0.8312 0.8613 0.8991 0.8384 0.9277 0.8002 0.9144 0.9179 0.9120CSIQ

RMSE 0.1575 0.1756 0.1460 0.1334 0.1149 0.1431 0.0980 0.1575 0.1063 0.1042 0.1077
SROCC 0.8756 0.9086 0.8941 0.9479 0.9513 0.9259 0.9636 0.9274 0.9567 0.9401 0.9634
KROCC 0.6865 0.7413 0.7100 0.7963 0.8045 0.7579 0.8282 0.7616 0.8175 0.7816 0.8337
PLCC 0.8723 0.9122 0.8987 0.9449 0.9489 0.9268 0.9604 0.9231 0.9522 0.9354 0.9597LIVE

RMSE 13.3597 11.1926 11.9823 8.9455 8.6188 10.2643 7.6137 10.505 8.3473 9.6642 7.6780
SROCC 0.6884 0.8347 0.8244 0.9018 0.8980 0.8993 0.8964 0.7983 0.9125 0.8192 0.9262
KROCC 0.5218 0.6342 0.6252 0.7223 0.7203 0.7202 0.7158 0.6036 0.7339 0.6452 0.7564
PLCC 0.7196 0.8498 0.8302 0.9119 0.9108 0.9093 0.9028 0.8032 0.9231 0.8361 0.9376IVC

RMSE 0.8460 0.6421 0.6792 0.4999 0.5029 0.5069 0.5239 0.7258 0.4686 0.6684 0.4236
SROCC 0.6132 0.8911 0.7028 0.8794 0.8874 0.8354 0.9077 0.8614 0.9202 0.7731 0.9059
KROCC 0.4443 0.7129 0.5227 0.6939 0.7029 0.6370 0.7315 0.6762 0.7537 0.5752 0.7302
PLCC 0.6429 0.8955 0.7164 0.8887 0.8927 0.8403 0.9138 0.8710 0.9248 0.7783 0.9078MICT 

RMSE 0.9585 0.5569 0.8731 0.5738 0.5640 0.6784 0.5084 0.6147 0.4761 0.7857 0.5248
SROCC 0.6257 0.7644 0.6084 0.7261 0.7495 0.7159 0.6918 0.6558 0.7865 0.7368 0.8006
KROCC 0.4626 0.5803 0.4360 0.5569 0.5740 0.5290 0.5246 0.4873 0.6038 0.5493 0.6215
PLCC 0.7939 0.8170 0.6974 0.7980 0.8095 0.7678 0.7605 0.7736 0.8329 0.8103 0.8546WIQ 

RMSE 14.138 13.209 16.416 13.805 13.449 14.675 14.873 14.515 12.677 13.424 11.895
SROCC 0.6189 0.7981 0.4260 0.8066 0.8414 0.3185 0.6223 0.9355 0.8709 0.8215 0.9181
KROCC 0.4309 0.5932 0.3330 0.6058 0.6478 0.2378 0.4589 0.8031 0.6842 0.6324 0.7639
PLCC 0.7073 0.8271 0.6356 0.8017 0.8603 0.5772 0.6915 0.9502 0.9034 0.8475 0.9393A57

RMSE 0.1737 0.1381 0.1897 0.1469 0.1253 0.2007 0.1784 0.0766 0.1054 0.1305 0.0844
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and RFSIM can be partially attributed to the quality score 
pooling strategies they adopt. These three indices all use a 
spatially varying weighting function to indicate the different 
significance of different local image regions at the quality 
score pooling stage. It is believed that with a more proper 
score pooling strategy, better performance of an FR IQA 
index can be obtained. Thus, how to devise a more powerful 
score pooling strategy is a promising direction for the FR 
IQA research. Furthermore, it needs to point out that NQM 
and VSNR are two typical pure HVS-based IQA methods, 
trying to systematically model relevant psychophysical and 
physiological properties of HVS. Nevertheless, since how to 
model the components and their interactions of HVS is itself 
still a challenging topic, NQM and VSNR cannot perform 
as good as other signal-driven methods in most cases. 
However, this does not mean that HVS knowledge can be 
disregarded. On the contrary, though they do not depend on 
fundamental vision modeling, most of the signal-driven 
methods actually make use of the HVS knowledge 
implicitly. 

Thirdly, for some IQA indices, they may work well on 
some datasets but fail to provide good results on other 
datasets. For example, though VIF can get very pleasing 
results on LIVE, it performs quite poor on TID2008, WIQ, 
and A57. Similarly, VSNR can get very good results on 
A57 while it performs much poorer than most of the other 
indices on the rest datasets. One possible reason is that VIF 
(VSNR) may be over-tuned on LIVE (A57). On the other 
hand, it also indicates that different IQA datasets have quite 
different characteristics and different capabilities in 
assessing IQA indices. Though the latest TID2008 dataset is 
much larger than the previously published datasets in terms 
of the number of images, the number of quality distortion 
types, and the number of subjects, it still has some 
deficiencies to some extent. For example, multiply distorted 
images are not considered in TID2008. Hence, constructing 
an even more comprehensive dataset is of tremendous 
significance to the IQA research and it still requires further 
efforts by researchers in this field.  

At last, with respect to the running speed, VIF and IFC 
perform much poorer than the others. With our experimental 
settings, they both need more than 3 seconds for computing 
the similarity between a pair of images. Their low speed 
should be attributed to the multi-orientation and multi-scale 
wavelet decomposition required by them. FSIM, IW-SSIM, 
and RFSIM, methods that have pleasing prediction 
performance have moderate computation complexity. 
Among all the modern IQA indices evaluated, SSIM runs 
the fastest. Additionally, it can also achieve acceptable 
prediction performance. That is why SSIM has been so 
widely used after its birth. Thus, how to devise an IQA 
index that can have FSIM-like prediction performance and 
SSIM-like computation simplicity still needs further efforts. 

5. CONCLUSION 
In this paper, we extensively evaluated 11 selected FR IQA 

indices on all the seven publicly available IQA image 
datasets. Their prediction performance and the running 
speed were reported. Such evaluations can facilitate the IQA 
research by presenting researchers clearly the current status 
of modern FR IQA methods. Furthermore, constructive 
discussions based on the evaluation results were presented, 
aiming to inspire new insights for the further IQA research. 
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