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ABSTRACT 
 
Salient regions detection from images is an important and 
fundamental research problem in neuroscience and 
psychology and it serves as an indispensible step for 
numerous machine vision tasks. In this paper, we propose a 
novel conceptually simple salient region detection method, 
namely SDSP, by combining three simple priors. At first, 
the behavior that the human visual system detects salient 
objects in a visual scene can be well modeled by band-pass 
filtering. Secondly, people are more likely to pay their 
attention on the center of an image. Thirdly, warm colors 
are more attractive to people than cold colors are. Extensive 
experiments conducted on the benchmark dataset indicate 
that SDSP could outperform the other state-of-the-art 
algorithms by yielding higher saliency prediction accuracy. 
Moreover, SDSP has a quite low computational complexity, 
rendering it an outstanding candidate for time critical 
applications. The Matlab source code of SDSP and the 
evaluation results have been made online available at 
http://sse.tongji.edu.cn/linzhang/va/SDSP/SDSP.htm.   
 

Index Terms— Salient object detection, log-Gabor 
filter, visual attention 
 

1. INTRODUCTION 
 
Human beings can routinely and effortlessly judge the 
importance of image regions, and focus their attention on 
important parts. Computationally detecting such salient 
image regions has vast applications including object-of-
interest image segmentation [1], object recognition [2], 
adaptive image compression [3], content-aware image 
editing [4], etc. As a result, in the past decade, researchers 
working in various fields have devoted a great deal of 
efforts in the area of visual attention modeling. 

Most existing visual attention approaches are based on 
the bottom-up computational framework, where visual 
attention is supposed to be driven by low-level stimulus in 
the scene, such as contrast, color, and motion. Since there is 
an enormous literature in this area, we only review several 
representative ones of them.  

The first influential and best known model in this field 
was proposed by Itti et al. [5]. Itti’s model follows the 
Feature Integration Theory [6] by first decomposing the 

visual input into separate low-level features maps. Then, 
normalized center-surround difference maps are computed 
for individual features and later combined by a weighting 
scheme to form a saliency map. In [7], following Itti et al.’s 
architecture, Harel et al. proposed the graph-based visual 
saliency (GBVS) model by introducing a novel graph-based 
normalization/combination strategy. In another work 
following Itti’s framework, Klein and Frintrop [8] modeled 
the center-surround contrast in an information-theoretic way, 
in which two distributions of visual feature occurrences are 
determined for a center and a surround region. In [9], Bruce 
and Tsotsos modeled the image’s saliency as the maximum 
information that can be sampled from it. In their method, 
saliency is computed as Shannon’s self-information. By 
analyzing the log-spectrum of the input image, Hou and 
Zhang [10] proposed a Fourier transform based method to 
extract the spectral residual of an image in the spectral 
domain and to construct the corresponding saliency map in 
the spatial domain; one prominent advantage of this method 
is its low computational complexity. In Hou’s latest work 
[11], he proposed the image signature to approximate the 
foreground of an image within the theoretical framework of 
sparse signal mixing. In [12], Achanta et al. proposed a 
conceptually simple approach by combining image’s band-
pass filtered responses from three CIEL*a*b* channels. This 
method can provide pleasing results in most cases and it has 
the advantage of computational efficiency. As an extension 
to [12], Achanta et al. improved their original method by 
considering the special effects of boundaries in their later 
work [13]. In [14], Cheng et al. proposed a regional contrast 
based saliency extraction algorithm, which simultaneously 
evaluates global contrast differences and spatial coherence. 
In [15], Goferman et al. proposed a new type of saliency, 
namely context-aware saliency, which aims at detecting the 
image regions that represent the scene. In [16], a conditional 
random field is learned to combine features, such as multi-
scale contrast, center-surround histogram, and color spatial 
distribution, for salient object detection. In [17], Shen and 
Wu represent an image as a low-rank matrix plus sparse 
noises in a learned feature space, where the low-rank matrix 
explains the non-salient regions while the sparse noises 
indicate the salient regions. For a more complete survey on 
modern visual attention models, please refer to [18, 19]. 

A salient region detection model is usually used as a 
pre-processing component in a machine vision system. Thus, 
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a perfect salient region detection algorithm needs to perform 
well in two aspects. At first, it should have a good saliency 
prediction performance, which means that salient regions 
predicted by such an algorithm should be highly correlated 
with the judgment of human beings. Secondly, to be suitable 
for real-time applications, the algorithm should have a low 
computational cost. Nevertheless, through our investigation 
we find that the computational cost is often ignored when 
designing such algorithms. Many modern salient region 
detection methods, such as [7, 9, 15-17], are very 
complicated and usually are not computationally efficient, 
which limits their applications in practice.  

Based on these considerations, in this paper, we 
propose a novel salient region detection method having a 
high prediction performance and a low computational cost 
simultaneously, namely Saliency Detection by combining 
Simple Priors (SDSP, for short). The proposed SDSP 
method is constructed by combining three simple priors. At 
first, the behavior that the human visual system detects 
salient objects in a visual scene can be well modeled by 
band-pass filtering. Secondly, people are more likely to pay 
their attention on the center of an image. Thirdly, warm 
colors are more attractive to people than cold colors are. We 
propose to use simple mathematical models to express these 
three priors efficiently and effectively. By combining cues 
from three simple priors, the proposed SDSP approach is 
reached. The performance of SDSP is examined on the 
benchmark dataset and is compared with other eight state-
of-the-art saliency detection methods. Efficacy and 
efficiency of SDSP are corroborated by the experimental 
results.  

The remainder of this paper is organized as follows. 
Section 2 describes three simple priors and methods to 
simulate them. Section 3 presents our salient region 
detection algorithm SDSP. Section 4 reports the 
experimental results and Section 5 concludes the paper. 
 

2. SIMPLE PRIORS AND THEIR MODELING 
 
In this section, three simple priors, of which our SDSP 
algorithm is comprised, will be described in detail and 
methods to model them will be also presented. 
 
2.1. Frequency prior 
The seminal work from Achanta et al. [12] indicates that the 
salient region detection mechanism can be well 
approximated by integrating band-pass filtering responses 
from opponent color channels (such as the CIEL*a*b* color 
channels). With respect to the band-pass filter, Achanta et al. 
adopted the Difference of Gaussian (DoG) filter. 

Inspired by Achanta et al.’s work [12], in this paper, we 
also resort to band-pass filtering for saliency detection. 
However, with respect to the band-pass filter, we adopt the 
log-Gabor filter [20], instead of DoG. There are some good 
reasons for our selection. At first, we can construct a log-

Gabor filter with an arbitrarily bandwidth and still having 
no DC component. Secondly, the transfer function of the 
log-Gabor filter has an extended tail at the high-frequency 
end, which makes it more capable to encode natural images 
than other common band-pass filters [20, 21]. The transfer 

function of a log-Gabor filter g(x) (x = (x, y)∈2) in the 

frequency domain can be expressed as  
2
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where u = (u, v)∈2 is the coordinate in the frequency 

domain, ω0 is the filter’s center frequency, and σF controls 
the filter’s bandwidth. g(x) cannot be analytically expressed 
due to the singularity in the log function at the origin. 
Instead, g(x) can only be approximately obtained by 
performing a numerical inverse Fourier transform to G(u). 
An example of the 2-D log-Gabor filter in the frequency 
domain, with ω0 = 1/6 and σF = 0.3, is shown in Fig. 1. 
 

  
(a) (b) 

Fig. 1: An example of the log-Gabor filter in the frequency 
domain, with ω0 = 1/6 and σF = 0.3, shown in 3D surface 
format (a) and in gray-scale image format (b). 

 
Given an image {f(x):| x∈Ω, where Ω denotes the 

image spatial domain} in RGB color space (f(x) is actually a 
vector, containing three values representing R, G, and B 
intensities at the position x), its saliency map {SF(x)} 
modeled by band-pass filtering can be obtained as the 
follows, which is similar to [12]. At first, f(x) needs to be 
converted to CIEL*a*b* space, which is actually an 
opponent color space. The three resulting channels are 
denoted by fL(x), fa(x), and fb(x). Then, the saliency SF(x) is 
defined as 

      
1

2 2 2 2( ) * * * ( )F L a bS f g f g f g  x x  (2) 

where * denotes the convolution operation. 
 
2.2. Color prior 
Some studies [17] find from daily experiences that warm 
colors, such as red and yellow, are more pronounced to the 
human visual system than cold colors, such as green and 
blue. In this paper, we propose a simple yet effective 
method to model this prior.  

For a given image {f(x)} in the RGB color space, at 
first, it will be converted to the CIEL*a*b* color space. 
{fL(x)}, {fa(x)}, and {fb(x)} represent L*-channel, a*-channel, 
and b*-channel, respectively. CIEL*a*b* is an opponent 
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color system, in which a*-channel represents green-red 
information while b*-channel represents blue-yellow 
information. If a pixel has a smaller (greater) a* value, it 
would seem greenish (reddish). With the same manner, if a 
pixel has a smaller (greater) b* value, it would seem bluish 
(yellowish). Hence, if a pixel has a higher a* or b* value, it 
would seem “warmer”; otherwise, it would seem “colder”.  

Based on the aforementioned analysis, we devise a 
metric to evaluate the “color saliency” for a given pixel. At 
first, we perform linear mappings ( ) :| ( ) [0,1]a anf f x x  

and ( ) :| ( ) [0,1]b bnf f x x by 

( ) ( )
( ) , ( )a b

an bn

f mina f minb
f f

maxa mina maxb minb

 
 

 
x x

x x  (3) 

where mina (maxa) is the minimum (maximum) value of 
 ( ) :|af x x and minb (maxb) is the minimum (maximum) 

value of  ( ) :|bf x x . Thus, each pixel x can be mapped 

to one point in the color plane (fan, fbn)∈[0, 1][0, 1]. 
Intuitively, in this color plane, the point (fan=0, fbn=0) is the 
“coldest” point and thus it is the “least salient” one. 
Therefore, we define the color saliency of a point x in a 
straightforward manner as 
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where σC is a parameter. 
 
2.3. Location prior 
Several previous studies have demonstrated that objects 
near the image center are more attractive to people [22]. 
That implies locations near the center of the image will be 
more likely to be “salient” than the ones far away from the 
center. This prior can be simply and effectively modeled as 
a Gaussian map. Suppose c is the center of the image {f(x)}. 
Then, the “location saliency” at x under the “location prior” 
can be expressed as a Gaussian map 

2

2
2
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D
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where σD is a parameter. 
 
3. SDSP: SALIENCY DETECTION BY COMBINING 

SIMPLE PRIORS 
 
Based on three simple priors discussed in Section 2, we can 
derive our proposed saliency detection method, namely 
Saliency Detection by combining Simple Priors (SDSP). 
Suppose that from the given image f(x), we have computed 
three saliency maps, SF(x), SC(x), and SD(x) by using the 
three simple priors, respectively. The image’s final saliency 
map can be naturally defined as 

( ) ( ) ( ) ( )F D CSDSP S S S  x x x x  (6) 
The procedures to compute SDSP is illustrated using a 
sample image taken from [12] in Fig. 2. 

fa(x)*g(x)

f(x)

F C DSDSP S S S  

SF

Convert to L*a*b*

fL(x) fa(x) fb(x)

SC

fL(x)*g(x) fb(x)*g(x)

SD

 
Fig. 2: Illustration for the computation process of SDSP. 
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Fig. 3: Precision-recall curves obtained by using various 
saliency detection methods on the benchmark dataset. 

 
4. EXPERIMENTAL RESULTS 

 
4.1. Dataset and parameter settings 
We exhaustively compared our approach SDSP with other 
eight state-of-the-art saliency detection methods on a 
publicly available dataset [12] comprising 1000 images with 
binary ground truth. The methods used for comparison 
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included AIM [9], CA [15], FT [12], GB [7], IS [11], IT [5], 
MSSS [13], and SR [10]. 

Parameters in our SDSP approach were empirically 
tuned as: ω0 = 0.002, σF = 6.2, σD = 114, and σC = 0.25. 
 
4.2. Segmentation by fixed thresholding 
Similar to [12], we evaluated the performance of a saliency 
detection algorithm in the context of salient object 
segmentation. For a given saliency map with values in the 
range [0, 255], the simplest way to get a binary 
segmentation of the salient object is to threshold the 
saliency map at a threshold Tf∈[0, 255]. When Tf varies 
from 0 to 255, different precision-recall pairs are obtained, 
and a precision-recall curve can be drawn. The average 
precision-recall curve is generated by averaging the results 
from all the 1000 test images. The resulting curves are 
shown in Fig. 3. 

 
4.3. Segmentation by adaptive thresholding 

 
Table 1: F-measure for each algorithm 

Method F-measure 
AIM [9] 0.4317 
CA [15] 0.5528 
FT [12] 0.6700 
GB [7] 0.6186 
IS [11] 0.5020 
IT [5] 0.4959 

MSSS [13] 0.7417 
SR [10] 0.4568 
SDSP 0.7758 

 
In this experiment, we used an image dependent adaptive 
threshold to segment objects in the image. Such a strategy 
was proposed in [12]. Specifically, such an adaptive 
threshold Ta is determined as twice the mean saliency of the 
image by 

1 1

2
( , )

W H

a
x y

T S x y
W H  


   (7) 

where W and H are the width and height of the saliency map, 
respectively, and S(x, y) is the saliency value of the pixel at 
the position (x, y).  

Using the adaptive threshold, we could obtain binarized 
maps of salient objects extracted by each of the saliency 
detection algorithm. Then, for each algorithm, for each 
image, we can compute the F-measure, which is defined as 

2

2

(1 ) Precison Recall
F

Precison Recall



  


 

 (8) 

Similar to [12, 17], we set β2 = 0.3 in our experiments. F-
measure can reflect the overall prediction accuracy of an 
algorithm. Averaged F-measure over 1000 images achieved 
by each saliency detection algorithm is listed in Table 1. 
 
4.4. Computational cost 

In addition to the saliency prediction accuracy, the 
computational costs of various methods were also evaluated. 
Experiments were performed on a standard HP Z620 
workstation with a 3.2GHZ Intel Xeon E5-1650 CPU and 
an 8G RAM. The software platform was Matlab R2012a. 
The time cost consumed by each evaluated saliency 
detection method for processing one 400×300 color image 
is listed in Table 2. 
 

Table 2: Time cost of each method 
Method Time (seconds) 
AIM [9] 5.118 
CA [15] 33.662 
FT [12] 0.045 
GB [7] 0.464 
IS [11] 0.022 
IT [5] 0.134 

MSSS [13] 0.784 
SR [10] 0.013 
SDSP 0.039 

 
4.5. Discussions 
From precision-recall curves shown in Fig. 3 and F-
measures listed in Table 1, it can be seen that with respect to 
the saliency region detection accuracy, the proposed method 
SDSP performs consistently and significantly better.  

In addition, from Table 2, it can be seen that the 
computational costs of different saliency detection methods 
vary greatly. SDSP runs only a little slower than the 
methods SR [10] and IS [11] while it works much faster 
than all the other methods evaluated. However, it should be 
noted that in terms of the saliency detection accuracy, SDSP 
performs much better than SR and IS.  

Thus, we can conclude that the proposed SDSP method 
could achieve the best saliency detection accuracy while it 
has a quite low computational complexity, which renders it 
a better candidate for time critical applications. 
 

5. CONCLUSION 
 
In this paper, we proposed a novel salient region detection 
method, namely SDSP, by combining three simple priors in 
a straightforward manner. SDSP is conceptually simple and 
can be easily implemented. Experimental results indicate 
that SDSP could yield statistically better saliency detection 
accuracy than all the other competing methods evaluated. 
Moreover, SDSP has a very low computational complexity, 
making it the best candidate for real-time applications. 
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