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ABSTRACT

Data fusion of heterogeneous LiDAR systems has gained
significant attention due to its potential for providing wide-
range sensing and high-density measurements for robots.
However, existing LiDAR calibration methods primarily fo-
cus on homogeneous LiDAR systems and yield suboptimal
outcomes when applied to heterogeneous setups. To this
end, this paper proposes an IMU-Assisted Heterogeneous
LiDAR extrinsics Calibration method, namely IA-HeLiC,
which is a target-free method based on continuous-time op-
timization. Specifically, IA-HeLiC utilizes two types of
errors, namely geometric constraint error and motion con-
straint error, and minimizes them within a B-spline-based
continuous-time framework to achieve accurate extrinsic
calibration. Using a parameter loopback mechanism, this op-
timization process is performed iteratively to further improve
calibration accuracy. IA-HeLiC’s performance is validated
through experiments using a ground-truth-known handheld
device, by which multiple data sequences were collected
in diverse real-world scenes. The experiments demonstrate
the superior performance of the proposed method compared
to its competitors. To make our results reproducible, the
source code and the collected dataset have been released at
https://cslinzhang.github.io/IA-HeLiC.

Index Terms— LiDAR extrinsic calibration, target-free
calibration, mechanical spinning LiDAR, solid-state LiDAR,
LiDAR data fusion

1. INTRODUCTION

LiDARs enable accurate 3D perception of the surrounding
environment and have been widely applied in simultaneous
localization and mapping (SLAM), autonomous driving, and
autonomous robotics in recent years. At present, the most
commonly used LiDARs are the mechanical spinning LiDAR
and the solid-state LiDAR. These two types possess comple-
mentary characteristics. The mechanical spinning LiDAR has
a wide 360-degree FoV, but its measured point cloud is sparse.
The solid-state LiDAR provides a denser point cloud despite
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having a smaller FoV. Additionally, the solid-state LiDAR of-
ten comes equipped with an integrated IMU to enhance sens-
ing capabilities. In practice, a heterogeneous LiDAR system
can be composed of these two types of LiDARs. Such a
system can leverage the wide-area point coverage provided
by the mechanical spinning LiDAR, the dense point cloud
scanned by solid-state LiDAR and the motion data measured
by the IMU.

By fusing the above-mentioned multi-modal data, the het-
erogeneous LiDAR system can acquire a comprehensive per-
ception. For fusing data from heterogeneous LiDARs, extrin-
sics are crucial for reprojecting the point clouds from differ-
ent LiDARs into a common frame. Therefore, obtaining ac-
curate extrinsics between LiDARs is a fundamental require-
ment for such data fusion. In the extrinsic calibration process
of LiDAR systems, the existing methods typically employ ge-
ometric constraints and motion constraints. However, on the
one hand, the geometric constraints of the existing methods
are primarily designed for homogeneous LiDARs, which may
not be well adapted to heterogeneous LiDARs. Consequently,
these approaches often yield inaccurate calibration results and
can even fail when applied to heterogeneous LiDAR systems.
On the other hand, for motion constraints, most of the ex-
isting methods use discrete-time optimization methods such
as graph optimization and Kalman filters. Nevertheless, the
LiDAR measurements in a system are often acquired asyn-
chronously, which significantly impacts the calibration accu-
racy achievable through discrete-time optimization methods.

As an attempt to solve the aforementioned problems,
in this paper, we propose an IMU-Assisted Heterogeneous
LiDAR extrinsics Calibration method, namely IA-HeLiC,
which is based on continuous-time optimization. The charac-
teristics of IA-HeLiC and our contributions are summarized
as follows:

1. To the best of our knowledge, IA-HeLiC is the first
heterogeneous LiDAR extrinsic calibration method
that considers the geometric constraints of heteroge-
neous LiDAR point clouds. To generate geometric
constraints applicable to both mechanical spinning Li-
DAR and solid-state LiDAR point clouds, sub-maps
of LiDARs are built and then surfels are extracted
from the sub-maps. Based on these surfels, we design



a “cross surfel” error by geometrically constraining
the distances between LiDAR points and their associ-
ated surfels of heterogeneous LiDAR sub-maps. By
matching and aligning the LiDAR sub-maps, this novel
approach contributes to the overall accuracy of the ex-
trinsic calibration for heterogeneous LiDAR systems.

2. A calibration framework that is based on continuous-
time optimization is proposed. This framework lever-
ages B-spline curves to represent the trajectory of
the LiDAR system, effectively mitigating the adverse
effects of data asynchrony. Under this framework, mo-
tion constraints can be constructed on these B-spline
curves, and the motion constraint error is jointly min-
imized with the aforementioned geometric one under
continuous-time optimization to accurately calibrate
extrinsics.

3. A parameter loopback mechanism is introduced to fur-
ther improve the accuracy of calibration. This mech-
anism involves iteratively constructing LiDAR trajec-
tories and sub-maps and subsequently re-optimizing
them. Through multiple iterations, the accuracies of
the trajectories, sub-maps, and extrinsics are mutually
improved, aiming for the global optimum.

4. An adequate heterogeneous LiDAR dataset was estab-
lished in real-world scenes to validate the performance
of IA-HeLiC. This dataset was acquired by a handheld
device which was sufficiently motion-activated in all
axes of both rotation and translation. This dataset can
be employed by other researchers to further study the
extrinsic calibration of heterogeneous LiDAR systems.

2. RELATED WORK

2.1. Target-based Approaches

Target-based approaches are considered straightforward ap-
proaches for LiDAR extrinsic calibration. Such approaches
rely on the utilization of objects with specific geometric or
physical characteristics as calibration targets. On the one
hand, some of the schemes require pre-made calibration tar-
gets. The method proposed by Pusztai et al. [1] performs
calibration with multiple box-like objects placed in the scene.
After that, some solutions [2, 3, 4] that conduct calibration
with the assistance of planar objects were proposed, which
are simpler to set up compared with the Pusztai et al.’s work
[1]. In a different manner, Gao and Spletzer’s work [5] cal-
ibrates with retro-reflective targets on a pole. On the other
hand, some methods directly use objects with planar features
in the scene for calibration [6, 7, 8]. Unlike the previous ones,
the calibration process of these methods does not rely on pre-
made targets. However, these approaches require high-quality
extraction of targets, which is demanding on the calibration
scene.

2.2. Target-free Approaches

Target-free approaches extract geometric constraints and mo-
tion constraints from the LiDAR point clouds to calibrate
the extrinsics of LiDAR systems. Compared with the target-
based ones, these approaches have more relaxed requirements
for the calibration scene. Schemes [9, 10] focus on establish-
ing geometric constraints for extrinsic calibration of LiDAR
systems. However, they do not consider the motion con-
straints among different frames of the same LiDAR. Unlike
them, the solution proposed by Jiao et al. [11] and the ap-
proach proposed by Lin et al. [12] use methods based on
LOAM [13] to obtain the motion constraints. In addition, the
calibration process can be aided by motion sensors. Das et
al. [14] use the global navigation satellite system (GNSS)
and its built-in IMU to obtain motion constraints. However,
it’s worth noting that the majority of existing target-free ap-
proaches are primarily designed for homogeneous LiDAR
systems and do not account for heterogeneous LiDARs.

3. METHOD

3.1. Framework Overview

The IA-HeLiC framework, illustrated in Fig. 1, takes inputs
in the form of LiDAR points and IMU measurements from
both the mechanical spinning LiDAR and the solid-state Li-
DAR. It operates in three phases: initialization, data associa-
tion, and continuous-time optimization. During the initializa-
tion phase, initial values of the LiDAR trajectories and extrin-
sics are established using the hand-eye calibration framework
[15]. Moving on to the data association phase, sub-maps are
constructed for each LiDAR based on the initialized trajecto-
ries. These sub-maps are then used to extract surfels. After
that, the associations between LiDAR points and surfels are
established from the sub-maps. In the subsequent continuous-
time optimization phase, error terms are generated from these
associations. These error terms are utilized to optimize both
the extrinsics and the trajectory of the LiDAR system. To
improve the accuracy of the extrinsics, IA-HeLiC employs a
mechanism called parameter loopback. It involves utilizing
the optimized extrinsics and the LiDAR system trajectory to
reconstruct the sub-maps and re-optimize the parameters it-
eratively. Through multiple iterations, IA-HeLiC refines the
parameters, thereby improving the accuracy of the extrinsics.

3.2. Trajectory Representation

To address the asynchronous nature of the collected LiDAR
measurements, IA-HeLiC employs spatio-temporally con-
tinuous B-spline curves to represent the system trajectory.
The B-spline curves offer quadratic differentiability, ensuring
smoothness in the trajectory and enabling direct derivation
of the system acceleration and angular velocity. Moreover,



Fig. 1. Workflow of IA-HeLiC. IA-HeLiC takes heteroge-
neous LiDAR data as input and estimates parameters in the
initialization phase. Then parameters are iteratively refined
through the data association phase and continuous-time opti-
mization phase.

B-spline curves facilitate local control and optimization, sim-
plifying the optimization process. In this paper, we denote the
global frame by (·)G, and the LiDAR system’s pose in this
frame at moment t is denoted by TG

S (t). Inspired by the work
[16], we build two cubic B-spline curves to represent the
trajectory: one for the orientation and one for the position.
Specifically, TG

S (t) can be split into the orientation in the
quaternion form qG

S (t) ∈ R4 and position tGS (t) ∈ R3. Both
orientation and position B-spline curves are segmented into
multiple time intervals of length ∆t. The i-th time interval
is denoted by [ti, ti +∆t). At ti, there is a control point for
each B-spline curve. According to [17, 18], at the moment
t ∈ [ti, ti + ∆t), tGS (t) and qG

S (t) are represented by their
corresponding control points respectively as,

tGS (t) = ti +

3∑
j=1

B̃i+j(t)(ti+j − ti+j−1), (1)

qG
S (t) = qi ⊗

3∏
j=1

Exp
(
B̃i+j(t)Log (q̄i+j−1 ⊗ qi+j)

)
,

(2)

where ti ∈ R3 denotes the control point of the position B-
spline at ti, quaternion qi ∈ R4 denotes the control point
of the orientation B-spline at ti, ⊗ denotes quaternion mul-
tiplication, q̄i+j−1 denotes the conjugate of qi+j−1, Exp(·)
denotes the exponential mapping from so(3) to SO(3) while
Log(·) denotes its inverse mapping, and B̃i(·) is the i-th cu-
mulative B-spline basis function of degree 3.

Taking advantage of the quadratic differentiability of B-
spline curves, the acceleration aS(t) and angular velocity
ωS(t) of the LiDAR system at moment t in its local frame

(·)S can be derived as,

ωS(t) =
((

RG
S (t)

)⊤
ṘG

S (t)
)∨

, (3)

aS(t) =
(
RG

S (t)
)⊤

(ẗGS (t)− gG), (4)

where RG
S (t) ∈ R3×3 is the rotation matrix corresponding

to qG
S (t), Ṙ

G
S (t) denotes the first-order derivative of RG

S (t)
w.r.t. time at t, ẗGS (t) denotes the second-order derivative of
tGS (t) w.r.t. time at t, gG ∈ R3 denotes the gravity accel-
eration expressed in the global frame, and (·)∨ denotes the
mapping from 3× 3 skew-symmetric matrices to R3.

3.3. Initialization

Prior to parameter optimization, the trajectory and the extrin-
sics of the LiDAR system are initialized with rough estima-
tions. First, we introduce the initialization of the system tra-
jectory. On the one hand, the orientation B-spline curve of the
trajectory, denoted by Tq, is initialized using the IMU’s gy-
roscope readings in the system frame, (·)S . Specifically, the
gyroscope reading at moment ti is denoted by ω̃S

(ti)
, where

i is the index of the IMU measurement. We initialize Tq by
solving the following least-square problem,

Tq = argmin
Tq

(
1

2

∑
i

||ω̃S
(ti)

− ωS(ti)||22

)
, (5)

where ti is the moment of gyroscope measurement, || · ||22 is
the square of the L2 norm, and ωS(·) denotes the system’s
angular velocity given by Eq. (3). On the other hand, as the
subsequent optimization is insensitive to the initial trajectory
position, we adopt a simple initialization strategy for the posi-
tion B-spline by setting all its position control points to zero.

Next, we initialize the extrinsics of the LiDAR system,
which consist of frame transforms from each LiDAR to the
system. To begin the initialization process, an arbitrarily cho-
sen LiDAR, L0, is taken as the reference LiDAR. After that,
during the initialization, we first estimate the frame trans-
forms between L0 and other LiDARs, and then initialize the
frame transforms between the system and L0.

To estimate the frame transforms between LiDARs, we
utilize existing well-established LiDAR odometries to obtain
the local trajectory of each LiDAR. For mechanical spinning
LiDARs, we use LOAM [13], and for solid-state LiDARs, we
adopt the LiDAR-inertial odometry, LI-Init [19]. It is worth
mentioning that due to the asynchronous nature of odometry
outputs, we align the timestamps of poses using the linear in-
terpolation on Lie algebra presented in [20], and then the time
origins of all LiDAR trajectories are aligned with the global
time origin. After the local trajectories are obtained, we can
then estimate the frame transforms between different LiDARs
through hand-eye calibration [15]. Specifically, we denote k-
th LiDAR by Lk and denote the pose of Lk at moment ti in its



mapping frame by T̃Lk

(ti)
∈ SE(3). The relationship between

the poses of Lk and L0 at timestamp ti can be given as,

T̃L0

(ti)
TL0

Lk
= TL0

Lk
T̃Lk

(ti)
, (6)

where ti is the i-th timestamp of the LiDAR trajectory, and
TL0

Lk
is the frame transform between Lk and L0. With mul-

tiple timestamps, TL0

Lk
can then be solved as an AX = XB

problem [15].
Once we have obtained the frame transforms between

each LiDAR sensor and the reference LiDAR, we proceed to
initialize the transform TS

L0
between the frame of L0 and the

system frame. Specifically, the rotation component of TS
L0

,
denoted by RS

L0
, intertwines the orientations of L0 and the

system, which is given by the following equation,

RS
L0

R̃L0

(ti)
= RG

S (ti)R
S
L0
, (7)

where R̃L0

(ti)
is the orientation component of T̃L0

(ti)
, and

RG
S (ti) denotes the rotation matrix of the LiDAR system

at ti. To initialize RS
L0

, we solve Eq. (7) with the method
in [21]. Finally, with both RS

L0
and TL0

Lk
solved, we ini-

tialize the rotation component of the extrinsics for Lk as
RS

Lk
= RS

L0
RL0

Lk
, where RL0

Lk
represents the orientation

component of TL0

Lk
. The translation components of all extrin-

sics are simply set to zero, similar to the initialization of the
system position. With these steps, the extrinsics of Lk, TS

Lk
,

are initialized.

3.4. Data Association

Following the initialization stage, we have acquired the dis-
crete trajectory for each LiDAR. In this stage, our objective
is to extract surfels and establish data associations for the Li-
DAR points. To accomplish this, we begin by constructing
a sub-map for each LiDAR. This is achieved by projecting
the LiDAR points onto its corresponding mapping frame, uti-
lizing the initialized discrete trajectory. It’s worth mentioning
that, pose interpolation is employed to handle the discreteness
of the trajectory. After the construction of LiDAR sub-maps,
extraction of geometric features is required to obtain final data
associations. Two commonly used geometric features for Li-
DAR sub-maps are edge features and surfels. However, in
the calibration scenes, surfels tend to be more abundant and
less influenced by LiDAR noise. Therefore, in IA-HeLiC, we
choose to use surfels for data association. To extract surfels,
we voxelize each sub-map and then compute the second-order
moments of each voxel. Subsequently, based on the work
[22], we use the following equation to estimate the likelihood
lp that the point cloud within a voxel represents a surfel, and
lp is given as,

lp = 2
λ1 − λ0

λ0 + λ1 + λ2
, (8)

where λ0 ≤ λ1 ≤ λ2 are the three eigenvalues of the second-
order moment matrix of the voxel. The closer lp is to 1, the

more likely that points in the voxel form a surfel. In our
approach, we pick a threshold of lp > 0.8 to select candi-
date surfels and fit their plane equations under the RANSAC
framework. Finally, we establish data associations by asso-
ciating the points within a short distance (< 0.05m) from
the surfel with that particular surfel. Except for associations
in the same sub-map, we also establish associations between
points and surfels in different sub-maps. To achieve this, the
points are projected onto other sub-maps using the initial Li-
DAR frame transforms, and associations are similarly estab-
lished with the surfels nearby.

3.5. Continuous-time Optimization

In this stage, we perform a joint optimization of all con-
trol points in the B-spline curves T representing the system
trajectory as well as the extrinsics of the heterogeneous Li-
DAR system E = {TS

Lk
}. This optimization allows us to

accurately calibrate the extrinsics. In the continuous-time
framework, we build geometric constraints from the afore-
mentioned point-surfel associations, obtaining the local surfel
error eLSi ∈ R and the cross surfel error eCS

i ∈ R. Also, we
derive the angular velocity and acceleration of the LiDAR
system from the trajectory B-spline curves to build motion
constraints, resulting in two sorts of motion constraint error:
the angular velocity error eωi ∈ R3 and the acceleration er-
ror eai ∈ R3. An illustration of the errors is given in Fig.
2. Based on these errors, we formulate the continuous-time
optimization as the following minimization problem,

E , T =argmin
E,T

(
wLS

2

∑
i

(
eLSi
)2

+
wCS

2

∑
j

(
eCS
j

)2
+

wω

2

∑
k

||eωk ||22 +
wa

2

∑
l

||eal ||22),
(9)

where wLS, wCS, wω , and wa are the weights of the cor-
responding errors, respectively. Subsequently, we introduce
each of these errors individually.
Local surfel error. To establish the geometric constraint that
a surfel point lies on its associated surfel within the same sub-
map, eLSi is constructed as the point-plane distance between
the surfel point and the surfel within the sub-map, which is
given as,

eLSi = dist
(
pLk
i , πLk

i

)
, (10)

pLk
i =

(
TS

Lk

)−1
TG

S (ti)T
S
Lk

p̃
Lk(ti)
i , (11)

where p̃
Lk(ti)
i ∈ R3 denotes the raw LiDAR measurement of

i-th surfel point, Lk denotes the measuring LiDAR, ti denotes
the measurement timestamp, pLk

i denotes the projection of
p̃
Lk(ti)
i in the mapping frame of Lk, TG

S (ti) denotes the sys-
tem pose at ti given by Eq. (1) and Eq. (2), dist(·, ·) denotes
the point-plane Euclidean distance, and πLk

i denotes of the



(a) Local surfel error (b) Cross surfel error

IMU Readings

(c) Motion constraint error

Fig. 2. Illustrations of the error terms involved in IA-HeLiC. The local surfel error and cross surfel error are constructed
as distances from LiDAR points to corresponding surfels, while the motion constraint error is constructed based on motion
estimations from the IMU.

surfel associated with p̃
Lk(ti)
i in the mapping frame of Lk.

eLSi characterizes the internal roughness of each sub-map.
Cross surfel error. Drawing upon the geometric constraint
that a surfel point in one LiDAR point cloud lies on its asso-
ciated surfel in the heterogeneous LiDAR point cloud, eCS

i is
formed as the point-plane distance between the projection of
the surfel point to the heterogeneous sub-map and the corre-
sponding surfel, which is given as,

eCS
i = dist

(
pLm
i , πLm

i

)
, (12)

pLm
i =

(
TS

Lm

)−1
TG

S (ti)T
S
Lk

p̃
Lk(ti)
i , (13)

where m denotes the index of the sub-map, pLm
i denotes the

projection of p̃Lk(ti)
i in the mapping frame of Lm, and πLm

i

denotes the surfel associated with p̃
Lk(ti)
i in that mapping

frame. The cross surfel error eCS
i assesses the degree of align-

ment between the heterogeneous LiDAR sub-maps when re-
projected with the extrinsics, thereby serving as a measure of
the extrinsic accuracy.
Motion constraint error. eωi and eai are defined as the dif-
ference between the motion measurements obtained from the
IMU and the motion estimates derived from the trajectory.
After transforming IMU readings to the LiDAR system frame,
eωi and eai are given as,

eωi = ω̃S
(ti)

− ωS(ti), (14)

eai = ãS(ti) − aS(ti), (15)

where i is the index of IMU measurement, ti is the measure-
ment timestamp, ω̃S

(ti)
denotes the angular velocity measured

by the IMU’s gyroscope at ti, ãS(ti) denotes the acceleration
measured by the IMU’s accelerometer at ti, ωS(·) denotes
system angular velocity given by Eq. (3), and aS(·) denotes
system acceleration given by Eq. (4). These error terms de-
scribe the tracking accuracy of the system trajectory. Given
that the IMU typically has a higher measurement frequency
compared to LiDARs, optimizing with these error terms can
establish a fine-grained control of the trajectory.

Once all the aforementioned errors have been constructed,
we proceed to solve the non-linear least-square problem pre-
sented in Eq. (9). By solving this problem, we can calibrate
the extrinsics of the LiDAR system and refine the continuous
system trajectory.
Parameter loopback. The sub-maps in Sec. 3.4 are built
using the discrete LiDAR trajectories, whose accuracy is af-
fected by the employed odometries. Considering that they are
not optimal when building geometric constraints, we take the
optimized extrinsics and system trajectory obtained thus far
and feed them back to the data association stage (see Sec. 3.4)
to rebuild the sub-maps. Since LiDAR trajectories are repre-
sented by continuous B-spline curves now, no pose interpola-
tion is further required in sub-map construction. Utilizing the
optimized parameters as initial values, the re-optimization is
then performed on these new geometric constraints to achieve
a more accurate calibration. Noticing that the above process
can be looped, we iterate multiple times to obtain the final
extrinsics of the heterogeneous LiDAR system.

4. EXPERIMENT

4.1. Experimental Setup

To evaluate the performance of IA-HeLiC, data from hetero-
geneous LiDAR systems are required for extrinsic calibration.
However, existing heterogeneous LiDAR datasets do not have
enough pose changes and motion activations, making them
suboptimal for calibration problems. To this end, we built a
handheld data collection device (pictured) to collect our cali-
bration dataset. The device is equipped with a ROBOSENSE
RS-LiDAR-16 mechanical spinning LiDAR and a Livox Avia
solid-state LiDAR. The Livox Avia LiDAR has a built-in 6-
axis 200 Hz IMU. These sensors are rigidly attached to the
handheld device and their orientations and positions can be
obtained directly from the device’s readings. Our dataset col-
lected with this device contains multiple sequences of sensor
data in various real-world scenes, each lasting more than 1
minute. Included in each sequence is data captured through



complete rotation and motion of the device in all axes.
IA-HeLiC was implemented using ROS Noetic and PCL

libraries in C++17 and executed on a computer with an Intel
Xeon CPU E5-2630 v3 @ 2.40GHz × 32. In all experiments,
wLS = 2, wCS = 10, wω = 18.5, wa = 28, and the time
interval of B-spline control points ∆t was set to 0.2s.

Mechanical 
Spinning LiDAR

Soild-state LiDAR 
with IMU

Pivoting
Mount

Positioning
Holes

Fig. 3. The handheld device used to collect the test dataset for
all experiments. Positions and orientations can be read from
the positioning holes and the pivoting mount on the device.

4.2. Qualitative Results

To have an intuitive understanding of the calibration accuracy
of IA-HeLiC, we reprojected the heterogeneous LiDAR data
into a unified frame using the calibrated extrinsics and sys-
tem trajectory, as shown in Fig. 4. The results reveal a high
level of consistency in the heterogeneous LiDAR point clouds
when reprojected using the calibrated extrinsics, indicating
that the extrinsics calibrated by IA-HeLiC exhibit a signifi-
cant degree of accuracy. Moreover, upon examination of the
reprojected point clouds, it shows that planar objects such as
whiteboards appear flat, and smaller objects like chairs are
distinguishable, which further attests to the superior calibra-
tion accuracy achieved by IA-HeLiC.

Fig. 4. Reprojection results. Blue points are from the me-
chanical spinning LiDAR, while red points are from the solid-
state LiDAR. The reprojected maps are clear and point clouds
of different LiDARs have a good consistency.

4.3. Quantitative Results

Given the lack of existing extrinsic calibration methods
specifically designed for heterogeneous LiDAR systems, we
chose to compare IA-HeLiC with two alternative approaches:
a state-of-the-art extrinsic calibration method for homoge-
neous LiDAR systems [10] and a method based on normal
distributions transform (NDT) [23]. These competitors, along
with IA-HeLiC, were executed on all available data sequences
to obtain calibrated extrinsics. To evaluate the calibration ac-
curacy, we measured the calibration errors by calculating the
difference between calibrated extrinsics and the ground-truth
ones. The ground-truth was directly obtained from the read-
ings of our handheld device. The mean rotational error in
each axis eroll, epitch, eyaw and the mean translational error in
each axis ex, ey, ez of all compared methods are presented in
Table 1. The results indicate that IA-HeLiC exhibits a signifi-
cant accuracy advantage compared to its competitors, both in
terms of rotation and translation, suggesting the effectiveness
of our IA-HeLiC in the extrinsic calibration of heterogeneous
LiDAR systems.

Table 1. Calibration errors of IA-HeLiC and compared meth-
ods on our collected dataset.

Error Liu et al. [10] NDT [23] IA-HeLiC
eroll (◦) 4.37 1.18 0.75
epitch (◦) 5.36 1.01 0.47
eyaw (◦) 4.81 1.39 0.44
ex (m) 0.244 0.034 0.022
ey (m) 0.356 0.056 0.016
ez (m) 0.332 0.039 0.015

Table 2. Calibration errors under different configurations of
IA-HeLiC in ablation study.

Error WoPL WoCSE WoMCE IA-HeLiC
eroll (◦) 0.98 1.47 0.62 0.75
epitch (◦) 0.53 0.79 0.48 0.47
eyaw (◦) 0.45 0.86 0.60 0.44
ex (m) 0.027 0.060 0.022 0.022
ey (m) 0.021 0.040 0.018 0.016
ez (m) 0.028 0.087 0.016 0.015

4.4. Ablation Studies

In IA-HeLiC, three key mechanisms, namely the cross surfel
error, the motion constraint error, and the parameter loopback,
all play crucial roles in ensuring calibration accuracy. To ver-
ify our claims, we try to justify the effectiveness of these three
components, respectively. We mainly compared IA-HeLiC
against three baselines, which were 1) WoPL: The parame-
ter loopback is deactivated; 2) WoCSE: The cross surfel error
is removed; and 3) WoMCE: The motion constraint error is
excluded. These baselines and IA-HeLiC were all evaluated
on our collected dataset, and relative quantitative experimen-
tal results are presented in Table 2. From Table 2, it can be



found that IA-HeLiC overperforms all other counterparts in
calibration accuracy, corroborating the effectiveness of afore-
mentioned three key mechanisms involved in IA-HeLiC.

5. CONCLUSION

In this paper, we studied an emerging problem in the field of
robotics, extrinsic calibration of heterogeneous LiDARs, and
proposed a solution namely IA-HeLiC. IA-HeLiC constructs
both geometric constraints and motion constraints and then
the errors are jointly minimized under the continuous-time
framework. Moreover, IA-HeLiC incorporates a parameter
loopback mechanism to further improve calibration accuracy.
The superiority of IA-HeLiC in the extrinsic calibration accu-
racy is verified by extensive experimental results on our own
collected real-world dataset. Future work involves the extrin-
sic calibration of systems with heterogeneous LiDARs and
other types of sensors.
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