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ABSTRACT

With the rapid development of the usage of digital imaging
and communication technologies, there appears to be a great
demand for fast and practical approaches for image quality
assessment (IQA) algorithms that can match human judge-
ments. In this paper, we propose a novel general-purpose
no-reference IQA (NR-IQA) framework by means of learn-
ing quality-aware filters (QAF). Using these filters for im-
age encoding, we can obtain effective image representations
for quality estimation. Additionally, random forest is used
to learn the mapping from feature space to human subjec-
tive scores. Extensive experiments conducted on LIVE and
CSIQ databases demonstrate that the proposed NR-IQA met-
ric QAF can achieve better prediction performance than all
the other state-of-the-art NR-IQA approaches in terms of both
prediction accuracy and generalization capabilities.

Index Terms— NR-IQA, natural scene statistics, sparse
filtering, random forest

1. INTRODUCTION

Objective image quality assessment (IQA) refers to automat-
ic quality assessment of an image consistent with human per-
ception. With the increasing usage of digital imaging, IQA
becomes an essential yet challenging problem. Depending
on the availability of non-distorted reference image, IQA ap-
proaches can be classified into three categories, full-reference
IQA (FR-IQA), reduced-reference IQA (RR-IQA) and no-
reference IQA (NR-IQA) [1]. In this paper, we only focus
on addressing the NR-IQA problem.

1.1. Related work

Most early NR-IQA algorithms assume that the distortion
type is known as prior knowledge, which makes the NR-IQA
problem easier and limits the application scope of the ap-
proaches. These methods mainly measure the impact of one
distortion type on image quality such as blocking [2], ringing
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[3], blur [4] and compression [5, 6]. In contrast, the goal of
general purpose non-distortion-specific (NDS) NR-IQA ap-
proaches is to predict the quality without prior knowledge of
the distortion type.

Most existing NDS NR-IQA approaches can be classified
into two categories, opinion-aware and opinion-unaware ap-
proaches.

Opinion-aware approaches need a collection of distorted
images associated with their subjective scores to train a mod-
el, which then can be used to estimate the quality of new-
coming distorted images. In [7], Moorthy et al. proposed a
two-step framework, namely BIQI, which first classified one
image into one distortion category and then used distortion-
specific quality metric to predict the quality. Later, Moorthy
et al. proposed another NR-IQA metric, DIIVINE [8], which
was an extension of BIQI. The deficiency of these two meth-
ods is that they assume the distortion type is already contained
in the training images. Except for the two-step framework,
opinion-aware approaches mainly follow two trends [9], nat-
ural scene statistics based (NSS-based) and training-based
methods. The design rationale of NSS-based approaches is
that the existence of distortion on the image will affect cer-
tain statistical properties of natural scenes. In [10], Sadd et
al. proposed an NR-IQA model, namely BLIINDS, by as-
suming that the statistics of DCT features would vary in a
predictable way as the image quality changes. Later, they im-
proved BLIINDS to obtain an extension, namely BLIINDS-II
[11]. In [12], Mittal et al. used locally normalized luminance
coefficients in the spatial domain to predict the image quality
based on the observation that presence of distortion would
affect the regular structure of this image coefficients. The
goal of training-based methods is to design quality-relevant
features that can capture the factors on which the distortion
may have impact on. Most of these training-based approach-
es need to design a large number of hand-craft features. For
examples, In [9], Ye and Doermann proposed a codebook-
based framework, which is commonly applied to image clas-
sification, to learn the regression model. This method was
referred to as CBIQ. Later, Ye et al. improved CBIQ by us-
ing features learned by unsupervised feature learning to re-



place hand-craft features extracted by Gabor filter. This NR-
IQA metric, namely CORNIA [13], was proved to be effective
dealing with lots of distortion types.

Opinion-unaware approaches have the advantage that they
do not require training on databases associated with human s-
cores. For examples, in [14], Mittal et al. proposed a method
by conducting probabilistic latent semantic analysis on the s-
tatistical features of a large collection of pristine and distorted
image patches. In [15], Xue et al. at first used a quality-aware
clustering method to learn centroids from images of differen-
t quality levels, and then use these centroids to infer image
quality. One innovation of their method is that the image s-
cores for clustering were calculated by a FR IQA metric, F-
SIM [16]. To the best of our knowledge, the model proposed
in [17], namely NIQE, is the most accurate opinion-unaware
approach in current literature. NIQE learned a MVG model
from pristine images and estimated the quality of a distorted
image by measuring the distance between multivariate Gaus-
sian (MVG) fit of the distorted image and the pristine im-
ages. According to the experiments conducted on LIVE IQA
database [18], the prediction accuracy of opinion-unaware
methods is lower than that of opinion-aware ones.

1.2. Our approach

As an alternative, in this paper, we propose a general-purpose
opinion-aware NR-IQA method by learning quality-aware fil-
ters (QAF). The keys to QAF are sparse filtering [19] and ran-
dom forest [20]. Sparse filtering is typically used to learn a
filter dictionary, which maps the original data to good feature
representations for classification tasks by optimizing exclu-
sively for sparsity in the feature distribution. Here we apply
sparse filtering to a set of NSS-based features extracted from
image patches of different quality degrees to learn a quality-
aware filter dictionary. The term “quality-aware” means that
one particular filter in the dictionary only gives strong re-
sponse to features of certain distortion degree, and vice versa.
Using this dictionary for image encoding with max pooling,
we can obtain effective image representations. Finally, ran-
dom forest is used to learn the mapping from feature space
to subjective human scores. Random forest is an ensemble
learning method that operates by constructing a multitude of
decision trees at training time and predicting new data by av-
eraging the predictions of all trees. Because this prediction
process is closer to the process of subjective IQA, we adopt
random forest instead of other models as the learning model.

Our contributions can be summarized as follows. First,
we propose a novel NR-IQA framework using sparse filter-
ing, one form of unsupervised feature learning, in combina-
tion with NSS information extracted from image patch. Addi-
tionally, we apply random forest to learn the regression mod-
el. In contrast, most existing NR-IQA methods use Support
Vector Machine (SVM) with different kernels for regression.
In our experiment, we find that random forest can achieve sig-

nificantly better results than SVM.
The remainder of this paper is organized as follows. Sec-

tion 2 describes details of the proposed framework. Experi-
mental strategies and results are presented in Section 3. Fi-
nally, Section 4 concludes with a summary of our work.

2. FRAMEWORK FOR QAF

Figure 1 illustrates the pipeline of QAF. Key components in
this framework include NSS-based local descriptor construc-
tion, quality-aware filter learning, local descriptor encoding
and feature pooling, and regression. The details of these com-
ponents are described in the following sections.

2.1. NSS-based local descriptor

In our approach, each image is represented by a set of local
descriptors extracted from randomly sampled patches. With
respect to local descriptor construction, we resort to two NSS-
based features presented in [17], which are derived from the
distribution of mean subtracted contrast normalized (MSCN)
coefficients [21] and the distribution of products of pairs of
adjacent MSCN coefficients [12, 17]. The main advantage
of these two models over other NSS ones is that they do not
require a mapping to a different domain such as wavelet and
DCT, and thus make the feature extraction process computa-
tionally efficient.

The procedure of MSCN can be seen as a normalization
process with respect to local brightness and contrast, which
can be described as,

Ī(x, y) =
I(x, y)− µ(x, y)

σ(x, y) + γ
(1)

where I is a given gray-scale image, x and y are spatial co-
ordinates, γ = 1 is a constant that prevents instabilities from
occurring when the denominator tends to zero and

µ(x, y) =
K∑

α=−K

L∑
β=−L

wα,βI(x+ α, y + β) (2)

σ(x, y) =

√√√√ K∑
α=−K

L∑
β=−L

wα,β [I(x+ α, y + β)− µ(x, y)]
2 (3)

estimate the local mean and contrast, respectively, where w =
{wα,β |α = −K, ...,K, β = −L, ..., L} is a 2D circularly-
symmetric Gaussian weighting function sampled out to 3 s-
tandard deviations and rescaled to unit volume.

Despite MSCN, the sample distribution of the products
of the pairs of adjacent MSCN coefficients computed along
horizontal, vertical and diagonal orientations, I(x, y)I(x, y+
1), I(x, y)I(x+1, y), I(x, y)I(x+1, y+1) and I(x, y)I(x+
1, y − 1), can also capture the degree of quality distortion.
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Fig. 1. Pipeline of the NR-IQA metric QAF.

Given a sampled image patch P ∈ RM×N , where M
and N are the patch height and width respectively, we can
get a vector form as f = (p1, p2, ..., pM×N×5)

T by applying
the two introduced NSS model to it, and f is regarded as the
descriptor of P . Consequently, each image can be represented
as a set of descriptor vectors F = [f1,f2, ...,fn], where each
fi is a local descriptor vector and n is the number of patch
sampled.

2.2. Quality-aware filter learning

Unspervised feature learning has been shown to be effective
at learning representations that perform well on image, video
and audio classification. In our apporach, we apply one sim-
ple yet efficient unsupervised feature method, namely sparse
filtering [19], to a set of descriptor vectors, which are extract-
ed from image patches of different quality degrees, to learn a
quality-aware filter dictionary. This dictionary can map the
patch-based local descriptors into good feature representa-
tions for the task of quality classification. The details of this

process will be presented in the following paragraphs.
At first, we randomly sample image patches from a set

of unlabeled training images which suffer from distortion at
different degrees. Then, we compute from it a set of local
descriptors: Y = [y1,y2, ...,yk], where Y ∈ Rd×k, d is
the dimension of each local descriptor and k is the number
of patches. Then, we initialize a filter dictionary X ∈ Rv×d

with random values, where v is the number of filters we aim to
learn. Then, the objective of sparse filtering can be formulated
as:

X̂ = argmin
X

∑Ω

i=1
φ|Z| (4)

where Z = XY , Ω is the number of entries in Z, | ∗ | repre-
sents the soft-absolute operation Z =

√
ε+Z2(ε = 10−8)

and φ stands for the operation of performing twice normaliza-
tion on |Z| by rows and by columns using l2−norm, respec-
tively. An off-the-shelf L-BFGS [22] package can be used to
optimize this objective function until convergence. The de-
sign rationale of sparse filtering is that the normalization op-



eration introduces competition, which makes some values in
φ|Z| have to be large while the others are small(close to 0).

To have a more stable filter dictionary, the above process
is repeated u times, and after we get a filter collection of v ×
u filters, we perform K-means on it to get C consisting of
c filters. 256 randomly selected filters learned from sparse
filtering are shown in Figure 2.

Fig. 2. A subset of quality-aware filters.

2.3. Local descriptor encoding and feature pooling

As described in 2.1, in our approach, each image is represent-
ed by a set of local descriptors F = [f1,f2, ...,fn], where fi

is a NSS-based local descriptor and n is the number of sam-
pled patch. Once we learned the filter dictionary C, we can
encode F by first applying soft-absolute on G = CF , and
then normalizing G by rows and by columns separately.

The feature encoding step provides us with a matrix Gc×n

for each image, where c is the number of filters in dictionary
C. In order to learn a regression model, we need a fixed-
length feature vector. To achieve this purpose, we apply max
pooling to the matrix Gc×n. Typically, there are two types
of pooling strategies: average-pooling and max-pooling. In
our experiment, we find that max-pooling can achieve better
results. Specifically, for each column g = (θ1, θ2, ..., θc)

T in
G, the max-pooling operated on g can be written as,

θi =

{
1, θi = max(θ1, θ2, θ3, ..., θc)
0, else

(5)

Then, the image level feature can be obtained by summing up
all the columns. This can be written as,

ĝ = sum(g1, g2, g3, ..., gn) (6)

where ĝ ∈ Rc.

2.4. Regression

Having a set of image representations and their correspond-
ing subjective scores, we can treat NR-IQA as a regression

problem. Specifically, in the training stage, these image rep-
resentations and their corresponding scores are used to con-
struct a regression model. In the test stage, a feature vector is
extracted from the test image and then fed into the learned re-
gression model to predict its quality score. Most existing NR-
IQA approaches use SVM for its simplicity. However, as we
all know, in subjective IQA experiments, the finally quality
is obtained by averaging the evaluation from different people.
Inspired by this, we adopt random forest [20], which consists
of a multitude of trees, as the regression model in our exper-
iments. We find that random forest can achieve significantly
better result than SVM in our framework.

3. EXPERIMENTAL RESULTS AND DISCUSSION

3.1. Protocol

We evaluated the proposed metric QAF on two widely-used
IQA datasets: LIVE [18] and CSIQ [23]. Both of them pro-
vide us with pristine images, distorted versions and associated
subjective scores. Brief information of these two datasets is
listed in Table 1.

Table 1. Benchmark image datasets used.
Dataset Distorted Image No. Distorted Type No.
LIVE 779 5
CSIQ 866 6

LIVE database consists of 29 reference images each with
five different types of distortion at 5 to 6 levels. The types
include JPEG2000, JPEG, white noise (WN), Gaussian blur
(BLUR) and simulated fast fading Rayleigh channel(FF).

CSIQ database consists of 30 reference images and their
degraded versions with six different types of distortion at 4 to
5 levels. The types include JPEG2000, JPEG, WN, BLUR,
global contrast decrements, and Gaussian pink noise.

To evaluate the performance of QAF metric, two correla-
tion coefficients between the prediction results and the subjec-
tive scores were adopted: the Spearman rank order correlation
coefficient (SROCC), which is related to the prediction mono-
tonicity, and the Pearson linear correlation coefficient (PLC-
C), which is related to the prediction linearity. A value close
to 1 for SROCC and PLCC indicates a good performance for
quality estimation. In all the experiment, we only reported the
results on distorted images.

Five opinion-aware approaches, namely BIQI [7],
BRISQUE [12], BLIINDS-II [11], DIIVINE [8], CORNIA
[13] and two opinion-unaware approach, namely NIQE [17]
and QAC [15], were used for comparison. Although NIQE
and QAC did not require the process of training, to ensure a
fair comparison across methods, we reported their result on
test images only. The evaluation results on LIVE and CSIQ
are summarized in Table 2 and 3.



Table 2. Performance Evaluation on LIVE.

Methods 80 % 50 % 10 %
SROCC PLCC SROCC PLCC SROCC PLCC

BIQI 0.825 0.840 0.739 0.764 0.547 0.623
BRISUQE 0.933 0.931 0.917 0.919 0.806 0.816

BLIINDS-II 0.924 0.927 0.901 0.901 0.836 0.834
DIIVINE 0.884 0.893 0.858 0.866 0.695 0.701
CORNIA 0.940 0.944 0.933 0.934 0.893 0.894

NIQE 0.908 0.908 0.905 0.904 0.905 0.903
QAC 0.874 0.868 0.869 0.864 0.866 0.860
QAF 0.947 0.951 0.946 0.949 0.943 0.944

Table 3. Performance Evaluation on CSIQ.

Methods 80 % 50 % 10 %
SROCC PLCC SROCC PLCC SROCC PLCC

BIQI 0.092 0.237 0.092 0.396 0.020 0.311
BRISUQE 0.775 0.817 0.736 0.781 0.545 0.596

BLIINDS-II 0.780 0.832 0.749 0.806 0.628 0.688
DIIVINE 0.757 0.795 0.652 0.716 0.441 0.492
CORNIA 0.714 0.781 0.678 0.754 0.638 0.732

NIQE 0.627 0.725 0.626 0.716 0.624 0.714
QAC 0.486 0.654 0.494 0.706 0.490 0.707
QAF 0.780 0.840 0.768 0.810 0.741 0.754

Table 4. Evaluation results when trained on LIVE and tested
on CSIQ.

Method SROCC PLCC
BIQI 0.619 0.695

BRISQUE 0.557 0.742
BLIINDS2 0.577 0.724
DIIVINE 0.596 0.697
CORNIA 0.663 0.764

NIQE 0.627 0.716
QAC 0.490 0.708
QAF 0.701 0.715

3.2. Implementation details

The proposed framework contains a number of parameters
that can be tuned. The following ones may have great im-
pact on the result of our approach: 1) n: number of patches
sampled from each image; 2) M and N : width and height
of the raw patch; 3) u × v: total number of filters learned
through sparse filtering; 4) c: number of quality-aware filters;
5) ntree and mtry: two parameters used in random forest.

In our experiment, we set n = 10000, M = N = 7,
c=10000, ntree = 1500, and mtry = 250. There is no ex-
plicit constraints on the number u× v. Empirically, it should
not be small than 100000.

3.3. Performance evaluation on single database

In the current literature, most NR-IQA algorithms are only e-
valuated on LIVE IQA database using the experimental strat-
egy mentioned in [10, 11, 13]. Specifically, for training-based
algorithms, 23 reference images along with their distorted im-
ages were randomly selected for training, and the rest 6 ref-
erence images along with their degraded versions were used
for testing. Such an experimental strategy mainly has two d-
eficiencies. On one hand, LIVE database only contains 779
distorted images, so the size of test images is only about 150
(779*0.2), which is too samll. On the other hand, the fact of
training on 80% images and testing on only 20% images is al-
so weak. With the large size of the training set, it is very likely
to have the problem of over-fitting, so we can not evaluate the
generalization ability of the algorithms properly. Therefore,
here we adopted another experimental strategy similar to the
one proposed in [15]. Specifically, for training-based meth-
ods, we present their results under three settings: 80%, 50%
and 10% randomly selected samples are used for training and
the remainder are used for testing. The partition is randomly
conducted 1000 times and we report the median result.

From Table 2 and Table 3, we can see that QAF outper-
forms its counterparts under different ratios of training sam-
ples. Additionally, although the performance of most exist-
ing NR-IQA methods decrease rapidly with the decrease of
numbers of training samples, QAF seems to be robust to the
number of training samples.



3.4. Cross-database evaluation

In this section, we performed a more comprehensive perfor-
mance evaluation by training on LIVE dataset and testing on
CSIQ datasets. For the five opinion-aware NR-IQA method-
s, their quality prediction models trained on the entire LIVE
dataset are provided by the original authors. Thus, we directly
use them for testing on CSIQ. The experimental result is pre-
sented in Table 4. We can see that QAF performs significantly
better than all the other state-of-the-art NR-IQA algorithms.

4. CONCLUSIONS

In this paper, we proposed an effective blind image quality
assessment method, namely QAF. The design rationale is to
learn quality-aware filters by performing sparse filtering on
the NSS-based extracted features. We use the learned filters
to encode image and adopt random forest to learn the regres-
sion model. Extensive experiments validated that QAF yields
much better quality prediction performance than all the com-
peting methods and is more robust to the number of training
samples.
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