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ABSTRACT

The self-parking system plays an important role in au-

tonomous driving, and one of its critical issues is parking-slot

detection. Previous studies in this field are mostly based on

off-the-shelf models designed for universal purposes, which

have various limitations in solving specific problems. In this

paper, we propose a parking-slot detection method using di-

rectional marking-point regression, namely DMPR-PS. In-

stead of utilizing multiple off-the-shelf models, DMPR-PS

uses a novel CNN-based model specially designed for di-

rectional marking-point regression. Given a surround-view

image I , the model predicts position, shape and orienta-

tion of each marking-point on I . From marking-points,

parking-slots on I could be easily inferred using geomet-

ric rules. DMPR-PS outperforms state-of-the-art competitors

on the benchmark dataset with a precision rate of 99.42%

and a recall rate of 99.37%, while achieving a real-time de-

tection speed of 12ms per frame on Nvidia Titan Xp. To

make the results reproducible, the source code is available at

https://github.com/Teoge/DMPR-PS.

Index Terms— Self-parking system, parking-slot detec-

tion, deep convolutional neural network

1. INTRODUCTION

Being the last step in autonomous driving, the self-parking

system is an important part of an unmanned driving system

and has attracted the interest of a large number of researchers.

In developing such a system, one of the key issues to be ad-

dressed is how to correctly detect and locate parking-slots

with in-vehicle sensors. Solutions to this problem fall into

two categories, free-space-based ones and vision-based ones.

Free-space-based approaches designate a target parking

position by recognizing a sufficient vacant space between

adjacent vehicles. Various kinds of range-finding sensors

have been used in these approaches, such as ultrasonic sen-

sors [1, 2], laser scanners [3], short-range radars [4, 5],

etc. However, free-space-based approaches have an inher-

ent drawback that they rely on vehicles that have already
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Fig. 1. An example of parking-slot markings.

been properly parked as references. In other words, these ap-

proaches fail to work in an open area with no vehicles nearby.

In order to overcome this drawback, more and more re-

searchers turn their attention to the vision-based approaches,

expecting to find a more universal and robust solution.

Instead of recognizing a free space, a vision-based ap-

proach detects parking-slot-markings to locate parking-slots.

Parking-slot-markings are the line-shaped markings painted

on the ground to indicate a valid parking space. Thus, de-

tecting parking-slot-markings to locate a parking-slot is more

legitimate than recognizing a free space and better conforms

to human drivers’ perception. For these reasons, the study of

vision-based parking-slot detection has drawn a lot of atten-

tion from researchers and is also the focus of this paper.

Fig. 1 shows an example of parking-slot-markings in a

surround-view image. These markings indicate a rectangular

parking space, whose vertices are P1, P2, P3 and P4. Among

four conceptual lines that form this rectangle, line P1P2 is

called an “entrance-line”. Line P1P4 and P2P3 are called

“separating-lines”. Marking-points are defined as the junc-

tion points of entrance-lines and separating-lines, such as P1

and P2. Assuming the lengths of separating-lines are known

beforehand as a priori knowledge, the parking-slot detection

problem can be formulated as the problem of detecting an or-

dered marking-point pair (P1, P2), whose order is defined as

the anticlockwise order of the four vertices.
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As described above, the detection target of the parking-

slot detection problem is different from the one of common

object detection problems. Thus, existing object detection

frameworks could not be applied directly to solve this prob-

lem. Most existing solutions to this problem decompose it

into sub-problems and solve them separately. Representative

approaches in this field are briefly reviewed as follows.

1.1. Related work

Among those vision-based parking-slot detection approaches,

some of them, e.g. [6, 7], require manual operations on the

interactive interface to detect a certain parking-slot. The ap-

parent drawback of these approaches is that they are not fully

automated. The fully automated approaches can be catego-

rized into line-based ones and point-based ones.

Line-based approaches [8, 9, 10, 11, 12, 13, 14, 15] are

based on marking-line detection. Usually, they first detect

edges of marking-lines in the image, and then use line fitting

algorithm to predict the equations of marking-lines. When

marking-lines are ready, their geometric relations are ana-

lyzed to recognize entrance-lines and separating-lines. Then

parking-slots in the image can be located. A variety of meth-

ods have been exploited to detect the edges of marking-lines,

including Sobel filter [9, 11, 14], segmentation neural net-

work [8, 16], Canny edge detector [10], Line Segment Detec-

tor [15] and cone-hat filter [12]. They also use various line

fitting algorithms, such as Hough Transform [9, 11], Radon

Transform [10, 16], RANSAC (RANdom SAmpling Consen-

sus) [13, 14], and customized line clustering algorithms [12].

Point-based approaches [17, 18, 19, 20] are based on de-

tection of marking-points. They first detect marking-points

in the image, then for each pair of marking-points, different

methods are used to determine whether it forms a parking-

slot entrance-line and which orientation the parking-slot is.

Suhr and Jung [17, 18] used the Harris corner detector to de-

tect corners of marking-points and used the template match-

ing technique to determine the marking-points’ shapes and

orientations. Then, locations of parking-slots were inferred

based on above information. Li et al. [19] resorted to a boost-
ing decision tree to detect marking-points and then applied

Gaussian line filters to find parking-slots’ entrance-lines and

determine their orientations. Quite recently, Zhang et al.
proposed a CNN (convolutional neural networks) based ap-

proach, namely DeepPS [20]. It first uses a CNN to detect

marking-points and then uses another CNN to classify local

image patterns determined by marking-point pairs. Zhang et
al.’s experiments [20] indicate that DeepPS outperforms all

low-level feature based methods and also corroborate the ef-

fectiveness of CNN for solving this issue.

1.2. Our motivations and contributions

As aforementioned, the recently proposed CNN-based ap-

proach DeepPS [20] is a state-of-the-art solution for vision-

based parking-slot detection. However, though DeepPS is

proven to be both effective and efficient, it decomposes the

parking-slot detection problem into two problems in com-

puter vision, and resorts to two different CNNs to solve them

individually. Yet given the strong correlation between these

two problems, the feature extraction procedures of these two

CNNs are highly repetitive. Consequently, the efficiency of

DeepPS can be further improved.

If we manage to obtain information required for parking-

slot inference using a single CNN, the resulting parking-slot

detection scheme would be much more efficient. Inspired by

such an idea, in this work, we propose a novel and highly

efficient parking-slot detection approach based on directional

marking-point regression, which is referred to as DMPR-PS

for short.

In this approach, we first introduce a new concept named

“directional marking-point”, which can be used to accu-

rately describe the marking-line pattern around a marking-

point. Then based on this concept, a novel CNN-based multi-

attribute regression model is proposed to detect all direc-

tional marking-points in the image. By detecting directional

marking-points, we manage to obtain sufficient marking-line

information required for parking-slot inference. Thus we are

able to directly infer the locations of all parking-slots in the

image from directional marking-points.

Our regression model, namely Directional Marking-Point

Regression model (DMPR), predicts all attributes of direc-

tional marking-points simultaneously. During the prediction,

all directional marking-points of a given image are predicted

in a single forward evaluation. The efficacy and efficiency of

DMPR-PS have been corroborated in experiments conducted

on the public benchmark dataset ps2.0 [20].

2. DIRECTIONAL MARKING-POINT

A directional marking-point is actually a local image pattern

characterized by a marking-point and its neighborhood. It has

three attributes, position, shape and orientation.

Position. As above-mentioned, marking-points are the

junction points of marking-lines. However, strictly speaking,

marking-lines are line-shaped markings with certain width.

Two intersecting marking-lines form a squared junction area.

(a) T-shaped (b) L-shaped

Fig. 2. Two kinds of marking-point patterns with red arrows

indicating their orientations.
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Fig. 3. The flowchart of our proposed method DMPR-PS. It comprises two steps, Directional Marking-Point Regression and

Parking-Slot Inference. First, a CNN-based regression model is used to detect directional marking-points in the surround-view

image. Then, parking-slots in the image are inferred from detected marking-points according to their geometric relations.

Here we define the position of a directional marking-point as

the center of this junction area.

Shape. According to the shape of the marking-point pat-

tern, all kinds of marking-points can be classified into two

categories, T-shaped and L-shaped marking-points. As shown

in Fig. 2, the pattern of a T-shaped marking-point has a shape

like the letter “T”, while the pattern of a L-shaped marking-

point has a shape like the letter “L”.

Orientation. Since the pattern of a T-shaped marking-

point is symmetric, we define its orientation as the direction

along the axis of symmetry. As for a L-shaped marking-point

pattern, we define its orientation as the direction along the

marking-line that overlaps with the other marking-line after

90◦ clockwise rotation. Illustrations of the orientations are

shown as the red arrows in Fig. 2.

Based on above definitions, a directional marking-point

can be represented with a four-dimensional vector:

p = {x, y, s, θ} (1)

where (x, y) represents the position, s is a binary value repre-
senting the shape of the pattern, and θ represents the angular

coordinate of pattern’s orientation under a polar coordinate

system.

3. DMPR-PS: A PARKING-SLOT DETECTION
APPROACH BASED ON DIRECTIONAL
MARKING-POINT REGRESSION

In this section, our proposed parking-slot detection approach

DMPR-PS is presented in detail. As shown in Fig. 3, DMPR-

PS comprises two major steps, directional marking-point re-

gression and parking-slot inference.

3.1. Directional marking-point regression

In order to achieve directional marking-point detection, we

propose a novel CNN-based multi-attribute regression model

with regression objectives specially designed for directional

marking-points. Such a regression model is referred to as

DMPR in the context.

Given a surround-view image I , DMPR partitions I into a
S×S image grid and extracts a S×S×N feature map from

I using a CNN. Then during the backpropagation, each N -

dimensional vector in the S × S ×N feature map is assigned

to perform the regression of a directional marking-point that

falls into the corresponding cell in the S × S image grid.

In our model, the N -dimensional vector actually consists

of 6 elements: cx, cy, s, cos θ, sin θ and confidence C. The

confidence predicts the probability of a marking-point falling

into that grid cell. (cx, cy) predicts the marking-point’s posi-

tion to the bounds of the grid cell. And s predicts the shape of
the directional marking-point. Instead of directly predicting

θ, our model predicts two trigonometric value of θ, cos θ and

sin θ, since the latter way is more robust in implementation.

Based on cos θ and sin θ, θ can be deduced straightforwardly.
With regression objectives defined, the loss function is de-

fined as the sum of squared errors between predictions and

ground-truths, and it is expressed as following equation:

Loss =

S2∑

i=1

{(Ci − Ĉi)
2

+ i[(cxi − ĉxi)
2 + (cyi − ĉyi)

2 + (si − ŝi)
2

+ (cos θi − cos θ̂i)
2 + (sin θi − sin θ̂i)

2]} (2)

The subscript i represents the cell index of the S×S grid and

symbols denoted with ˆ represent the corresponding ground-

truths of the predictions. The operator i denotes whether a

marking-point falls into the cell i, which means that we only

penalize the marking-point attribute error of the cell i when
there is a marking-point falling into that grid cell.

The architecture of the neural network used in DMPR is

designed mainly following the advice of current object de-

tection frameworks as well as the common knowledge in this

area. Table 1 shows the configurations of this neural network.

A bottleneck block with 1 × 1 squeeze convolution followed

by a 3 × 3 expand convolution is used as the basic building
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Table 1. Architecture of the neural network used in DMPR.

block of our network.

The final output tensor with the size of 6 × 16 × 16 is

designed according to the requirement of our task. Firstly, as

stated above, there are six predictions for each grid cell in the

S × S grid and thus the channel dimension is 6. Secondly, a
premise of our regression model is that there could be at most

one marking-point falling into a cell in the S × S grid. If

more than one marking-points fall into the same cell, the neu-

ral network could not predict both of them in a 6-dimensional

vector. Thus, the value of S should be large enough to prevent

two marking-points falling into the same cell. S should not

be set too large either; otherwise, it will make DMPR compu-

tationally expensive. By examining examples in the training

set of ps2.0 [20], we set S = 16 in our implementation.

3.2. Parking-slot inference

After detecting directional marking-points and applying non-

maximum suppression, parking-slots could be inferred from

the detected marking-points. The inference procedure com-

prises two steps, inappropriate marking-point pair filtering

and directional marking-point pairing.

Filtering inappropriate marking-point pairs is necessary

before the directional marking-point pairing. First, the dis-

tance of a pair of marking-points should satisfy a distance

constraint. For example, in Fig. 4, P1 and P2 are a pair of

detected marking-points. But apparently they do not form

a valid entrance-line because the space between them is too

narrow for a car to park inside it. To exclude such in-

valid cases, two ranges of the entrance-line distance, which

P

P

P

P

Fig. 4. Illustration of inappropriate marking-point pairs.

respectively correspond to vertical parking-slots and paral-

lel parking-slots, are obtained as a priori knowledge. Then

they are used as the distance constraint to filter out marking-

point pairs with inappropriate distances. Second, the kind of

marking-point pair that passes through a third point needs

to be filtered out. In Fig. 4, for marking-points P2 and P4,

though their orientations and shapes satisfy one of the valid

cases of entrance-lines, they do not form a valid entrance-line

because they are not adjacent. We could exclude these invalid

cases by examining whether there is a third marking-point

falling on the entrance-line they form. For marking-points

P2 and P4, a third point P3 falls between P2 and P4 and thus

they cannot form a valid entrance-line.

After filtering out inappropriate marking-point pairs, re-

maining pairs are sent to determine whether they comply

to one of the valid cases of parking-slot entrance-lines. As

shown in Fig. 5, for a pair of marking-points (A,B) that form
an entrance-line, both marking-points can be classified into

5 cases, as (1) ∼ (5) shown in the figure. Then, for these 5

cases of marking-points, there are 16 combinations where two

marking-points form a valid entrance-line. These 16 combi-

Fig. 5. For a pair of marking-points (A,B) that form an

entrance-line, each marking-point can be classified into 5

cases shown as (1) ∼ (5). For these five cases of marking-

points, there are 16 combinations where these two marking-

points form a valid entrance-line.
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Fig. 6. 16 valid cases of entrance-lines.

nations corresponds to 16 valid cases of entrance-lines shown

in Fig. 6. Thus for each marking-point pair, we first deter-

mine whether both of the marking-points belong to one of the

5 marking-point cases by comparing shapes and orientations,

and then determine whether the combination of these two

marking-points matches one of the 16 valid cases of entrance-

lines. If both conditions are satisfied, we can deem that these

two marking-points form a valid entrance-line and an ordered

marking-point pair can be determined. Thus the correspond-

ing parking-slot of this entrance-line can finally be located.

4. EXPERIMENTAL RESULTS

To train DMPR-PS and validate its performance, we used

the benchmark dataset ps2.0 [20], which was established for

the study of vision-based parking-slot detection. ps2.0 is the

largest and the most comprehensive one of its kind. It contains

12,165 surround-view images collected from typical indoor

and outdoor parking sites under various illumination condi-

tions. It needs to be noted that shape and orientation informa-

tion of marking-points was not provided in original ps2.0 and

thus we manually label these information in this work.

4.1. Training

Before training, the training set was augmented using image

rotation. For each sample, we rotate the image and label 5 de-

gree per time to generate a new sample, until the image is back

to its original position. During training, we used Adam opti-

mizer with 10−4 as initial learning rate. We trained our net-

work on Nvidia Titan Xp with batch size of 24 for 12 epochs.

4.2. Directional marking-point detection experiment

In this experiment, the evaluation of directional marking-

point detection was conducted on the test set. Precision-recall

rates were used as the evaluation metric, which are defined as:

precision =
true positives

true positives + false positives
(3)

recall =
true positives

true positives + false negatives
(4)

As defined above, a directional marking-point is repre-

sented as P = {x, y, s, θ}, while (x, y) represents marking-

point’s position, s represents the shape of the marking-point

pattern, and θ represents the angular coordinate of pattern’s

orientation in degree.

Suppose that Pt = {xt, yt, st, θt} is a labeled ground-

truth directional marking-point and Pd = {xd, yd, sd, θd} is a
detected one. We defined the following conditions:

‖(xt − xd, yt − yd)‖2 < 10 (5)

|θt − θd| < 30◦ or 360◦ − |θt − θd| < 30◦ (6)

st = sd (7)

If above conditions are satisfied, we deem that Pt is correctly
detected and Pd is a true positive.

With our experimental settings, the number of true pos-

itives is 4510, the number of false negatives is 19, and the

number of false positives is 20. Accordingly, the precision

rate is equal to 99.56% and the recall rate is equal to 99.58%.

4.3. Parking-slot detection experiment

In this experiment, we evaluated the overall performance of

various parking-slot detection approaches. The evaluation

was conducted on the test set and precision-recall rates are

employed as the performance metric. In addition to DMPR-

PS, we also evaluated the performance of several representa-

tive methods in this field, includingWang et al.’s method [10],

Hamda et al.’s method [11], PSD L [19], and DeepPS [20].

As described in Sect. 1, the parking-slot detection prob-

lem can be formulated as the detection of an ordered marking-

point pair. Represent a parking-slot as S = {o,d}, while o
and d represent two points in an ordered marking-point pair.

For each labeled ground-truth St = {ot,dt}, if there is a de-
tected parking-slot Sd = {od,dd} satisfying ‖ot − od‖2 <
10 and ‖dt − dd‖2 < 10, we deem that St is correctly de-

tected and Sd is a true positive.
We adjusted the parameters of all the competing methods

to make their precision rates greater than 98% on the test set.
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Table 2. Performance comparison of parking-slot detection.

method precision recall

Wang et al.s method [10] 98.29% 58.33%

Hamda et al.s method [11] 98.45% 61.37%

PSD L [19] 98.41% 86.96%

DeepPS [20] 98.99% 99.13%

DMPR-PS 99.42% 99.37%

The results are summarized in Table 2. From Table 2, it can

be observed that when operating at a high precision rate, our

method outperforms all the other methods with a precision

rate of 99.42% and a recall rate of 99.37%.

We also measured the speed of our method implemented

with PyTorch on Nvidia Titan Xp. The average time for

our method to process one image frame is about 12 ms.

It is about 30% faster than another DCNN-based approach

DeepPS, which is about 17 ms tested on Nvidia Titan Xp.

5. CONCLUSION

In this paper, we propose a parking-slot detection method

based on directional marking-point regression. A key fea-

ture of our method is a regression model specially designed

for the parking-slot detection. This model allows us to pre-

dict marking-points and their surrounding patterns simultane-

ously. Experiments have proven that our method outperforms

other state-of-the-art methods, while also achieving faster de-

tection speed comparing with a state-of-the-art DCNN-based

approach DeepPS. In the future we will continue devoting our

efforts to regression-based parking-slot detection approaches,

in searching for a more efficient and robust solution.
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