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ABSTRACT

With the fast development of smart mobile devices, mobile

phones have gradually become an indispensable part of peo-

ple’s lives. Many biometric technologies based on mobile

platforms have also developed rapidly, such as face verifica-

tion and fingerprint recognition. However, the great poten-

tial of palmprint has been neglected. In this paper, we con-

ducted a thorough study of palmprint verification on mobile

devices for the first time. Firstly, we established an anno-

tated, palmprint dataset named MPD, which was collected

by multi-brands phones in two different sessions. As the

largest dataset in this field, MPD contains 16,000 palm im-

ages from 200 subjects. Secondly, we built a DCNN-based

palmprint verification system named DeepMPV for mobile

platforms. The efficiency and performance of our system

have been corroborated on our collected dataset. The la-

belled dataset and the source code are publicly available at

https://cslinzhang.github.io/deepmpv/.

Index Terms— Palmprint recognition, palmprint verifi-

cation, mobile device, deep convolutional neural networks

1. INTRODUCTION

Nowadays, mobile phones have become a necessity in peo-

ple’s lives and an important tool for people to deal with their

daily work. With the increasing concern about networking

and mobility security, the demand for reliable user authen-

tication technology has grown greatly [1]. Therefore, high-

precision identity authentication based on mobile phones has

long been one of the main focuses in the research field, such

as fingerprint unlocking [2] and face payment [3].

However, ignored by many, palmprint is also a great

choice for personal identity authentication. In fact, compared

with face verification, palmprint verification is a non-invasive

way of authentication, which is much easier for users to ac-

cept. Besides, fingerprint recognition often requires highly

sensitive sensors, but palmprint images can be recognized us-

ing built-in cameras of mobile phones. Moreover, some peo-

ple do not have clear fingerprint, while palmprint has more
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abundant feature information and can be recognized under

low resolution conditions. As an important member of the

biometrics family, palmprint has a variety of required charac-

teristics, such as strong uniqueness, durability, user friendli-

ness and so on.

In this paper, we perform a thorough study of palmprint

verification on mobile devices.

2. RELATED WORK AND OUR CONTRIBUTIONS

2.1. Related work

Palmprint [4, 5, 6, 7] refers to the skin pattern on the inner

surface of the palm, which mainly includes two characteris-

tics: palm frictional ridges (ridges and valleys) and palm flex-

ion creases (discontinuities in epidermal ridges). To verify

palmprint on mobile devices, there are two key components,

region of interest (ROI) extraction and palmprint verification.

In former literature, several different approaches have been

proposed for palm ROI extraction. In [8], Han et al. used a

predefined preview frame on screen to align the position be-

tween hand and camera before ROI extraction. Later in [9],

Brown used three gaps between fingers to extract ROIs af-

ter separating palms from background. Then Aoyama et al.
[10] used a radial distance function to detect specific points

of finger gap and extract the ROIs. In later work of Aykut

et al. [11], they used an advanced model based segmentation

method named AAM to segment hand and extract palm ROIs.

Franzgrote et al. [12] developed a hand orientation normal-

ization method to extract ROI on mobile devices. Later, Zhao

et al. in [13] proposed an approach to align palms using a

projective transformation model that estimated from matched

SIFT feature points.

In the field of palmprint verification, great efforts have

been made on extracting feature from palmprint ROIs. In

[14], Zhang et al. used multiple 2-D Gabor filters to extract

orientation information from palm lines and stored them in a

feature vector called the competitive code (CompCode). Then

in [15], Jia et al. proposed a novel robust line orientation code

for palmprint verification. In the same period, Iitsuka et al. in

[16] used two-dimensional (2D) phase information to repre-

sent palmprint feature.
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2.2. Our motivations and contributions

Through the investigation of relevant literature, we find that

there is still a big gap in at least two aspects.

Firstly, up to now, there is no large-scale publicly avail-

able dataset of palmprints with complex backgrounds, which

is collected by mobile phones and labelled carefully. It is es-

sential for researchers to design and compare the performance

of palmprint verification algorithms based on such a dataset.

Secondly, there is still room for improvement in the per-

formance of palmprint verification systems on mobile de-

vices, mainly reflected in two aspects: palm ROIs extrac-

tion and palmprint verification. (1) In fact, vision-based palm

ROIs extraction is a mission full of challenge. Because the

illumination and background of palmprint photographs are

very different and complex, it is difficult to locate palmprint

ROI in photos. To solve this problem, the existing palmprint

verification systems on mobile devices need to segment hand

as preprocessing operation, or request the user to place the

hand in the designated position in front of the camera. The

former is time-consuming and error-prone, while the latter is

not user-friendly. Moreover, the current proposed palm ROI

extraction methods are difficult to have the characteristics of

scale and rotation invariance. (2) Actually, in the phase of

palmprint feature extraction, it is hard to distinguish whether

two palmprint ROIs belong to the same hand due to the po-

sition offset or the difference of palm posture between two

ROIs. Furthermore, if the hand is not parallel to the cam-

era while taking photos, the palmprint photos will have some

angular offset, and existing palmprint verification algorithms

cannot indentify them as matching success. Therefore, how to

effectively and accurately match palmprints on mobile phones

remains a huge challenge.

In this work, we attempt to fill the research gaps to some

extent. Our contributions in this paper are summarized as fol-

lows:

(1) To facilitate the study of palmprint verification, we

have established a large-scale palmprint dataset named MPD
and will make it publicly available. MPD comprises 16,000

palm images collected from multi-brands mobile phones and

all the images are manually labelled with care. Such a dataset

can be employed for training and testing new palmprint ver-

ification algorithms. Please refer to Sect. 4 for more details

about this dataset.

(2) We proposed a data-driven learning-based approach

named DeepMPV to verify palmprints on mobile devices.

Given a palm image, we used a pre-trained detector based on

PeleeNet [17] to detect the finger-gap-points at first. Finger-

gap-points are defined as the midpoint at the junction of two

fingers(yellow circles in Fig. 1). After that, we used the pre-

trained MobileNetV2 [18] to classify the correct point pairs

(A, B), which are labelled in Fig. 1. For each image, point

A is the point located at the middle of gaps between index

and middle fingers, and point B is the one between ring and

(a) (b)

(c) (d)

Fig. 1: (a), (b), (c) and (d) are examples of palm images in

different backgrounds and different angles. (a) and (c) are

taken from left hands while (b) and (d) are taken from right

hands. Yellow circle marks indicate the positions of finger-

gap-point; blue arrows represent the local coordinates; and

red squares indicate the ROIs of palmprints.

little fingers. According to the correct point pair (A, B), we

can construct the local coordinates for palms(blue arrows in

Fig. 1). Then, we can extract palmprint ROIs (labelled as red

square in Fig. 1) from palm images. Next, we used siamese

network [19] to match palmprints. DeepMPV can work well

on mobile phones, and it can match palmprints with slight

position offset and angular deflection. Its efficiency and per-

formance have been thoroughly evaluated in experiments.

The remainder of this paper is organized as follows: Sect.

3 states the details of our dataset MPD. Sect. 4 introduces

our novel approach DeepMPV for palmprint verification. Ex-

perimental results are presented in Sect. 5. Finally, Sect. 6

concludes the paper.

3. DEEPMPV: A LEARNING-BASED APPROACH
FOR PALMPRINT VERIFICATION

In this section, DeepMPV will be presented in detail. It is

designed to verify palmprints on mobile devices, and is con-

sisted of three key components (as shown in Fig. 2), includ-

ing finger-gap-point detection, point pair pattern classification

and palmprint verification.

3.1. Finger-gap-point detection

For a given palm image, we need to detect all the finger-gap-

points on it at first. Having investigated the literature, we

find that PeleeNet is a state-of-the-art general-purpose object
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Fig. 2: The system flowchart of DeepMPV.

detector based on DCNN for mobile devices. Compared with

MobileNet+SSD [20, 21] and Tiny Yolo V2 [22] , PeleeNet

has higher speed and accuracy in real-time object detection

on mobile devices. Hence, our finger-gap-point detector D is

based on PeleeNet.

To train the detector D, we need to prepare training sam-

ples. On a given palm image, the position of all its finger-gap-

points were manually marked. For each finger-gap-point pi,

a square box of size s × s centered on pi is regarded as the

ground-truth bounding box of pi. The box size s is decided

by the length of point pair (A, B) in Fig. 1 as s = 1
2 ×‖AB‖,

so that our detector D can have the characteristics of scale

invariance. The details of D’s training set will be shown in

Sect. 4. And in Sect. 5, we will quantitatively evaluate the

performance of D.

3.2. Point pair pattern classification

After applying the finger-gap-point detector D on the test im-

age, points whose confidence scores greater than δ will be

considered as finger-gap-points. Suppose that p1, p2, p3 and

p4 are finger-gap-points detected in a palm image, as Fig. 3a

shown. After permutation and combination, we obtained 12

patterns of point pairs. For each pattern, we can construct a

local coordinates. It’s worth noting that
−−→p1p2 and

−−→p2p1 are

different point pair patterns. Take
−−→p2p4 as an example, the

local coordinate of this point pair pattern is established as il-

lustrated in Fig. 3a , which takes the midpoint of p2 and p4

(a)

(b) (c) (d)

(e) (f) (g)

(h) (i) (j)

(k) (l)

Fig. 3: For each palm image, we can obtain 12 point pair

pattern images. Only the point pair pattern image in (a) is the

one belongs to class “right-point-pair”; and (b)-(l) belong to

class “wrong-point-pair”.

as its origin, and
−−→p2p4 as its X-axis. Its Y-axis can be conse-

quently determined. In this coordinate system, we defined a

rectangular region R, which is symmetric both to the X-axis

and the Y-axis. For R, its side length along the X-axis is set as

‖p2p4‖ +Δ, and its side length along the Y-axis is set as Δ,

too. We set Δ as s, which is the size of the boxes we detected

using detector D in Sect. 3.1. After the definition of region

R, we can generate 12 pattern images as illustrated in Fig. 3

by extracting the image region covered by R, normalizing it

to the size h×w, and regard the extracted image patch as the

local image pattern defined by
−−→p2p4.

For a given image, there are 12 patterns now. We took

the correct point pair pattern
−−→p2p4 as class “right-point-pair”

(Fig. 3a), and other point pair patterns as class “wrong-point-

pair” (Fig. 3b-3l). Only one pattern (Fig. 3a) is the correct

pattern in these 12 point pair patterns, which is
−−→p2p4 in Fig.

3a. Considering that C will be transplanted to mobile phones,

we decided to train C based on MobileNetV2. The details of

C’s training set will be shown in Sect. 4. In Sect. 5, we will

quantitatively evaluate its performance.

When we find the correct point pair pattern for a test im-

age, we can set the local coordinate system of the correct point

pair pattern as the local coordinate system of the test image.
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Fig. 4: The architecture of our customed SiameseMobileNet-

work. IA and IB are two input palm ROI images.

Take the palm image in Fig. 3a as example, we defined the

region of interest as ROI which is symmetric both to the X-

axis and the Y-axis. For ROI, its side length along both axises

are set as sR. Finally, we can extract the palm ROI from the

palm image by extracting the image region covered by ROI.

3.3. Palmprint verification

After palm ROI extraction, there is a pair of palmprint ROIs

waiting for verification. In traditional methods, palmprint fea-

tures are usually extracted to calculate matching scores. To

extract feature of ROIs better, we designed a siamese network

named SiameseMobileNet. Specifically, SiameseMobileNet
takes a pair of palmprint ROIs as input, and these two input

images will be sent to the subnet respectively. Each subnet is

a MobileNetV2, sharing weights with each other. Using these

subnets, we can get two feature vectors of the size 1280 × 1
from input ROI images. After that, two feature vectors will

be concatenated and sent to three fully connected layers with

normalization [23] to reduce the size. Finally, the feature vec-

tor will be sent to a fully connected layer, and the result will

be given as a matching score. We took scores less than 0.5 as

matching success, otherwise palmprint matching fail. The de-

tails of this siamese network are shown in Fig. 4, and details

of SiameseMobileNet’s training set will be shown in Sect. 4.

In Sect. 5, we will quantitatively evaluate its performance.

(a) (b)

Fig. 5: In the phase of preparing training samples, to make

the finger-gap-point detector rotation invariant, each original

labelled image was rotated to generate a set of its rotated ver-

sions. (a) is the original labelled image, and (b) is its rotated

version generated from (a).

4. MPD: A LARGE-SCALE PALMPRINT DATASET
COLLECTED BY MOBILE PHONES

In order to provide a reasonable performance evaluation

benchmark for palmprint verification on mobile platforms,

we have established and released a large-scale dataset named

MPD, in which palm images were collected from a variety

of backgrounds and lighting environments. For the purpose

of eliminating the influence of camera parameters of different

brands of mobile devices, we used two kinds of smartphones:

Huawei and Xiaomi. To avoid the influence of season or time

on photographs, we took 2 rounds of palm image collection

with the same two mobile phones of the same group of people

according to the same standard half in 2 periods. MPD com-

prises 16,000 palmprint images from 200 sessions (400 differ-

ent hands). We have kept 10 photos of one’s hand with each

phones and each time period and labelled all 16,000 palm im-

ages in our dataset.

In the training stage for finger-gap-point detector D, in

order to make it be scale invariant, we augmented the train-

ing set by rotating each original labelled image to generate a

number of its rotated versions as shown in Fig. 5. In detail,

for a given original labelled image I, we could gain N ro-

tated labelled images from it with rotate angle θN = 360
N . To

make the operation of rotation easier, we resized the original

labelled images to the fixed size sf × sf . Fig. 5a is an origi-

nal labelled image and Fig. 5b is its rotated version generated

by Fig. 5a with the rotation of 15 degrees. We separated the

augmented dataset according to the following ratio: training

set:validation set:test set = 8:1:1.

In the training phase of point pair pattern classifier C,

based on the labelled data, we can obtain a dataset named

dotPair comprising all the point pair pattern images. As

shown in Fig. 3, the ratio of sample number of class “right-

point-pair” to sample number of class “wrong-point-pair” is

1:11. To balance the number of samples in two classes, we

reserved the samples of class “right-point-pair’ and randomly

select the same number of samples in class “wrong-point-
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Table 1: Training settings

DCNN

structure

framework Learning

rate

batch

size

epoch

PeleeNet caffe 0.0005 32 16

MobileNetV2 keras 0.01 64 5

SiameseMobileNet keras 0.01 64 5

Table 2: Evaluation result of finger-gap-point detection

DCNN structure mAP (%) Speed (ms/image)

Tiny Yolo v2 98.63 50

MobileNetV1+SSD 99.57 45

PeleeNet 99.99 43

pair”. Finally we separated them according to the following

ratio: training set:validation set:test set = 8:1:1.

In the training stage for SiameseMobileNet, based on la-

belled data, we generated ROI dataset with 16,000 images

from 400 hands. We regarded ROI image pairs from the same

hand as positive samples, and ROI images pairs from differ-

ent hands as negative samples. In order to balance the number

of positive and negative samples, we kept all positive samples

and randomly select the same number of negative samples.

We picked 160 sessions as training set, 20 sessions as valida-

tion set and 20 sessions as test set.

5. EXPERIMENTAL RESULTS

5.1. Training settings

The training settings of finger-gap-point detector D, point pair

pattern classifier C and SiameseMobileNet are shown in Ta-

ble 1.

5.2. Performance evaluation of finger-gap-point detection

In our palmprint verification system DeepMPV, finger-gap-

point detection is a crucial step. In this experiment, we

evaluated the performance of finger-gap-point detector D and

two DCNN-based methods in the field of object detection,

Tiny Yolo v2 and MobileNet+SSD. From Table 2, we can

see that the efficiency and performance of model based on

PeleeNet is better than the one based Tiny Yolo v2. Hence,

we used the PeleeNet-based model to detect finger-gap-points

in DeepMPV.

5.3. Performance evaluation of point pair pattern classi-
fication

In DeepMPV, when the finger-gap-points are detected, we

need to classify each point pair pattern defined by a pair

Table 3: Performance of pre-trained MobileNetV2 models

with different width

Width Multiplier Accuracy-Top1 (%) Speed (ms/image)

1.00 97.75 36

0.75 99.62 33

0.50 98.47 29

0.35 99.70 26

Table 4: Performance of pre-trained SiameseMobileNet mod-

els with different width and output shape

Width

Multiplier

Output

Shape

Accuracy-Top1

(%)

Speed

(ms/image)

1.00 512 94.42 76

1.00 128 93.03 73

0.75 128 92.19 67

0.50 128 91.54 60

0.35 128 89.91 57

of finger-gap-points as one of the two predefined classes.

To achieve this goal, we used the classifier based on Mo-

bileNetV2 to classify patterns. Considering that this classi-

fier C will be transplanted to mobile devices, we evaluated

the performance of classifiers based on MobileNetV2 archi-

tecture with different width in this experiment.

As the width of MobileNetV2 architecture decreases, the

number of channels in each layer decreases, and the model

becomes lighter and more suitable for running on the mo-

bile phone. From Table 3, we can know that when the model

becomes lighter, its performance does not decline too much,

and some even perform better. The lightest model in Table

3 have the best performance of 99.70% accuracy. Moreover,

the lighter model can process pictures faster, which improves

the efficiency of our system on the premise of guaranteeing

accuracy.

5.4. Performance evaluation of palmprint verification

When we find the correct point pair in palm images, we can

extract ROIs by constructing local coordinate. In this exper-

iment, we tried to find the best model for palmprint verifica-

tion by changing the value of width multiplier and the output

shape of fully connected layers. As we can see in Table 4,

models with lager output shape have better performance. Be-

sides, when the model becomes lighter, the accuracy of palm-

print verification decreases and the speed of image processing

becomes faster. However, when the width of the model is re-

duced by half, its accuracy is reduced by around 2%, while

its speed is increased a lot. It is appropriate to use the model

with half width in the development of mobile phone applica-

tions during practical utilisation.
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Table 5: Performance of SiameseMobileNet and CompCode

Feature Extractor Accuracy(%)

MobileNetV2(alpha=0.35) 89.91

CompCode 81.12

Furthermore, we also compared the performance of

SiameseMobileNet and other palmprint verification methods

like CompCode in our dataset MPD. From Table 5, we can

see that the performance of the worst-performing model in

SiameseMobileNet is also much better than that of Comp-

Code.

6. CONCLUTION AND FUTURE WORK

In this paper, we made two major contributions to the field

of vision-based palmprint verification. Firstly, we collected

and labelled a large-scale palmprint dataset including 16,000

palm images, which is the largest one in this field. And we

have made it publicly available. Such a dataset will for sure

benefit the study of palmprint verification. Secondly, we pro-

posed a DCNN-based solution for palmprint verification on

mobile platforms. Its high efficiency and performance have

been corroborated by experiments. In near future, we will

try to refine our DCNN-based palmprint verification solution

and to continuously enlarge MPD to include more palmprint

samples.
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