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ABSTRACT

Underexposed images often suffer from serious quality degra-
dation such as poor visibility and latent noise in the dark.
Most previous methods for underexposed images restoration
ignore the noise and amplify it during stretching contrast. We
predict the noise explicitly to achieve the goal of denoising
while restoring the underexposed image. Specifically, a novel
three-branch convolution neural network, namely RRDNet
(short for Robust Retinex Decomposition Network), is pro-
posed to decompose the input image into three components,
illumination, reflectance and noise. As an image-specific net-
work, RRDNet doesn’t need any prior image examples or
prior training. Instead, the weights of RRDNet will be up-
dated by a zero-shot scheme of iteratively minimizing a spe-
cially designed loss function. Such a loss function is de-
vised to evaluate the current decomposition of the test image
and guide noise estimation. Experiments demonstrate that
RRDNet can achieve robust correction with overall natural-
ness and pleasing visual quality. To make the results repro-
ducible, the source code has been made publicly available at
https://aaaaangel.github.io/RRDNet-Homepage.

Index Terms— Underexposed image restoration, Retinex
decomposition, zero-shot learning

1. INTRODUCTION

Poor lighting conditions can cause serious quality degrada-
tion of captured images such as overall darkness or illegible
surface details in back-lit regions. Besides, with insufficient
light, the image acquired by the camera sensor usually con-
tains latent noise. How to develop an effective and robust re-
storer for underexposed images remains an unresolved issue.
An important but ignored problem of underexposed im-
age enhancement is how to suppress noise in dark areas while
stretching image contrast. In classic Retinex model [1], one of
the most widely-used paradigms in this field [2, 3, 4], an im-
age I can be decomposed into illumination .S and reflectance

R:
I(x) = R(x) - S(x) (1)
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Fig. 1. Restoration results of RRDNet. Images in the left
column are underexposed images in different scenes while the
ones in the right column are the restored results.

where x denotes the spatial location of pixels. However, this
classic Retinex model ignores noise, which is inevitable in
underexposed images. To this end, the robust Retinex model
in [5] introduces a noise term [N as,

I(x)=R(x) - S(x)+ N(x) (2)

In this work, we adopt the robust Retinex model in Eq.
(2) and introduce a zero-shot scheme, namely RRDNet, to
decompose the input image into three components, illumina-
tion, reflectance and noise. RRDNet is a novel three-branch
CNN (Convolutional Neural Networks [6]) and can explic-
itly estimate the three components of the input image. After
decomposition, the illumination can be adjusted and the noise
can be removed, and finally, a noise-free output with high vis-
ibility is generated. Several examples are given in Fig. 1.
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Most of the state-of-the-art approaches for underexposed
images restoration are learning-based, but data-driven train-
ing scheme greatly limits the generalization capabilities of
their models. In our scheme, RRDNet is trained while testing,
implying that its weights are updated by iteratively minimiz-
ing a specially designed loss function. Such a loss function is
devised to evaluate the current decomposition of the input im-
age and ensure the quality of the restored output. Meanwhile,
it can guide RRDNet to estimate the noise according to il-
lumination distribution, thus performing denoising to avoid
noise being amplified in the dark. Such a zero-shot scheme
does not need any prior image examples or prior training.

2. RELATED WORK AND OUR CONTRIBUTIONS

2.1. Related work

The restoration of underexposed images has been a long-
standing problem with a great progress made over the past
decade. Here we divide them into two categories, plain ones
and data-driven ones, based on whether or not supervised-
learning is used.
Plain methods. Conventional image enhancement methods
such as histogram-based methods [7, 8, 9, 10] can be ex-
plored to enhance underexposed images, but in most cases,
their efficacy is quite limited. Yuan and Sun [11] proposed
an automatic exposure correction method using S-curve tone
mapping. Zhang et al. [12] designed an unsupervised scheme
to estimate the best-fitting S-curve of the input. The param-
eterized S-curve adopted in these methods may compress the
mid-tones and the output images look too flat and unnatural.
Early attempts [13, 14] based on Retinex theory remove
the illumination and directly extract the reflectance as the en-
hanced results. Later work in this branch mainly focused
on the estimation [3, 4] and adjustment [2] of illumination.
These Retinex-based methods assume that the input images
are noise-free and amplify the latent noise in dark regions. Fu
et al. [15] estimated illumination and reflectance simultane-
ously. Li ef al. [5] further introduced the noise term to the
classic Retinex decomposition. These two methods suppress
noise via imposing a constraint on the reflectance or noise.
Differently, we applied the illumination guidance to noise es-
timation, thus performing more targeted denoising in the dark.
Data-driven methods. Black box models [16, 17, 18, 19]
roughly follow such a pipeline: first collect or synthesize a
dataset containing input-output pairs, and then find the map-
ping relationship or train an exposure correction model based
on the dataset. Based on Retinex theory, Shen et al. [20]
proposed MSR-net based on multi-scale Retinex theory and
trained it on synthesized pairwise images. Wang et al. [21]
trained an illumination mapping estimation network on the
new dataset they built, including underexposed images and
expert-retouched references. Wei et al. [22] and Zhang et
al. [23] trained decomposition networks on a dataset con-

taining low/normal light image pairs. The performance of
these supervised-learning-based methods highly depends on
the training dataset despite the fact that building such a dataset
including various types of illumination and contents is a chal-
lenging task itself.

2.2. Our contributions

Using learning-based approaches is a recent trend. However,
data-driven approaches have a potential drawback in their
generalization capability. The latent noise in dark regions of
the underexposed images is also an issue ignored by most pre-
vious methods. Our contribution is summarized as follows:

e An image-specific CNN for underexposed image
restoration, namely RRDNet, is proposed. RRDNet
does not require prior training; instead, it depends on
internal optimization of the single input image, ensur-
ing its generalization capability among various shoot-
ing scenes and kinds of illumination conditions.

e RRDNet has three branches, which are able to explic-
itly predict the illumination, reflectance and noise of
the input image. This makes it possible to adjust the il-
lumination and remove the noise completely to prevent
the noise from being amplified after contrast stretching.

e In RRDNet, to optimize the decomposition of the in-
put image, a novel loss is proposed. Such a loss can
guarantee that the restored result has rich texture de-
tails. At the same time, it can guide RRDNet to focus
on noise estimation in darker areas according to illumi-
nation distribution, thus performing more targeted de-
noising to avoid noise being amplified in the dark.

e Due to the CNN structure of RRDNet, our method
could learn the representation of Retinex decomposi-
tion. With the increase of processed images, the num-
ber of iterations of RRDNet converging to the opti-
mal decomposition decreases when facing unseen im-
ages, demonstrating the superiority of unsupervised-
learning-based schemes.

3. RRDNET: A ROBUST RETINEX
DECOMPOSITION NETWORK FOR
UNDEREXPOSED IMAGE RESTORATION

In this section, the workflow of the proposed approach for
underexposed image restoration using RRDNet will be pre-
sented in Sec. 3.1, and then in Sec. 3.2 we will introduce
the details of loss function of RRDNet which is designed for
zero-shot learning.

3.1. Three-branch decomposition and restoration

Given an underexposed image, the decomposition is per-
formed according to the robust Retinex model [5]. Specifi-
cally, an underexposed image I can be decomposed into three
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Fig. 2. The workflow of the proposed approach for underexposed image restoration using RRDNet. The three branches of
RRDNet are used to estimate the reflectance, the illumination, and the noise (the noise map is normalized for visualization),
respectively. Illumination map is adjusted through Gamma transformation and noise-free reflectance is computed. Combine the
adjusted illumination and restored reflectance, and the restored output is generated.

components, reflectance R, illumination .S and noise IV as,

I(x) = R(x)-S(x)+ N(x) 3)
It needs to be noted that for simplicity the three color channels
are usually assumed to have the same illumination [2].

Fig. 2 is the workflow of the proposed method, consisting
of two stages, decomposition and restoration. In the decom-
position stage, RRDNet is a three-branch fully convolutional
neural network and its structure is illustrated in Fig. 2. The
three branches are used to estimate the reflectance, the illu-
mination, and the noise, respectively. The branches of re-
flectance and illumination end with sigmoid layer to ensure
the intensities to fall in [0, 1]. Differently, to better fit additive
noise, a tanh layer is used as the last layer of noise branch,
which can make the noise value fall in [—1,1]. The noise
map shown in Fig. 2 is normalized for visualization. After
iterations of minimizing the loss function (Details of the loss
function are presented in Sec. 3.2) and updating the weights
of RRDNet, final decomposition of the input image can be
generated.

In the restoration stage, the illumination component is ad-
justed via Gamma transformation as,

“

where + is a predefined parameter. According to Eq. (3), a
noise-free reflectance can be computed as,

R(x) = (I(x) - N(x)) /S(x) (5)

(e)

Fig. 3. The decomposition and restoration results of the RRD-
Net. (a) is an input underexposed image, (c)-(e) are its es-
timated illumination, reflectance and normalized noise map
respectively and (b) is the restoration output.

Combine the adjusted illumination and noise-free reflectance,
and the final restoration result can be computed as,

I(x) = R(x) - 5(x) ©6)
3.2. Loss function for zero-shot learning

To update the weights of RRDNet, we need a loss function to
evaluate the current decomposition and guide the network to



Table 1. Objective evaluation results of the competing methods.

Datasets Yuan and Sun [11] NPE [2] RetinexNet [22] | Zhang et al.’s [4] ExCNet [12] RRDNet
NIQE CPCQI | NIQE CPCQI | NIQE CPCQI | NIQE CPCQI | NIQE CPCQI | NIQE CPCQI
MEF [24] | 3.1820 0.9970 | 3.5469 1.0372 | 49047 0.8863 | 3.5223 1.1126 | 3.3007 1.0555 | 3.1803 1.0981
LIME [3] | 3.7331 1.0482 | 3.8400 1.0812 | 5.1289 0.9868 | 4.2784 1.1415 | 3.7594 1.0804 | 3.7763 1.1461
DICM [25] | 2.8680  0.7640 | 3.0589 09115 | 4.3084 0.8830 | 3.1833 0.9559 | 3.3656 0.9632 | 2.9519 0.9104
NPE [2] 3.1229  0.8125 | 3.2418 0.9527 | 4.5349 09125 | 3.4335 0.9995 | 3.1907 0.9490 | 3.2083 0.9934
Average 3.2265 09054 | 3.4219 0.9957 | 47192 09172 | 3.6044 1.0524 | 3.4041 1.0120 | 3.2792 1.0370

generate more accurate components. We design a loss func-
tion L that consists of three parts as,

L=Ly+ MLt + A Ln )

where L,., L; and L, are the loss components, and \; and \,,
are the corresponding weight factors.

Retinex reconstruction loss. The decomposed components
of an image must first meet the requirements to reconstruct
an image according to Eq. (3), so as to ensure the reasonable
decomposition. In Retinex theory, the maximum of the R, G,

B channel intensities So(x) = max  I°(x) is usually used
ce{R,G,B}

as an initial estimation of illumination and the reflectance is
computed through the pixel-wise division between the image
and its illumination map [3, 4]. Here we choose this way as
a constraint on the illumination and reflectance. The Retinex
reconstruction loss can be expressed as,

Ly =T - (R-5+ N)lh

®)
+ 1S = Solly + [[R = I/S]|}x

where I denotes the input image and the reconstructed image
is computed as (R - S + IN). || X||1 computes the sum of ab-
solute values of all the entries in X . [;-norm is used to guide
the network to generate sharp illumination and reflectance.
Texture enhancement loss. In natural images, usually the
illumination intensity of a surface is relatively flat. A piece-
wise smooth illumination map helps enhance the texture of
the dark region. That is because when adjacent pixels have
close intensities, their contrast will be enlarged when divided
by the same illuminance value which falls in [0, 1]. In order
to ensure that the texture is enhanced, a smoothness loss term
L, is designed as,

Ly = ws - (025)*[l1 + llwy - (9,9)* 11 ©

where x and y indicates horizontal and vertical directions. w,,
and w, are the weights to ensure the estimated map piece-
wise smooth. Inspired by RTV loss [26], the weight term
should be inversely proportional to the gradient. Here we de-
sign the weight as,

1
G o (0:14(x))?
where G is a Gaussian filter, o denotes the convolution oper-

ator and I is the gray-scale version of the input. w, can be
computed in a similar way.

wy(x) = (10)

Illumination-guided noise estimation loss. In the task of un-
derexposed image restoration, the contrast of dark region will
be stretched to improve its visibility. But at the same time,
the noise hiding in the dark will be amplified. Therefore, it
is necessary to suppress the noise especially in the dark ar-
eas. Fortunately, the illumination map of the image has been
estimated, which can be used to guide the image denoising
task and can help RRDNet focus on estimating the noise in
the dark through weighting. The illumination-guided noise
estimation loss term is designed as,

1

Ln = - Nlle +5-

[llwr - (9:R)*[[1 + [[wr - (9, R)*[11] (1)
where || X || means the Frobenius norm of the matrix X,
w,, and w, are illumination-guided weights term and are de-
signed as,

12)

w,(x) = nOTmalize(I

- @.R)7 - @,rx7 D
where normalize denotes min-max normalization. The loss
function we designed for noise estimation is based on two
considerations. First, the range of values in noise map needs
to be limited. Second, the noise can be suppressed by smooth-
ing the reflectance component. Different from illumination
smoothing, it focuses on points with both small horizontal
and small vertical gradients, ensuring that real noise points
rather than edges are smoothed. In order to estimate the noise
in the dark, the above two items are weighted and restricted
by the illumination map.

A decomposition example is given in Fig. 3. By combin-
ing these three loss terms, the final RRDNet can converge to
decompose an image (a) into local smooth illumination map
(c), noise-free and texture rich reflectance (d), and noise fo-
cused on dark area (e). (b) is the restoration result.

4. EXPERIMENTAL RESULTS

We conducted experiments to compare the performance of
RRDNet with state-of-the-art approaches for underexposed
image restoration quantitatively and qualitatively. Further-
more, the ablation study was performed to evaluate the impact
of each component of the loss function of RRDNet.

In all experiments, we set v = 0.4, Ay = 1 and \,, =
5000. The experiments were carried out on a workstation with



Fig. 4. Comparison on a noisy image. (a) is the input image, (b)-(g) are the results of Yuan and Sun’s [11], NPE [2], 3)

RetinexNet [22], Zhang et al’s [4], ExCNet [12] and RRDNet.

() ® @

Fig. 5. Comparison on an underexposed image. (a) is the input image, (b)-(g) are the results of Yuan and Sun’s [11], NPE [2],

3) RetinexNet [22], Zhang et al’s [4], ExCNet [12] and RRDNet.

a 3.0GHz Intel Core 17-5960X CPU and an Nvidia GeForce
GTX 980Ti GPU.

Datasets and compared methods. The experiments were
conducted on four underexposed images datasets, including
MEEF [24], LIME [3], DICM [25], and NPE [2]. RRDNet was
compared with five underexposed image restorers, including
1) Yuan and Sun’s [11], 2) NPE [2], 3) RetinexNet [22], 4)
Zhang et al’s [4] and 5) ExCNet [12].

Objective evaluation. Similar to [4, 5], we adopt two com-
monly used no reference image quality assessment metrics,
NIQE (natural image quality evaluator) [27] and CPCQI
(colorfulness-based patch-based contrast quality index) [28]
to evaluate the underexposed image restoration methods.
NIQE assesses the overall naturalness of the restored result.
CPCQI evaluates the effect of enhancement between the in-
put and enhanced output from three aspects, mean intensity,
signal strength and signal structure components. A lower
NIQE value roughly corresponds to a higher overall natural-
ness while a larger CPCQI value indicates a higher contrast.

The results over four datasets are reported in Table 1. On
each dataset RRDNet can get a low NIQE value and a high
CPCQI value. The performance of NPE [2], RetinexNet [22]
and ExCNet [12] is inferior to RRDNet on both naturalness
and contrast, especially RetinexNet. Because RetinexNet is
based on supervised learning, its generalization capability de-
teriorates significantly on the unseen test set. Yuan and Sun’s
[11] method can generate results with high naturalness but the

Table 2. Ablation study.

Settings L. L.+L, L.+L; L.+L;+ L,
CPCQI | 0.8357  0.9299 1.0178 1.0981
NIQE | 3.7438 4.1115 3.3467 3.1803

contrast is relatively low. Zhang et al.’s [4] method can gener-
ate high contrast outputs. However, since it does not suppress
noise and thus the noise in the dark is amplified, the resulting
images appear unnatural.

Visual Quality. Fig. 4 and Fig. 5 compare the restoration
results on a noisy image and an underexposed image, respec-
tively. (c), (d) and (e) in both Fig. 4 and Fig. 5 have se-
rious noise in dark regions as a result of over-enhancement,
which makes them appear unnatural. As for (b) and (f) in the
two figures, there is a contrast distortion in their details. This
is due to the S-curve adjustment model they rely on, which
compresses the mid-tones and makes the texture look too flat.
These observations are consistent with the objective evalua-
tion in Table 1. By contrast, our method RRDNet can reveal
the details hiding in dark regions of the image in a natural
way, and at the same time obtain the high-quality output with-
out noise artifacts.

Ablation Study. We perform an ablation study on MEF
dataset to quantitatively evaluate the merit brought by each
term in the loss function of RRDNet by combining differ-
ent loss terms. The results are summarized in Table 2. It
can be seen that adding texture enhancement loss term and



noise estimation loss term can obviously improve both con-
trast and naturalness of the restored outputs. The progressive
improvement of the performance demonstrates the effective-
ness of each loss term.

5. CONCLUSION

In this paper, we focus on underexposed image restoration
and propose a zero-shot scheme, namely RRDNet to per-
form Retinex decomposition and restoration. RRDNet can
explicitly predict the decomposition maps of the input im-
age. The weights of RRDNet are updated by iteratively min-
imizing a specially designed loss function. According to the
decomposed illumination, reflectance and noise components,
a highly visible and noiseless output can be generated. Ex-
periments on different datasets show the superiority of our
method on both naturalness and contrast. In the future, we
will further explore the adjustment methods of illumination
components.
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