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3D Ear Identification Using Block-Wise
Statistics-Based Features and LC-KSVD
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Abstract—Biometrics authentication has been corroborated to
be an effective method for recognizing a person’s identity with
high confidence. In this field, the use of three-dimensional (3D)
ear shape is a recent trend. As a biometric identifier, the ear has
several inherent merits. However, although a great deal of efforts
have been devoted, there is still large room for improvement in
developing a highly effective and efficient 3D ear identification
approach. In this paper, we attempt to fill this gap to some extent
by proposing a novel 3D ear classification scheme that makes
use of the label consistent K-SVD (LC-KSVD) framework. As
an effective supervised dictionary learning algorithm, LC-KSVD
learns a single compact discriminative dictionary for sparse
coding and a multi-class linear classifier simultaneously. To
use the LC-KSVD framework, one key issue is how to extract
feature vectors from 3D ear scans. To this end, we propose a block-
wise statistics-based feature extraction scheme. Specifically, we
divide a 3D ear region of interest into uniform blocks and extract
a histogram of surface types from each block; histograms from all
blocks are then concatenated to form the desired feature vector.
Feature vectors extracted in this way are highly discriminative
and are robust to mere misalignment between samples.
Experiments demonstrate that our approach can achieve better
recognition accuracy than the other state-of-the-art methods.
More importantly, its computational complexity is extremely
low, making it quite suitable for the large-scale identification
applications. MATLAB source codes are publicly online available
at http://sse.tongji.edu.cn/linzhang/LCKSVDEar/LCKSVDEar.
htm.

Index Terms—3D ear, dictionary learning, label consistent K-
SVD (LC-KSVD), sparse coding, surface types.

I. INTRODUCTION

THE need for reliable user authentication techniques are
significantly increased in the wake of heightened concerns
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about security, and rapid advancement in networking, commu-
nication and mobility [1]. Propelled by the requirements of
numerous applications, such as access control, aviation secu-
rity, or e-banking, automatically recognizing the identity of a
person with high confidence has become a topic of intense
study. To solve such a problem, biometrics based methods,
which use unique physical or behavioral characteristics of hu-
man beings, are drawing increasing attention recently because
of their high accuracy and robustness. In the past several decades
or so, researchers have exhaustively investigated a number of
different biometric identifiers, such as fingerprint [2], [3], face
[4]–[6], iris [7], [8], palmprint [9]–[11], hand geometry [12],
gait [13], finger-knuckle-print [14], [15], etc.

Among many biometric identifiers, the ear has recently re-
ceived significant attention due to its non-intrusiveness and ease
of data collection. As a biometric identifier, ear is appealing
and has some desirable properties. For example, compared with
face, ear recognition is less likely to be affected by various facial
expressions. Ear has a rich structure and a distinct shape which
remains unchanged from 8 to 70 years of age as determined by
Iannarelli through a study of 10 000 ears [16]. As pointed out by
Chang et al. [17], the recognition using two-dimensional (2D)
ear images has a comparable discriminative power compared
with the recognition using 2D face images.

Much progress has been made in the fields relevant to ear
recognition in recent years. Ear recognition problems can be
roughly classified as 2D, 3D, and multimodal 2D plus 3D, ac-
cording to the types of input data. Most studies in this field in
the early stage exploited only 2D profile images and represen-
tative works can be found in [17]–[22]. However, it has been
observed that variations between the images of the same ear
due to changes of illumination or viewing direction are often
larger than those caused by changes in ear identity. The intro-
duction of the 3D modality mitigates some of these challenges
by introducing a depth dimension that is invariant to both light-
ing conditions and head pose. With the development and the
popularization of the 3D sensing technology, there is a rising
trend to use 3D sensors instead of 2D cameras in the field of
ear recognition. Compared with its 2D counterpart, 3D data
contains more abundant information about the ear shape and
is more robust to illumination variations and occlusions. Yan
and Bowyer found that ear matching based on 3D data could
achieve a higher recognition accuracy than that making use of
the corresponding 2D images [23].

However, how to devise a highly effective and efficient 3D ear
identification approach is still an open issue and in this paper
we try to solve this problem to some extent. The remainder
of this paper is organized as follows. Section II introduces the
related works and our contributions. Section III presents our
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proposed block-wise statistics based feature extraction scheme.
Section IV presents our proposed 3D ear classification scheme in
detail. Experimental results are presented in Section V. Finally,
Section VI concludes the paper.

II. RELATED WORKS AND OUR CONTRIBUTIONS

A. 3D Ear Detection and Classification

To construct a real 3D ear based personal authentication sys-
tem, there are two key components, ear region detection and
ear matching. In the literature, several different schemes have
been proposed for 3D ear region detection. Among them, some
are totally based on 3D range data, e.g. [24]–[30], while others
are based on multi-modal co-registered 2D plus 3D data [31]–
[34]. In [24], Chen and Bhanu proposed a two-step approach to
detect the ear region, which includes model template building
and online detection. The model template is obtained by aver-
aging the shape index histograms of multiple ear samples and
the online detection includes four steps, namely, step edge de-
tection and thresholding, image dilation, connected-component
labeling, and template matching. In their later work [25], Chen
and Bhanu represented an ear shape model by a set of discrete
3D vertices on the ear helix and anti-helix parts and aligned the
model with the range images to detect the ear regions. In [26]–
[29], Passalis et al. proposed a generic annotated ear model to
register and fit each 3D ear and then a compact biometric signa-
ture was extracted. In [30], Zhang et al. proposed an ear contour
alignment based ear detection method. With their method, a
range image is at first transformed to a canonical frame by
aligning it with an ear contour template created offline and then
the ear region is extracted accordingly. In [31], the ear region
was initially located by taking a predefined sector from the nose
tip. The non-ear portion was then cropped out from that sector
using a skin detection algorithm and the ear pit was detected
using Gaussian smoothing and curvature estimation algorithms.
Then, an active contour algorithm was exploited to extract the
ear contour. In [32], [33], ear regions are detected from 2D
profile images by training an AdaBoost classifier and then the
corresponding 3D ear data is extracted from the co-registered
3D profile data. In [34], Chen and Bhanu also resorted to both
color and range images to extract ear regions. They used a ref-
erence ear shape model based on the helix and anti-helix curves
and the global-to-local shape registration.

With respect to the 3D ear matching schemes, most of the
existing state-of-the-art methods [31]–[37] adopt iterative clos-
est point (ICP) [38] or its variants. While ICP is an appealing
approach for the one-to-one verification applications, it is not
quite suitable for the one-to-many identification case. Roughly
speaking, ICP-based matching is quite time consuming. If there
are multiple samples for each subject in the gallery set, to fig-
ure out the identity of a given test sample using an ICP-based
matching method, it would be necessary to match the test sam-
ple to all the samples in the gallery set one by one. Such a
brute-force searching strategy is obviously not quite computa-
tionally efficient, especially when the size of the gallery set is
extremely large. Therefore, ICP-based methods are not appro-
priate for dealing with large-scale identification applications. In
[30], Zhang et al. tried to solve this problem by using the sparse

representation based classification framework. In their method,
feature vectors are extracted from ear samples in the gallery set
and they form an overcomplete dictionary A. It implies that if
sufficient training samples are available from each class, it will
be possible to represent the test sample as a linear combination
of just those training samples in A from the same class. When a
test sample is presented, its feature vector y is extracted at first
and then y is coded over the dictionary A; the identity of y can
be figured out by checking which class leads to the minimum
representation error.

For a more comprehensive recent review about ear recogni-
tion, readers can refer to [39].

B. Sparse Coding and Dictionary Learning

Since our proposed 3D ear identification approach has a close
relationship with sparse coding and dictionary learning, some
recent developments in these two fields will be briefly reviewed
here.

In recent years, sparse coding has been successfully explored
to solve a variety of problems in computer vision and image anal-
ysis, e.g. image denoising [40], image restoration [41], [42], ob-
ject classification [30], [43]–[45], musical signal analysis [46],
and blind image quality assessment [47].

With sparse coding, an input signal y is approximated by a
linear combination of a few items from an overcomplete dictio-
nary A and usually y’s identity can be determined by evaluating
which class yields the least reconstruction error. As pointed out
in [48], usually a dictionary learned from the training samples
can produce better results than the one using off-the-shelf bases
that are predefined and do not depend on any specific data, such
as Fourier or wavelet bases. In [43], Wright et al. employ the
entire set of training samples as the dictionary for discrimina-
tive sparse coding and they achieve impressive performances
for face recognition. However, determining sparse codes from
large dictionaries is quite computationally expensive, prohibit-
ing real-time applications. Hence, to scale to large training sets,
compact dictionary learning approaches have been developed
and several prominent supervised dictionary learning methods
will be briefly reviewed here.

In [49] and [50], one dictionary is learned for each class;
classification is performed based on the corresponding recon-
struction errors. In [51], Ramirez et al. learn class specific dictio-
naries with an incoherence promoting term, which encourages
class specific dictionaries to be independent. In [52], Zhang
et al. wrap the dictionary learning process inside a boosting
procedure for learning multiple dictionaries. In [53], multiple
dictionaries for visually correlated object categories are learned;
a common shared dictionary is used to characterize common
visual properties of the group and multiple category-specific
dictionaries are used to capture category-specific visual proper-
ties. The drawback of learning class specific dictionaries is that
dictionary construction during training and class-wise sparse
coding during testing are both quite time consuming when the
number of classes is large. Some approaches learn a compact
dictionary by merging dictionary items from an initially large
dictionary. For example in [54], Winn et al. propose to merge
the visual items by considering the tradeoff between intra-class
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compactness and inter-class discrimination power. In [55], the
dictionary is learned through merging two items by maximizing
the mutual information of class distributions. In [56], Fulkerson
et al. construct small dictionaries that can maintain the perfor-
mance of their larger counterparts by using agglomerative in-
formation bottleneck [57]. Some recently proposed approaches
incorporate discriminative terms into the objective function dur-
ing training in order to obtain dictionaries having outstanding
capability for classification. The approach proposed in [58] iter-
atively updates the dictionary based on the outcome of a linear
classifier. It may be stuck in a local minimum since it alternates
between the dictionary construction and the classifier learning.
In [59], Yang et al. learn a structured dictionary, in which the
dictionary atoms have correspondence to the class labels, by em-
ploying the Fisher discrimination criterion. Quite recently, Jiang
et al. proposed a dictionary learning method, namely label con-
sistent K-SVD (LC-KSVD) [60]. In their method, in addition
to using class labels of training data, they also associate label
information with each dictionary item to enforce discriminabil-
ity in sparse codes during the dictionary learning process. With
LC-KSVD, a single overcomplete dictionary and an optimal
linear classifier can be learned simultaneously.

C. Overview of Our Approach

As aforementioned, though 3D ear is an attractive biometric
trait, how to construct a highly effective and efficient identifica-
tion system based on 3D ear is still an open issue. In this paper,
we aim to bring some new improvements to this field. It needs
to be noted that we only focus on investigating the ear classifi-
cation methods. For 3D ear region of interest (ROI) extraction,
we use the method proposed in [30]. In this paper, we assume
that 3D ear ROIs have already been available.

On seeing that the supervised dictionary learning techniques
have achieved great success in various different fields, we at-
tempt to adapt them for 3D ear identification. Specifically, our
approach is based on LC-KSVD [60], since pleasing results
have been reported by using it in several different classification
tasks, including face classification, object classification, scene
classification, and action classification. With LC-KSVD, in ad-
dition to a compact discriminative dictionary, a multiclass linear
classifier can also be learned jointly, which makes the classifi-
cation rather efficient. To our knowledge, our work is the first
one introducing supervised dictionary learning techniques into
the field of 3D ear identification.

To adapt LC-KSVD for 3D ear identification, how to extract
feature vectors to represent 3D ears is a rather critical issue.
Since there exists mere misalignments between two ear ROIs,
the extracted feature vectors should be robust to small misalign-
ments while maintaining a high discriminative capability. To
meet these requirements, we propose a novel block-wise statis-
tics based feature extraction scheme. Specifically, we at first di-
vide a 3D ear ROI into uniform blocks and extract a histogram
of surface types (STs) [61] from each block; histograms from
all the blocks are then concatenated to form the final feature
vector. Experimental results demonstrate that such feature vec-
tors are highly discriminative and are robust to mere misalign-
ment between ear samples.

The effectiveness and the efficiency of our proposed 3D
ear identification scheme has been corroborated by extensive
experiments conducted on the benchmark datasets. To make
the results fully reproducible, MATLAB source codes of
our approach have been made public online available at
http://sse.tongji.edu.cn/linzhang/LCKSVDEar/LCKSVDEar.
htm.

III. BLOCK-WISE STATISTICS-BASED FEATURES

In this section, the feature extraction method used in our
system will be introduced in detail, which serves as a critical
component in our 3D ear identification system.

When SRC or LC-KSVD is adopted as a classification frame-
work, the feature vector extracted from the test sample needs
to be sparsely coded over the dictionary whose columns are
learned from feature vectors of gallery samples. In the field of
face recognition, feature vectors are typically vectorized from
raw image pixels and impressive results are obtained [43], [59].
However, these methods actually implicitly require that the test
image and the training set must be well aligned. As reported in
[44], if the test image has even a small amount of registration
error against training images (which is also true for the 3D ear
classification problem), the representation coefficients will no
longer be informative. To deal with this problem, several studies
have been conducted recently. In [44], Wagner et al. solve this
challenging issue by a series of linear programs that iteratively
minimize the sparsity of the registration error. In [62], Peng et al.
formulate the batch image alignment as searching for a set of
transformations that can minimize the rank of the transformed
images, which are viewed as columns of a matrix. If Wagner
et al.’s method [44] or Peng et al.’s method [62] is adopted,
the misalignment between the test image and images of each
training class needs to be rectified explicitly. Obviously, this
strategy is quite time consuming for large-scale identification
applications.

Even though the 3D ear extraction method proposed by Zhang
et al. [30] can align ears to some extent, there are still small
alignment errors between ear ROIs. Since explicitly registering
the test ear sample to the training samples is extremely time-
consuming, we need to find a new feature extraction scheme
which is robust to mere misalignments while the extracted fea-
ture vectors are still highly discriminative. To meet these re-
quirements, we propose a novel 3D feature extraction scheme
based on block-wise statistics, whose details will be presented
in the following.

A 3D ear can be considered as a surface with various convex
and concave structures. We can classify the points on the ear into
different types based on their different geometric characteristics.
Such a kind of 3D feature is called as ST [61], which has
been proved to be highly discriminative. Assume that a 3D ear
ROI is represented by S(x, y, f(x, y)). Mean curvature H and
Gaussian curvature K can be computed as [63]

H =

(
1 + f 2

x

)
fyy +

(
1 + f 2

y

)
fxx − 2fxfy fxy

2
(
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TABLE I
ST LABELS DEFINED BY SIGNS OF SURFACE CURVATURES [61]

K > 0 K = 0 K < 0

H < 0 Peak Ridge Saddle Ridge
(ST = 1) (ST = 2) (ST = 3)

H = 0 None Flat Minimal Surface
(ST = 4) (ST = 5) (ST = 6)

H > 0 Pit Valley Saddle Valley
(ST = 7) (ST = 8) (ST = 9)

Fig. 1. First row displays three 3D ear ROIs, shown in image format while
the second row displays their corresponding ST maps. (a) and (b) are captured
from the same ear but in different sessions. (b) and (c) are from different ears.

where fx(fy ), fxx (fyy , fxy ) are the first order and second or-
der partial derivatives, respectively. Details for computing these
partial derivatives for range images can be found in Appendix.
There are eight fundamental viewpoint independent STs that
can be characterized using only the sign of the mean curvature
(H) and Gaussian curvature (K) [61]. For completeness, we list
their definitions in Table I. In total, 9 STs can be defined, in-
cluding eight fundamental STs and one special case for H = 0
and K > 0.

With the above-mentioned procedures, each point in the 3D
ear ROI can be classified into one of the 9 STs. Thus, for each
3D ear ROI, we could obtain an ST map, each field of which
is an integer from 1 to 9. Examples of ST maps are shown in
Fig. 1. In Fig. 1, the first row displays three 3D ear ROIs,
shown in image format while the second row displays their
corresponding ST maps. Fig. 1(a) and (b) is captured from the
same ear but in different sessions while Fig. 1(b) and (c) is
captured from different ears.

As a 3D feature, surface type maps are highly discriminative
but they are sensitive to small amount of registration errors
between the test image and training images. On the other hand,
global statistics based features, such as histograms and moment
invariants [64], are robust to misalignments but they are not quite
discriminative. In order to integrate the merits of these two kinds

of feature extraction schemes, we propose to use block-wise ST
statistics based features.

Suppose that for a 3D ear ROI, we have computed from it an
ST map M. Then, we uniformly divide M into a set of p × p
blocks. For each block i, we compute from it a histogram of STs,
denoted by hi . Obviously, the dimension of hi is 9 since there
are totally 9 possible STs (see Table I). Finally, all his are con-
catenated together as a large histogram h, which is considered
to be the feature vector. Experimental results have corroborated
the efficacy of such a feature extraction scheme (see Section V).
The advantages of the proposed feature extraction method are
summarized below:

1) discriminative: by computing ST maps, it enables the pro-
posed method to be highly discriminative to characterize
the rich structures of 3D ears;

2) robust to mere misalignment: with concatenation of local
statistics of STs, the extracted feature is robust to the mere
misalignment existing in 3D ear ROIs; and

3) low computational cost: as there are only 9 possible STs,
it’s rather fast to obtain a local histogram of ST.

IV. LC-KSVD-BASED 3D EAR CLASSIFICATION

By using the proposed feature extraction scheme as presented
in Section III, any given 3D ear range image can be represented
by a feature vector. With respect to the classification frame-
work, we propose to adopt LC-KSVD [60], whose efficacy and
efficiency have been demonstrated in various fields. With LC-
KSVD, the supervised information (i.e. class labels) of input
signals can be utilized to learn a reconstructive and discrimi-
native dictionary. Each dictionary item will be chosen so that
it represents a subset of the training signals ideally from a sin-
gle class. Thus, each dictionary item can be associated with a
particular class label and there is an explicit correspondence
between dictionary items and labels. Meanwhile, a multiclass
linear classifier can be learned simultaneously.

Given a gallery set comprising of 3D ears, we can com-
pute a feature vector for each sample and then we can define a
data matrix Y as the concatenation of all the extracted feature
vectors

Y = [y1,1 ,y1,2 , . . . ,yk,nk
] ∈ Rn×N (3)

where n is the dimension of the feature vector, k is the number
of classes, nk is the number of samples for class k, and N =∑k

j=1 nj is the total number of samples in the gallery set. The
LC-KSVD learning model can be expressed as

〈D̂,Ŵ, Â, X̂〉 = arg min
D ,W ,A ,X

‖Y − DX‖2
F

+α ‖Q − AX‖2
F

+β ‖H − WX‖2
F , s.t. ‖xi‖0 ≤ T (4)

where D = [d1 , . . . ,dK ] ∈ Rn×K is the learned dictionary,
X = [x1 , . . . ,xN ] ∈ RK×N are the sparse codes of input sig-
nals Y, T is the sparsity constraint factor, ‖xi‖0 counts
the non-zero elements in vector xi , and ‖Y − DX‖2

F de-
notes the reconstruction error. Q = [q1 , . . . ,qN ] ∈ RK×N are



ZHANG et al.: 3D EAR IDENTIFICATION USING BLOCK-WISE STATISTICS-BASED FEATURES AND LC-KSVD 1535

the discriminative sparse codes of Y. qi = [q1
i , . . . ,q

K
i ]T =

[0, . . . 1, 1, . . . 0]T ∈ RK is a discriminative sparse code corre-
sponding to an input signal yi since the nonzero values of qi oc-
cur at those indices where the input signal yi and the dictionary
item dj (j = 1, . . . , K) share the same label. A is a linear trans-
formation matrix, which transforms the original sparse codes to
be the most discriminative in sparse feature space RK . Thus,
the term ‖Q − AX‖2

F represents the discriminative sparse code
error, which enforces that the transformed sparse codes AX ap-
proximate the discriminative sparse codes Q. W denotes the
classifier parameters. H = [h1 , . . . ,hN ] ∈ Rk×N are the class
labels of input signals Y. hi = [0, 0, . . . , 1, ..0, 0]T ∈ Rk is a
label vector associated to the input signal yi , where the nonzero
position indicates the class label of yi . Obviously, the term
‖H − WX‖2

F represents the classification error. The dictionary
D̂ learned in this way is adaptive to the underlying structure of
the training data and can generate discriminative sparse codes
X, which can be utilized directly by a linear classifier. The dis-
criminative property of sparse code is very important for the
performance of a linear classifier.

For the purpose of optimization, (4) can be rewritten as

〈D̂,Ŵ, Â, X̂〉 = arg min
D ,W ,A ,X

∥
∥
∥
∥
∥
∥
∥

⎛

⎜
⎝

Y
√

αQ
√

βH

⎞

⎟
⎠ −

⎛

⎜
⎝

D
√

αA
√

βW

⎞

⎟
⎠X

∥
∥
∥
∥
∥
∥
∥

2

F

s.t. ∀i, ‖xi‖0 ≤ T . (5)

LetYnew =
(
YT ,

√
αQT ,

√
βHT

)T
,Dnew = (DT ,

√
αAT ,√

βWT )T . The optimization of (5) is equivalent to solving the
following problem:

〈D̂new , X̂〉 = arg min
Dn e w ,X

‖Ynew − DnewX‖2
F

s.t. ∀i, ‖xi‖0 ≤ T (6)

which can be efficiently solved by the K-SVD algorithm [40].
To solve (6) by using K-SVD, D, A and W need to be initialized
as D(0) , A(0) , and W(0) and to this end we use the method
proposed in [60]. Specifically, for D(0) , we run several iterations
of K-SVD within each class and combine all the outputs of
each K-SVD as D(0) . The label of each dictionary item dj is
initialized based on the class it corresponds to and will remain
fixed during the entire dictionary learning process. Sparse codes
X(0) for Y can be computed by solving

x(0)
i = arg min

x i

∥
∥
∥yi − D(0)xi

∥
∥
∥

2

2
, s.t. ‖xi‖ ≤ T (7)

where yi is the ith column of Y and x(0)
i is the ith column

of X(0) . For solving (7), we resort to the orthogonal match-
ing pursuit algorithm [65]. To initialize A(0) , the multivariate
ridge regression model [66] with the quadratic loss and l2-norm
regularization is employed, which is expressed as

A(0) = arg min
A

∥
∥
∥Q − AX(0)

∥
∥
∥

2

F
+ λ1 ‖A‖2

F . (8)

It has a closed-form solution as

A(0) = Q
(
X(0)

)T
(
X(0)

(
X(0)

)T

+ λ1I
)−1

. (9)

Similarly, for initializing W(0) , we also use the ridge regression
model and W(0) can be computed as

W(0) = H
(
X(0)

)T
(
X(0)

(
X(0)

)T

+ λ2I
)−1

. (10)

After we get D̂new by solving (6), we can obtain D̂ =
[d1 , . . . ,dK ] and Ŵ = [w1 , . . . ,wK ] from D̂new . However,
we cannot directly use D̂ and Ŵ for testing since D̂, Â, and Ŵ
are l2-normalized in D̂new jointly in the LC-KSVD algorithm,
i.e., ∀k,

∥
∥dT

k ,
√

αaT
k ,

√
βwT

k

∥
∥

2 = 1. The desired dictionary D̂∗

and classifier parameters Ŵ∗ can be computed as follows:

D̂∗ =
[

d1

‖d1‖2
, . . . ,

dK

‖dK ‖2

]

Ŵ∗ =
[

w1

‖w1‖2
, . . . ,

wK

‖wK ‖2

]
. (11)

At the testing stage, given a probe 3D ear scan, we at first
detect the ear region and compute from it a feature vector y.
Then, we compute its sparse representation x̂ over the learned
dictionary D̂∗ by solving the following problem:

x̂ = arg min
x

∥
∥
∥y − D̂∗x

∥
∥
∥

2

2
, s.t. ‖x‖0 ≤ T . (12)

After x̂ is obtained, we simply use the linear predictive clas-
sifier to estimate a label vector c = Ŵ∗x̂. Finally, the label of y
is assigned as the index corresponding to the largest element of
c. Our proposed 3D ear identification algorithm is summarized
in Table II. Its overall flowchart is illustrated in Fig. 2.

V. EXPERIMENTS

A. Database and Experimental Protocol

In experiments, we used the UND Collection J2 dataset [67].
This dataset contains 2346 3D side face scans captured from
415 different persons, making it the largest 3D ear scan dataset
so far. Those range images were collected using a Minolta Vivid
910 range scanner in high resolution mode. There are variations
in pose between them and some images are occluded with hair
or ear rings. Each scan is a 640 × 480 range image. Several scan
samples are shown in Fig. 3.

To evaluate the performance of our method, however, we
cannot simply conduct experiments on the whole dataset since
some classes in UND-J2 have only 2 samples. As pointed out
in [43], classification schemes based on sparse coding need
sufficient samples for each class in the gallery. Consequently,
we virtually created four subsets from UND-J2 for experiments.
Specifically, we required that each class should have more than
6, 8, 10, and 12 samples, respectively. For subset 1, we randomly
selected from each class 6 samples to form the gallery set and
the rest samples were used to form the test set. For subset 2, we
randomly selected from each class 8 samples to form the gallery
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TABLE II
PROPOSED ALGORITHM FOR 3D EAR IDENTIFICATION

Fig. 2. Illustration for the proposed 3D ear identification approach based on
LC-KSVD and block-wise statistics-based features.

set and the rest samples were used to form the test set. For subset
3 and subset 4, similar strategies were used to generate the
gallery and test sets. To make it clear, major information about
the four subsets used for evaluation is summarized in Table III.

We use the rank-1 recognition rate (R-1 RR) as the perfor-
mance measure. In addition, the running speed of each compet-
ing method was also evaluated. Experiments were performed
on a standard HP Z620 workstation with a 3.2 GHZ Intel Xeon
E5-1650 CPU and an 8G RAM. The software platform was
MATLAB R2013b.

B. Effectiveness of ST Histograms-Based Features

In our proposed 3D ear identification framework, each 3D
range image is represented as a feature vector and for feature
extraction we propose to use local histograms of STs (LHST)
as features. That is, for each range block, we extract from it
a histogram of STs and then we concatenate the histograms
of all blocks together as the feature vector. In this section, to
demonstrate the effectiveness of the proposed feature extraction
scheme LHST, we compared its performance with several other
feature extraction methods existing in the literature. In order to
evaluate the performance of different features, we need to fix the
classification approach. In this experiment, with respect to the
classification framework, we used the LC-KSVD framework.

The local histogram of STs can be viewed as a kind of local
statistics based features. Actually, in the literature there are also
other local statistics based features. For example, local binary
pattern (LBP) has been testified to be a powerful descriptor for
many image classification tasks [68]. When using LBP, actually
we regard the range image data as standard image data. In this
experiment, when extracting LBP-based features, for each 3D
ear ROI, we divided it into uniform blocks, extracted local his-
togram of LBP from each block, and then concatenated all the
histograms to form the final feature vector. An LBP operator
can be represented as LBPriu2

P,R , where “riu2” means the use of
rotation invariant uniform patterns that have transitions at most
2, R is the sampling radius and P is the number of sampling
points. We tested three LBP operators LBPriu2

8,1 , LBPriu2
16,3 , and

LBPriu2
24,5 , and also their combinations denoted by LBPm .

Local orientation coding based methods have been verified to
be quite successful in the fields of 2D biometrics. For example,
CompCode [9], which encodes the local orientation using a set
of Gabor filters, is a quite powerful method for matching 2D
palmprints. In this experiment, we tested its performance for
3D ear classification. Specifically, for each block, we extract
from it a histogram of CompCode and then form the feature
vector by concatenating all the local histograms.

In addition, we also evaluated the performance of a local PCA-
based feature designed for range images [30]. In such a method,
for each point pi on the range image, neighborhood points will
be located at first, based on which PCA is performed. Then, the
feature value for pi is the difference between lengths of the first
two principal axes. Finally, the feature map is vectorized as a
vector.

Moreover, MCI, GCI and ST maps [10] were computed and
then vectorized for performance evaluation as well. Although
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Fig. 3. Samples of 3D side face scans in UND-J2 dataset.

TABLE III
SUBSETS USED IN OUR EXPERIMENT

Subset index �Classes Gallery size Probe size Total samples

1 127 762 715 1477
2 85 680 461 1141
3 62 620 291 911
4 39 468 168 636

TABLE IV
R-1 RRS BY USING DIFFERENT FEATURES (%)

Subset 1 Subset 2 Subset 3 Subset 4

LBP r i u 2
8 , 1 74.83 80.69 86.94 92.26

LBP r i u 2
1 6 , 3 84.62 91.97 95.88 97.02

LBP r i u 2
2 4 , 5 90.21 94.14 96.56 97.62

LBPm 88.95 93.93 97.25 97.62
CompCode 90.19 94.66 96.25 98.40
PCA 87.83 91.76 96.22 96.43
MCI 66.99 84.38 85.57 92.26
GCI 66.99 76.79 80.41 88.69
ST 89.23 93.71 96.22 98.21
LHST 92.86 95.88 98.63 100

these feature extraction schemes are also based on surface cur-
vatures, they fail to cope with the mere misalignment existing
in 3D ear ROIs. Details for computing MCI, GCI and ST maps
can be found in [10].

The evaluation results are summarized in Table IV. From
Table IV, it can be observed that ST outperforms all the
other vectorized feature maps; meanwhile, the proposed scheme
LHST based on block-wise ST histograms works much bet-
ter than the rest local statistics based ones. These two points
strongly underpin the adoption of ST in our method. Besides,
LHST performs better than ST because it further utilizes lo-
cal histograms for handling misalignment. It indicates that the
proposed feature extraction approach is quite qualified in char-
acterizing local shape structures of 3D range data.

To explore the robustness of the proposed feature extraction
scheme against misalignment, we considered rotation and trans-
lation as the main causes in the task of 3D ear recognition. In
this experiment, we simulated different degrees of misalignment
using the entire probe 3D ear ROIs from the four subsets. Specif-
ically, we rotated each test sample by −2.5◦ to 2.5◦ stepped by
0.5◦. For the impact of translation, on the other hand, we trans-
lated each one by−5 pixels to 5 pixels at an interval of 1 pixel on
both axes. The results are shown in Fig. 4. From Fig. 4, we can

Fig. 4. Robustness of the proposed feature extraction scheme against various
degrees of misalignment resulted from (a) rotation and (b) translation.

TABLE V
R-1 RRS BY USING DIFFERENT METHODS (%)

Subset 1 Subset 2 Subset 3 Subset 4

ICP 83.22 90.02 94.09 95.83
Zhang et al. [30] 83.78 90.67 94.50 96.43
SRC_LHST 92.17 94.36 96.56 98.81
LCKSVD LHST 92.86 95.88 98.63 100

see that the proposed LHST is quite robust to the misalignment
resulted from various degrees of rotation and translation.

C. Performance Evaluation and Discussions

In this experiment, the performance of several competing
methods was evaluated. Our proposed method based on the
LC-KSVD classification framework and LHST features is de-
noted by LCKSVD_LHST. In order to demonstrate the superi-
ority of LC-KSVD as a classification framework, we also tested
the performance of the approach which classifies LHST fea-
tures by using the SRC model [43]. This method is denoted by
SRC_LHST. For solving the l1-minimization problem involved
in SRC_LHST, we used the algorithm DALM [69]. Some other
state-of-the-art methods for 3D ear matching were also evalu-
ated. They include ICP and Zhang et al.’s method [30].

The evaluation results are presented in Tables V and VI. In
Table V, we list the R-1 RR achieved by each method on each
subset and in Table VI we list the time cost consumed by one
identification operation by each method on each subset. Given
a test sample, the time cost for one identification operation
includes the time consumed by the feature extraction and the
time consumed by matching the test feature with the gallery
feature set.
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TABLE VI
TIME COST FOR ONE IDENTIFICATION OPERATION (SECONDS)

Subset 1 Subset 2 Subset 3 Subset 4

ICP 5.356 × 105 3.763 × 105 1.876 × 105 1.287 × 105

Zhang et al. [30] 2.425 2.424 2.423 2.420
SRC_LHST 0.074 0.070 0.066 0.056
LCKSVD LHST 0.058 0.034 0.033 0.018

Based on the results listed in Tables V and VI, we could have
the following findings. At first, with respect to the classification
accuracy, the proposed method LCKSVD_LHST performs the
best on almost all the subsets. This not only attributes to the ro-
bustness of the proposed feature extraction scheme against mere
misalignment, but also owes to the discriminative dictionary and
the linear classifier jointly learned with LC-KSVD. Particularly,
on subset 4 by using our test protocol, the recognition rate of
LCKSVD_LHST is 100%, which is quite amazing.

Secondly, SRC_LHST performs much better than Zhang
et al.’s method [30] though they both exploit the SRC framework
for classification. The major difference between SRC_LHST
and Zhang et al.’s method [30] is that they resort to different
schemes for feature extraction. Thus, we can conclude that as a
feature extraction scheme, the proposed method LHST is supe-
rior to the PCA-based one used in [30].

Thirdly, LCKSVD_LHST performs better than SRC_LHST.
The only difference between these two methods is the classi-
fication schemes they use; LCKSVD_LHST uses LC-KSVD
while SRC_LHST adopts SRC. Hence, the result indicates that
as a classification scheme, when the features are extracted by
LHST, LC-KSVD performs better than SRC for the task of 3D
ear classification.

In addition, in terms of the running speed at the test stage,
the proposed method LCKSVD_LHST runs faster than all the
other methods evaluated. The computational burden of ICP is
extremely heavy, making it not suitable for large-scale identifi-
cation applications. SRC_LHST runs faster than Zhang et al.’s
method [30], though they use the same classification crite-
rion. The main reason is that the feature extraction method
used in SRC_LHST (i.e., LHST) is much more efficient than
the one adopted in [30] (i.e., local PCA-based method). In
SRC_LHST, given a test sample, its sparse representation vec-
tor is computed at first and then its label is determined by
checking the reconstruction residues associated with classes.
By contrast, in LCKSVD_LHST, when the sparse representation
vector is ready, the label vector can be simply estimated by us-
ing a linear predictive classifier, which is much more efficient.
That’s why the proposed method LCKSVD_LHST is faster than
SRC_LHST.

D. Comparison With Other Methods

Besides the methods mentioned in Section V-C, there are also
some other state-of-the-art or representative methods in the field
of 3D ear recognition, such as Chen and Bhanu [34], Yan and
Bowyer [31], Islam et al. [32], and Islam et al. [33]. However,

TABLE VII
PERFORMANCE COMPARISON WITH THE OTHER STATE-OF-THE-ART METHODS

Method Database Images used (gallery,
probe)

Peformance (%)

Chen and
Bhanu [34]

UND-F [70] 604 (302, 302) 96.36

Yan and
Bowyer [31]

UND-J2 1801 (415, 1386) 97.80

Islam et al. [32] UND-F [70] 200 (100,100) 90.00
Islam et al. [33] UND-J2 830 (415, 415) 93.50
LCKSVD_LHST UND-J2 1141 (680, 461) 95.58
LCKSVD_LHST UND-J2 911 (620, 291) 98.63
LCKSVD_LHST UND-J2 636 (468, 168) 100

the source codes of these methods are not publicly available
and thus it is nearly impossible for us to accurately re-implement
them. Hence, we simply quote the R-1 RRs results originally
reported in these papers and summarize them in Table VII.
Based on Table VII, we could make some qualitative analysis.

At first, based on the published results, it can be seen that Yan
and Bowyer’s method [31] and Chen and Bhanu’s method [34]
are the state-of-the-art ones. Yan and Bowyer’s method [31] can
achieve an R-1 RR 97.8% on a dataset comprising 1801 samples.
Secondly, the proposed approach LCKSVD_LHST can achieve
quite competitive recognition accuracy with the state-of-the-art
ones.

Actually, compared with the state-of-the-art methods [31]–
[34], the proposed method LCKSVD_LHST has several inher-
ent advantages. At first, LCKSVD_LHST depends only on 3D
range data while the other ones require both the 3D data and the
co-registered 2D data. Thus, LCKSVD_LHST is conceptually
much simpler and can be used in the case where co-registered
2D data is not available. Secondly, from Table VI it can be seen
that LCKSVD_LHST is quite efficient for large-scale identifi-
cation applications. By contrast, all the other methods evaluated
here adopt ICP (or its variants) for matching. When using these
methods for identification, it would be necessary to match the
test sample to all the gallery samples one by one by performing
pair-wise ICP (or its variants). Obviously, they are not computa-
tionally efficient, especially when the gallery size is extremely
large.

Based on the above discussions, we recommend using the pro-
posed LCKSVD_LHST method for 3D ear identification since
such an approach could achieve a distinguished high recognition
accuracy while maintaining an extremely low computational
complexity. LCKSVD_LHST is quite suitable for large-scale
identification applications.

VI. CONCLUSION

In this paper, we proposed a novel method for 3D ear identifi-
cation, namely LCKSVD_LHST. Our contributions are mainly
from two aspects. At first, we are the first to adapt LC-KSVD, a
state-of-the-art model for supervised dictionary learning, to the
application of 3D ear recognition. Secondly, for feature extrac-
tion, we proposed an approach based on local histograms of STs,
which is quite effective and robust to small alignment errors.
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Experiments conducted on benchmark dataset demonstrate that
LCKSVD_LHST could achieve much higher recognition rate
than the other competitors evaluated. In addition, its computa-
tional complexity is extremely low at the test stage, making it
quite suitable for large-scale identification applications.

APPENDIX

IMPLEMENTATION DETAILS

Some details in implementation are presented here. At first,
for computing curvatures for range images [see (1) and (2)],
partial derivatives with various orders need to be estimated. To
reliably estimate partial derivatives, we resort to the scheme pro-
posed in [61]. Specifically, the range image is at first smoothed
by using a binomial filter and then partial derivatives are com-
puted by convolving with various predefined window masks.
The binomial smoothing filter can be written as S = ssT , where
the column vector s is given by

s =
1
64

[1 6 15 20 15 6 1]T . (13)

Derivative estimation window masks are defined as Dx =
d0dT

1 , Dy = d1dT
0 , Dxx = d0dT

2 , Dyy = d2dT
0 , and Dxy =

d1dT
1 , where the column vectors d0 , d1 , and d2 are given by

d0 =
1
7
[1 1 1 1 1 1 1]T

d1 =
1
28

[−3 − 2 − 1 0 1 2 3]T

d2 =
1
84

[5 0 − 3 − 4 − 3 0 5]T . (14)

Then, partial derivative maps of the image f(x, y) are computed
as

fx(x, y) = Dx ∗ S ∗ f(x, y)

fy (x, y) = Dy ∗ S ∗ f(x, y)

fxx(x, y) = Dxx ∗ S ∗ f(x, y)

fyy (x, y) = Dyy ∗ S ∗ f(x, y)

fxy (x, y) = Dxy ∗ S ∗ f(x, y) (15)

where * denotes the convolution operation.
When computing STs, we need to decide whether the mean

curvature H (or the Gaussian curvature K) is 0 or not. However,
since both H and K take real values, it is quite rare for them
to take the value 0 precisely in practice. Thus, in implementa-
tion we need to determine a symmetric interval [−εH , εH ] (or
[−εK , εK ]) covering 0 for quantization. H (K) is deemed as 0
when its value is covered by the interval [−εH , εH ] ([−εK , εK ]).
To make the threshold εH (εK ) be adaptive to different ears, we
normalize H (K) by its standard deviation. Such a technical trick
was first proposed in [10]. We set εH = 0.030 and εK = 0.015
in our implementation.

We set α = 1, β = 1 [see (4)], and p = 10, respectively.
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