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ABSTRACT 
 
Image quality assessment (IQA) aims to provide 
computational models to measure the image quality in a 
perceptually consistent manner. In this paper, a novel 
feature based IQA model, namely Riesz-transform based 
Feature SIMilarity metric (RFSIM), is proposed based on 
the fact that the human vision system (HVS) perceives an 
image mainly according to its low-level features. The 1st-
order and 2nd-order Riesz transform coefficients of the 
image are taken as image features, while a feature mask is 
defined as the edge locations of the image. The similarity 
index between the reference and distorted images is 
measured by comparing the two feature maps at key 
locations marked by the feature mask. Extensive 
experiments on the comprehensive TID2008 database 
indicate that the proposed RFSIM metric is more consistent 
with the subjective evaluation than all the other competing 
methods evaluated. 

Index Terms— Image quality assessment, monogenic 
signal, Riesz transform
 

1. INTRODUCTION 

Image quality assessment (IQA) is of paramount importance 
for numerous image/video processing and computer vision 
applications. A number of full reference IQA metrics have 
been developed. In the early stage, some mathematical 
statistics based metrics were employed as objective IQA 
metrics. Some later developed models emphasize the 
importance of human visual system’s (HVS) sensitivity to 
different visual signals, such as the luminance, contrast, the 
contrast interaction between spatial frequencies, and the 
visual attention, etc. Some representative methods of this 
kind include NQM [1] and VSNR [2]. 

The Structural-SIMilarity (SSIM) index proposed in [3] 
can be considered as a milestone of the development of IQA 
metrics. The fundamental principle of SSIM is that the HVS 
is highly adapted to extract structural information from the 
visual scene, and therefore, a measurement of structural 

similarity should provide a good approximation of 
perceived image quality. The multi-scale extension of 
SSIM, called MS-SSIM [4], produces much better results 
than its single-scale counterpart. In [5], Sheikh et al.
introduced information theory into image fidelity 
measurement, and they proposed a novel information 
fidelity criterion (IFC) for IQA by using natural scene 
statistics models. Later, IFC was extended to the VIF 
(Visual Information Fidelity) by involving an image 
information measure [6]. In [7], Sampat et al. made use of 
the steerable complex wavelet transform to measure the 
structural similarity of the two images and proposed the 
CW-SSIM index for IQA. 

In some sense, metrics such as SSIM and VIF aim to 
fully use the visual information inside an image to measure 
its quality. However, the visual information in an image is 
often very redundant, while the HVS perceives an image 
mainly based on its low-level features at key locations, such 
as edges, zero-crossings, corners and lines [8]. In other 
words, a small amount of key image points with salient 
features convey most of the crucial information for the HVS 
to interpret the scene. Thus, we believe that the perceptible 
image degradations will induce corresponding changes in 
image low level features at key locations. Based this belief, 
in this paper we propose a novel IQA metric, namely Riesz-
transform based Feature SIMilarity (RFSIM) index. RFSIM 
is computed by comparing Riesz transform features at key 
locations between the reference image and a distorted 
image. Considering the fact that HVS is sensitive to image 
edges, key locations are marked by a mask formed by the 
Canny operator (without thinning operation). With respect 
to the feature extraction, the 1st-order and 2nd-order Riesz 
transforms [9, 10] are used because they can extract several 
types of image low-level features effectively and efficiently 
in a unified theoretic framework. Finally, only those Riesz 
transform coefficients within the feature mask are used in 
the RFSIM index calculation. Experiments on the recently 
established TID2008 database [11] show that RFSIM 
achieves higher consistency with the subjective evaluation 
than the other state-of-the-art IQA models. 

321978-1-4244-7994-8/10/$26.00 ©2010 IEEE ICIP 2010

Proceedings of 2010 IEEE 17th International Conference on Image Processing September 26-29, 2010, Hong Kong



The rest of this paper is organized as follows. Section 2 
introduces the Riesz transforms. Section 3 describes the 
proposed RFSIM metric. Section 4 reports the experimental 
results and Section 5 concludes the paper. 

2. RIESZ TRANSFORMS 

The Hilbert transform of a 1-D function has been widely 
used in signal processing since Gabor proposed the analytic 
signal. It renders the possibility to estimate the local phase 
and the local amplitude of a 1-D signal simultaneously. 
However, when the 1-D signal is embedded into the 2-D 
ambient Euclidean space, the analytic signal cannot be 
directly used. To solve such a problem, in [9], Felsberg 
proposed the monogenic signal, which is an isotropic 2-D 
extension of the analytic signal. The monogenic signal is 
built upon the 1st-order Riesz transform which is a vector 
valued extension of the Hilbert transform in the n-D
Euclidean space. If we restrict to the case when n = 2, the 
spatial representation of the Riesz kernel is 
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and its transfer function in the Fourier domain is 
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For an image f(x), the monogenic signal is defined as the 
combination of f and its Riesz transform 
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where * stands for the convolution. For i1D (intrinsic 1 
dimension) signals, the local orientation can be calculated as 
[9, 10] (see Fig. 1 for an example) 
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Moreover, for i1D signal f(x), it can be proved that [10] 
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where h1*f  is actually the partial Hilbert transform of f
along its main orientation  and h1=1/ x is the Hilbert 
transform kernel. Thus, the local phase of the i1D signal f(x)
can be defined analogously to the 1-D analytic signal as 

2 2atan 2 { } { }, , [0, )x yR f R f f (6) 

The local amplitude is defined as 
2 2 2( ) { } { }M x yA f f R f R fx (7) 

It can be seen that the local orientation, the local phase, and 
the local amplitude of the i1D signal can be conveniently 
represented via the 1st-order Riesz transform based 
monogenic signal. 

In order to analyze i2D image structures, higher order 
Riesz transforms have been proposed [10]. For example, the 
2nd order Riesz transform Rx{Rx{f}} can be obtained by 
applying Eq. (1) to Rx{f}. For our needs, we make use of 
three 2nd-order Riesz transforms, including Rx{Rx{f}}, 
Rx{Ry{f}}, and Ry{Ry{f}}. Some i2D features, such as the 
local image surface type and the apex angle, can be derived 
based on the 2nd-order Riesz transforms. Details can be 
found in [10]. 

x

y

Fig. 1: Illustration for the local orientation of an i1D signal. 

3. RFSIM: RIESZ-TRANSFORM BASED FEATURE 
SIMILARITY METRIC 

With the belief that the perceptible image degradations will 
induce perceived changes in image features at key locations, 
we present a novel IQA model, namely Riesz-transform 
based Feature SIMilarity index (RFSIM). It is computed by 
comparing the feature maps at key locations marked by a 
feature mask between two images.  

Considering the fact that HVS is sensitive to image 
edges, key locations are marked by a feature mask which is 
simply generated by an edge operator with a dilation 
operation. Suppose that we are going to calculate the 
similarity between two images f and g. Denote by M1 the 
result of edge detection performed on f, and M2 the result of  
edge detection on g. Then, the feature mask is defined as 

1 2M M M (8) 
where is the logical “OR” operation. 

As introduced in Section 2, the 1st-order and the 2nd-
order Riesz transforms can extract some low-level image 
features effectively and efficiently in a unified theoretic 
framework. Thus, in this paper, we utilize them for the 
feature extraction. However, we do not extract the features 
such as the local phase, local orientation and local surface 
type, etc., explicitly. Instead, we take the coefficients of the 
Riesz transforms as features directly. Let f1, f2, f3, f4, f5
represent Rx{f}, Ry{f}, Rx{Rx{f}}, Rx{Ry{f}}, and Ry{Ry{f}}, 
respectively (the first two are 1st-order Reisz transform 
coefficients and the last three are 2nd-order coefficients). 
Similarly, let g1, g2, g3, g4, g5 represent Rx{g}, Ry{g}, 
Rx{Rx{g}}, Rx{Ry{g}}, and Ry{Ry{g}}, respectively. The 
similarity between two feature maps fi (i = 1~5) and gi at the 
corresponding location (x, y) is defined as 
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where c is a small constant value. This naturally leads to the 
following formula to define the similarity between the 
feature maps fi and gi by considering only the key locations 
marked by mask M,

( , ) ( , )
( , )
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i

d x y M x y
D

M x y
(10) 

Then, we compute the RFSIM index between f and g as
5

1
i

i
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The process to compute the RFSIM index is illustrated by a 
pair of images in Fig. 2. 

4. EXPERIMENTS AND DISCUSSIONS 

We conduct experiments on the TID2008 database [11], 
which is the largest database for the evaluation of full 
reference IQA models. (Our experimental results on other 
databases lead to the same conclusion.) TID2008 contains 
25 reference images and 1,700 distorted images. Subjective 
scores are collected from 838 observers.  In fact, there are 
several databases available for the evaluation of IQA 
models but they are quite different in several aspects, 
including the number of reference images, the number of 
distorted images, the number of distortion types, the image 
type, and the number of observers. The experimental 
configuration and the methodology to collect subjective 
scores also vary. Taking these factors into consideration, 
TID2008 is among the best currently available databases for 
the evaluation of IQA models.  

We compare the performance of the proposed RFSIM 
metric with seven state-of-the-art IQA metrics, including 
SSIM [3], MS-SSIM [4], VIF [6], VSNR [2], IFC [5], VIFp 
[6], and NQM [1]. For the implementation of the compared 
IQA metrics, we use the publicly available software in [12]. 
The code of the proposed RFSIM method is available at 
http://www4.comp.polyu.edu.hk/~cslzhang/IQA.htm.

In the implementation of the RFSIM, several parameters 
are empirically set. The low threshold, high threshold, and 
the standard deviation of the Gaussian filter used in Canny 
operator are set as 0.08, 0.13, and 3.6, and c is set as 1.2. In 
addition, RFSIM will be most effective if used at the 
appropriate image scale. In our implementation, we use the 
following empirical steps proposed by Wang [13] to 
determine the scale for images viewed from a typical 
distance: 1) Let F = max(1, round(N / 256)), where N is the 
number of pixels in image height or width; 2) average local 
F  F pixels and down-sample the image by a factor of F.

In order to evaluate the IQA models, four commonly 
used performance metrics are employed. The first two 
metrics are the Spearman rank-order correlation coefficient 
(SROCC) and the Kendall rank-order correlation coefficient 
(KROCC), which can measure the prediction monotonicity 
of an IQA model. To compute the third and the fourth 
metrics we need to apply a regression analysis, as suggested 
by the video quality experts group (VQEG), to provide a 
nonlinear mapping between the objective scores and the 
subjective mean opinion scores (MOS) [14]. The third 
metric is the Pearson linear correlation coefficient (CC) 
between MOS and the objective scores after nonlinear 
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Fig. 2: Illustration of the similarity computation process between two images by the proposed RFSIM IQA model. f is the reference 
image and g is a distorted version of f. Example images are taken from TID2008 database.  
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regression. The fourth metric is the root mean square error 
(RMSE) between MOS and the objective scores after 
nonlinear regression. For the nonlinear regression analysis, 
we use the following mapping function [15]: 

2 31 4 5( )

1 1( )
2 1 xf x x

e
(12) 

Table 1: Evaluation of IQA models on TID 2008 
Model SROCC KROCC CC RMSE 

RFSIM 0.8632 0.6772 0.8618 0.6806 
MS-SSIM 0.8528 0.6543 0.8425 0.7229 

SSIM 0.7749 0.5768 0.7732 0.8511 
VIF 0.7496 0.5863 0.8090 0.7888 

VSNR 0.7046 0.5340 0.6820 0.9815 
IFC 0.5692 0.4261 0.7359 0.9086 

VIFp 0.6546 0.4952 0.7702 0.8559 
NQM 0.6243 0.4608 0.6135 1.0598 

The performance comparison of the eight IQA models 
on the TID2008 database is given in Table 1. From Table 1, 
we can clearly see that the proposed RFSIM model 
performs much better than all the other seven methods 
evaluated in terms of all the four evaluation metrics. Fig. 3 
shows the scatter plots of subjective MOS versus the 
predicted scores by the four IQA metrics which can achieve 
good results on the TID2008 database. Curves shown in Fig. 
3 are obtained by a nonlinear fitting according to the model 
Eq. (12). 

5. CONCLUSION 

In this paper, a novel IQA model, namely Riesz-transform 
based Feature SIMilarity index (RFSIM), was proposed. It 
is based on the belief that the image degradation will induce 
perceived changes in image features at key locations. 
RFSIM is computed via comparing the features at key 
locations of two images. Key locations are indicated by a 
feature mask which is generated by the Canny edge 
detection without thinning. We take the coefficients of the 
1st-order and the 2nd-order Riesz transforms as features, and 
only the coefficients within the feature mask are used in the 
RFSIM index calculation. Experimental results indicate that 
the RFSIM index outperforms all the other IQA models 
evaluated. 
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Fig. 3: Scatter plots of subjective MOS versus scores obtained 
by model prediction on the TID2008 database. (a) RFSIM; (b) 
MS-SSIM; (c) VIF; (d) SSIM. 
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