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ABSTRACT
In this paper, we propose a novel 3D ear classification
scheme, making use of the label consistent K-SVD (LC-
KSVD) framework. As an effective supervised dictionary
learning algorithm, LC-KSVD learns a compact discrimina-
tive dictionary for sparse coding and a multi-class linear clas-
sifier simultaneously. To use LC-KSVD, one key issue is how
to extract feature vectors from 3D ear scans. To this end, we
propose a block-wise statistics based scheme. Specifically,
we divide a 3D ear ROI into blocks and extract a histogram of
surface types from each block; histograms from all blocks are
concatenated to form the desired feature vector. Feature vec-
tors extracted in this way are highly discriminative and are ro-
bust to mere misalignment. Experimental results demonstrate
that the proposed approach can achieve much better recogni-
tion accuracy than the other state-of-the-art methods. More
importantly, its computational complexity is extremely low at
the classification stage.

Index Terms— 3D ear, surface type, local histogram, LC-
KSVD, sparse representation

1. INTRODUCTION

Propelled by the requirements of numerous applications, au-
tomatically recognizing the identity of a person with high
confidence has become a topic of intense study. To solve such
a problem, biometrics based methods are drawing increasing
attention recently because of their high accuracy and robust-
ness in the modern e-world. In the past several decades or
so, researchers have exhaustively investigated a number of d-
ifferent biometric identifiers, such as fingerprint, face, iris,
palmprint, hand geometry, voice, gait, etc [1].

Among all the members in the big family of biometric
identifiers, ear is a new comer but has recently received sig-
nificant attention due to its non-intrusiveness and ease of data
collection. Ear recognition problems can be roughly classi-
fied as 2D, 3D, and multimodal 2D plus 3D, according to the
types of input data. With the development and the popular-
ization of the 3D sensing technology, there is a rising trend
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to use 3D sensors instead of 2D cameras in the field of ear
recognition. Compared with its 2D counterpart, 3D data con-
tains more abundant information about the ear shape and is
more robust to illumination variations and occlusions. Yan
and Bowyer found that ear matching based on 3D data could
achieve a higher recognition accuracy than that making use of
the corresponding 2D images [2].

However, how to devise a highly effective and efficient
3D ear identification approach is still an open issue and in
this paper we try to solve this problem to some extent.

2. RELATED WORKS AND OUR CONTRIBUTIONS

2.1. 3D ear detection and classification

To construct a real 3D ear based personal authentication sys-
tem, there are two key components, ear region detection and
ear matching. In the literature, several different schemes have
been proposed for 3D ear region detection. Among them,
some ones are totally based on 3D range data, e.g. [3, 4, 5, 6],
while the other ones are based on multi-modal co-registered
2D plus 3D data [7, 8]. The ones based solely on 3D data are
reviewed here since they are most relevant to our work. In [3],
Chen and Bhanu proposed a two-step approach to detect the
ear region, which includes model template building and on-
line detection. The model template is obtained by averaging
the shape index histograms of multiple ear samples and the
online detection comprises four steps, step edge detection and
thresholding, image dilation, connected-component labeling,
and template matching. In their later work [4], Chen and B-
hanu proposed a shape-model based technique for locating
ears in a side face range image. In [6], Zhang et al. proposed
an ear contour alignment based ear detection method. With
their method, a range image is at first transformed to a canon-
ical frame by aligning it with an ear contour template created
offline and then the ear region is extracted accordingly.

With respect to the 3D ear matching schemes, most of
the existing state-of-the-art methods adopt ICP [9] or its vari-
ants. Roughly speaking, ICP based matching is quite time
consuming. If there are multiple samples for each subject in
the gallery set, to figure out the identity of a given test sample



using an ICP-based matching method, it would be necessary
to match the test sample to all the samples in the gallery set
one by one. Therefore, ICP-based methods are not appropri-
ate for dealing with large-scale identification applications. In
[6], Zhang et al. tried to solve this problem by making use of
the sparse representation based classification framework. In
their method, feature vectors are extracted from ear samples
in the gallery set and they form an overcomplete dictionary
A. When a test sample comes, its feature vector y will be ex-
tracted at first and then its identity can be figured out by using
SRC which codes y over the dictionary A.

2.2. Sparse coding and dictionary learning

In recent years, sparse coding has been successfully explored
to solve a variety of problems in computer vision and image
analysis, e.g. image denoising [10], image restoration [11],
and object classification [6].

With sparse coding, an input signal y is approximated by
a linear combination of a few items from an overcomplete
dictionary A. As pointed out in [12], usually a dictionary
learned from the training samples can produce better results
than the one using off-the-shelf bases. Several prominent su-
pervised dictionary learning methods have been proposed in
the literature. Quite recently, Jiang et al. proposed a dictio-
nary learning method, namely label consistent K-SVD (LC-
KSVD) [13]. In their method, in addition to using class la-
bels of training data, they also associate label information
with each dictionary item to enforce discriminability in s-
parse codes during the dictionary learning process. With LC-
KSVD, a single overcomplete dictionary and an optimal lin-
ear classifier can be learned simultaneously.

2.3. Overview of our approach

As aforementioned, though 3D ear is an attractive biometric
trait, how to construct a highly effective and efficient identi-
fication system based on 3D ear is still an open issue. In this
paper, we aim to bring some new improvements to this field.
It needs to be noted that we only focus on investigating the ear
classification methods. For 3D ear ROI (region of interest) ex-
traction, we used the method proposed in [6]. In this paper,
we assume that 3D ear ROIs have already been available.

On seeing that the supervised dictionary learning tech-
niques have achieved great success in various different fields,
we attempt to adapt them for 3D ear identification. Specifical-
ly, our approach is based on LC-KSVD [13], since pleasing
results have been reported by using it in several different clas-
sification tasks, including face classification, object classifica-
tion, scene classification, and action classification. With LC-
KSVD, in addition to a compact discriminative dictionary, a
multiclass linear classifier can also be learned jointly, which
makes the classification rather efficient. To our knowledge,
our work is the first one introducing supervised dictionary
learning techniques into the field of 3D ear identification.

To adapt LC-KSVD for the 3D ear identification, how to
extract feature vectors to represent 3D ears is a rather criti-
cal issue. Since there exists mere misalignments between two
ear ROIs, the extracted feature vectors should be robust to s-
mall misalignments while maintaining a high discriminative
capability. To meet these requirements, we propose a novel
block-wise statistics based feature extraction scheme. Specif-
ically, we at first divide a 3D ear ROI into uniform blocks and
extract a histogram of surface types [14] from each block;
histograms from all the blocks are then concatenated to form
the final feature vector. Experimental results demonstrate that
such feature vectors are highly discriminative and are robust
to mere misalignment between ear samples.

3. BLOCK-WISE STATISTICS BASED FEATURES

When SRC or LC-KSVD is adopted as a classification frame-
work, the feature vector extracted from the test sample needs
to be sparsely coded over the dictionary whose columns are
learned from feature vectors of gallery samples. In the field
of face recognition, feature vectors are typically vectorized
from raw image pixels and pleasing results could be obtained
[15]. However, these methods actually implicitly require that
the test image and the training set must be well aligned. As
reported in [16], if the test image has even a small amoun-
t of registration error against training images (which is also
true for the 3D ear classification problem), the representa-
tion coefficients will no longer be informative. To deal with
this problem, several studies have been conducted recently. In
[16], Wagner et al. solve this challenging issue by a series of
linear programs that iteratively minimize the sparsity of the
registration error. In [17], Peng et al. formulate the batch
image alignment as searching for a set of transformations that
can minimize the rank of the transformed images, which are
viewed as columns of a matrix. If Wagner et al.’s method [16]
or Peng et al.’s method [17] is adopted, the misalignment be-
tween the test image and images of each training class needs
to be rectified explicitly. Obviously, this strategy is quite time
consuming for large-scale identification applications.

Even though the 3D ear extraction method proposed by
Zhang et al. [6] can align ears to some extent, there are stil-
l small alignment errors between ear ROIs. Since explicitly
registering the test ear sample to the training samples is ex-
tremely time-consuming, we expect to find a new feature ex-
traction scheme which is robust to mere misalignments while
the extracted feature vectors are still highly discriminative. To
meet these requirements, we propose a novel 3D feature ex-
traction scheme based on block-wise statistics, whose details
will be presented in the following.

A 3D ear can be considered as a surface with various con-
vex and concave structures. We can classify the points on
the ear into different types based on their different geomet-
ric characteristics. Such a kind of 3D feature is called as
surface type (ST) [14], which has been proved to be highly



Table 1. ST labels defined by signs of surface curvatures [14]
K > 0 K = 0 K < 0

H < 0
Peak Ridge Saddle Ridge

(ST = 1) (ST = 2) (ST = 3)

H = 0
None Flat Minimal Surface

(ST = 4) (ST = 5) (ST = 6)

H > 0
Pit Valley Saddle Valley

(ST = 7) (ST = 8) (ST = 9)

discriminative. Assume that a 3D ear ROI is represented by
S(x, y, f(x, y)). Mean curvature H and Gaussian curvature K
can be computed as [18],
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)
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where fx(fy), fxx(fyy , fxy) are the first order and second or-
der partial derivatives, respectively. There are 8 fundamental
viewpoint independent surface types that can be characterized
using only the sign of the mean curvature (H) and Gaussian
curvature (K) [14]. For completeness, we list their definitions
in Table 1. Totally, 9 STs can be defined, including 8 funda-
mental STs and one special case for H = 0 and K > 0.

With the above-mentioned procedures, each point in the
3D ear ROI can be classified into one of the 9 STs. Thus, for
each 3D ear ROI, we could obtain a ST map, each field of
which is an integer from 1 to 9. Fig. 1 shows some examples.

As a 3D feature, surface type maps are highly discrimina-
tive but they are sensitive to small amount of registration er-
rors between the test image and training images. On the other
hand, global statistics based features, such as histograms and
moment invariants, are robust to misalignments but they are
not quite discriminative. In order to integrate the merits of
these two kinds of feature extraction schemes, we propose to
use block-wise ST statistics based features.

Suppose that for a 3D ear ROI, we have computed from it
a ST map M. Then, we uniformly divide M into a set of p×p
blocks. For each block i, we compute from it a histogram of
surface types, denoted by hi. Finally, all his are concatenated
together as a large histogram h, which is considered to be
the feature vector. Experimental results have corroborated the
efficacy of such a feature extraction scheme (see Section 5).

4. LC-KSVD BASED 3D EAR CLASSIFICATION

By using the proposed feature extraction scheme as presented
in Section 3, any given 3D ear range image can be represented
by a feature vector. In terms of the classification framework,
we propose to adopt LC-KSVD [13], whose efficacy and effi-
ciency have been demonstrated in several various fields.

(a) (b) (c)

(d) (e) (f)

Fig. 1. The first row displays three 3D ear ROIs, shown in im-
age format while the second row displays their corresponding
ST maps. (a) and (b) are captured from the same ear but in
different sessions. (b) and (c) are from different ears.

Given a gallery set comprising 3D ears, we can compute a
feature vector for each sample and then we can define a data
matrix Y as the concatenation of all the feature vectors,

Y = [y1,1,y1,2, . . . ,yk,nk
] ∈ Rn×N (3)

where n is the dimension of the feature vector, k is the number
of classes, nk is the number of samples for class k, and N =∑k

j=1 nj is the total number of samples in the gallery set. The
LC-KSVD learning model can be expressed as,⟨

D̂, Â,Ŵ, X̂
⟩
= argmin

D,A,W,X
∥Y −DX∥2F

+α∥Q−AX∥2F
+β∥H−WX∥2F , s.t. ∀i, ∥xi∥0 ≤ τ

(4)

where D = [d1, . . . ,dK ] ∈ Rn×K is the learned dictio-
nary, X = [x1, . . . ,xN ] ∈ RK×N are the sparse codes of
Y, τ is the sparsity constraint factor, ∥xi∥0 counts the non-
zero elements in vector xi, and ∥Y −DX∥2F denotes the re-
construction error. Q = [q1, . . . ,qN ] ∈ RK×N are the
discriminative sparse codes of Y. qi =

[
q1
i , . . . ,q

K
i

]T
=

[0, . . . , 1, 1, . . . , 0]
T ∈ RK is a discriminative sparse code

corresponding to an input signal yi since the nonzero val-
ues of qi occur at those indices where the input signal yi

and the dictionary item dj (j = 1, . . . ,K) share the same la-
bel. A is a linear transformation matrix, which transforms
the original sparse codes to the most discriminative in sparse
feature space RK . Thus, the term ∥Q−AX∥2F represents
the discriminative sparse code error, which enforces that the
transformed sparse codes AX approximate the discrimina-
tive sparse codes Q. W denotes the classifier parameter-
s. H = [h1, . . . ,hN ] ∈ Rk×N are the class labels of Y.
hi = [0, . . . , 1, . . . , 0]

T ∈ Rk is a label vector associated to
the input signal yi. Obviously, the term ∥H−WX∥2F rep-
resents the classification error. The dictionary D̂ learned in
this way is adaptive to the underlying structure of the training



data and can generate discriminative sparse codes, which can
be utilized directly by a linear classifier.

For optimization purposes, Eq. 4 can be rewritten as,⟨
D̂, Â,Ŵ, X̂

⟩
=

argmin
D,A,W,X
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Let Ynew =
(
YT ,

√
αQT ,

√
βHT

)T , Dnew =(
DT ,

√
αAT ,

√
βWT

)T
. The optimization of Eq. 5 is e-

quivalent to solving the following problem,⟨
D̂new, X̂

⟩
= argmin

Dnew,X
∥Ynew −DnewX∥2F ,

s.t. ∀i, ∥xi∥0 ≤ τ

(6)

which can be efficiently solved by the K-SVD algorithm
[19]. The tricks to initialize D, A and W can be found in
[13]. After we get D̂new by solving Eq. 6, we can obtain
D̂ = [d1, . . . ,dK ] and Ŵ = [w1, . . . ,wK ] from D̂new.
However, we cannot directly use D̂ and Ŵ for testing since
D̂, Â and Ŵ are l2-normalized in D̂new jointly in the LC-
KSVD algorithm, i.e., ∀k,

∥∥dT
k ,

√
αaTk ,

√
βwT

k

∥∥
2
= 1. The

desired dictionary D̂∗ and classifier parameters Ŵ∗ can be
computed as follows,

D̂∗ =

[
d1

∥d1∥2
, · · · , dK

∥dK∥2

]
,

Ŵ∗ =

[
w1

∥w1∥2
, · · · , wK

∥wK∥2

] (7)

At the test stage, given a probe 3D ear scan, we at first
detect the ear region and compute from it a feature vector y.
Then, we compute its sparse representation x̂ over the learned
dictionary D̂∗ by solving the following problem,

x̂ = argmin
x

∥∥∥y − D̂∗x
∥∥∥2
2
, s.t. ∥x∥0 ≤ τ (8)

For solving Eq. 8, we resort to the orthogonal matching pur-
suit (OMP) algorithm [20]. After x̂ is obtained, we simply
use the linear predictive classifier to estimate a label vector
c = Ŵ∗x̂. Finally, the label of y is assigned as the index cor-
responding to the largest element of c. The overall flowchart
of our 3D ear recognition method is illustrated in Fig. 2.

5. EXPERIMENTS

5.1. Database and experimental protocol

In experiments, we used the UND Collection J2 dataset [21],
which contains 2346 3D side face scans captured from 415
persons, making it the largest 3D ear scan dataset so far.

Fig. 2. Illustration for the proposed 3D ear identification ap-
proach based on LC-KSVD and block-wise statistics based
features.

To evaluate the performance of our method, however, we
cannot simply conduct experiments on the whole dataset since
some classes in UND-J2 have only 2 samples and classifica-
tion schemes based on sparse coding need sufficient samples
for each class in the gallery [25]. Consequently, we virtually
created four subsets from UND-J2 for experiments. Specifi-
cally, we required that each class should have more than 6, 8,
10, and 12 samples, respectively. For subset 1, we randomly
selected from each class 6 samples to form the gallery set and
the rest samples were used to form the test set. Similar strate-
gies were applied to the rest subsets. To make it clear, major
information about the four subsets is summarized in Table 2.

We evaluated the recognition rate achieved by each com-
peting method as well as their running speed. Experiments
were performed on a standard HP Z620 workstation with a
3.2GHz Intel Xeon E5-1650 CPU and an 8G RAM. The soft-
ware platform was Matlab R2013b.

5.2. Effectiveness of ST histograms based features

In our proposed 3D ear identification framework, each 3D
range image is represented as a feature vector and for feature
extraction we propose to use local histograms of STs (LHST)
as features. In our implementation, p was set to 10 for a range
image. To demonstrate the effectiveness of LHST, we com-
pared its performance with several other kinds of features ex-
isting in the literature. In order to evaluate the performance
of different features, LC-KSVD framework was adopted as a



Table 2. Subsets used in our experiment
subset idx ♯classes gallery size probe size total

1 127 762 715 1477
2 85 680 461 1141
3 62 620 291 911
4 39 468 168 636

Table 3. Recognition rates by using different features (%)
subset 1 subset 2 subset 3 subset 4

LBP riu2
8,1 74.83 80.69 86.94 92.26

LBP riu2
16,3 84.62 91.97 95.88 97.02

LBP riu2
24,5 90.21 94.14 96.56 97.62

LBPm 88.95 93.93 97.25 97.62
CompCode 90.19 94.66 96.25 98.40

PCA 87.83 91.76 96.22 96.43
LHST 92.86 95.88 98.63 100

fixed classification approach.
At first, we compared LHST to LBP (local binary pattern),

another local statistics-based feature vector that has been tes-
tified to be a powerful descriptor for many image classifica-
tion tasks [22]. In this experiment, when extracting LBP-
based features, for each 3D ear ROI, we divided it into unifor-
m blocks, extracted local histogram of LBP from each block,
and then concatenated all the histograms to form the final fea-
ture vector. An LBP operator can be represented as LBP riu2

P,R ,
where “riu2” means the use of rotation invariant uniform pat-
terns that have transitions at most 2, R is the sampling radius
and P is the number of sampling points. We tested three LBP
operators LBP riu2

8,1 , LBP riu2
16,3 and LBP riu2

24,5 , and also their
combinations denoted by LBPm.

Besides, we tested the performance of CompCode [23] for
3D ear classification. In addition, the performance of a local
PCA-based feature [6] was also evaluated in our experiment.

The evaluation results are summarized in Table 3. From
Table 3, it can be clearly observed that the proposed method
LHST based on block-wise ST histograms performs much
better than all the other methods evaluated. It indicates that
such a feature extraction scheme have a stronger capability in
characterizing local shape structures of 3D range data.

5.3. Performance evaluation and discussions

In this experiment, the performance of all the competing
methods was evaluated. Our proposed method based on the
LC-KSVD classification framework and LHST features is de-
noted by LCKSVD LHST. In order to demonstrate the su-
periority of LC-KSVD as a classification framework, we al-
so tested the performance of the approach which classifies
LHST features by using the sparse representation-based clas-
sification model [15]. This method is denoted by SRC LHST.

Table 4. Recognition rates by using different identification
methods (%)

subset 1 subset 2 subset 3 subset 4
ICP 83.22 90.02 94.09 95.83

Zhang et al. 83.78 90.67 94.50 96.43[6]
SRC LHST 92.17 94.36 96.56 98.81
LCKSVD 92.86 95.88 98.63 100

LHST

Table 5. Time cost for one identification operation (second)
subset 1 subset 2 subset 3 subset 4

ICP(×105) 5.356 3.763 1.876 1.287
Zhang et al. 2.425 2.424 2.423 2.420[6]
SRC LHST 0.074 0.070 0.066 0.056
LCKSVD 0.058 0.034 0.033 0.018

LHST

We also evaluated some state-of-the-art methods for 3D ear
matching, including ICP and Zhang et al’.s method [6].

In Table 4, we list the recognition rate achieved by each
method on each subset and in Table 5 we list the time cost
consumed by one identification operation by each method on
each subset. Given a test sample, the time cost for one identi-
fication operation includes the time consumed by the feature
extraction and feature matching.

Based on the performance results, we could have the fol-
lowing findings. At first, with respect to the classification ac-
curacy, the proposed method LCKSVD LHST performs the
best on all the subsets. Particularly, on subset 4 by using
our test protocol, the recognition rate of LCKSVD LHST is
100%, which is quite amazing.

Secondly, SRC LHST performs much better than Zhang
et al.’s method [6] though they both exploit the SRC frame-
work for classification. The major difference between
SRC LHST and Zhang et al.’s method [6] is that they resort
to different schemes for feature extraction. This fact indi-
cates that as a feature extraction scheme, the proposed method
LHST is superior to the PCA-based one used in [6].

Thirdly, LCKSVD LHST performs better than
SRC LHST. The only difference between these two methods
is the classification schemes they use; LCKSVD LHST uses
LC-KSVD while SRC LHST adopts SRC. Hence, the result
intimates that as a classification scheme, when the features
are extracted by LHST, LC-KSVD performs better than SRC
for the task of 3D ear classification.

In addition, the proposed method runs greatly faster than
all the other methods evaluated at the test stage. The compu-
tational burden of ICP is extremely heavy, making it not suit-
able for large-scale identification applications. SRC LHST



runs faster than Zhang et al.’s method [6], though they use
the same classification criterion. The main reason is that the
feature extraction method used in SRC LHST is much more
efficient than the one adopted in [6]. In SRC LHST, given
a test sample, its sparse representation vector is computed
at first and then its label is determined by checking the re-
construction residues associated with classes. By contrast,
in LCKSVD LHST, when the sparse representation vector
is ready, the label vector can be simply estimated by using
a linear predictive classifier, which is much more efficient.
That’s why the proposed method LCKSVD LHST is faster
than SRC LHST.

Based on the above discussions, we recommend using
the proposed LCKSVD LHST method for 3D ear identifi-
cation since such an approach could achieve a distinguished
high recognition accuracy while maintaining an extremely
low computational complexity. LCKSVD LHST is quite suit-
able for large-scale identification applications.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a novel method for 3D ear identifi-
cation, namely LCKSVD LHST. Our contributions are main-
ly from two aspects. At first, we are the first to adapt the LC-
KSVD model to the application of 3D ear recognition. Sec-
ondly, we proposed an approach based on local histograms of
surface types for feature extraction, which is quite effective
and robust to small alignment errors. Experiments conduct-
ed on benchmark dataset demonstrate that LCKSVD LHST
could achieve much higher recognition rate than the other
competitors evaluated. In addition, its computational com-
plexity is extremely low at the test stage, making it quite suit-
able for large-scale identification applications. In future work,
we will further analyze LHST by comparing it with some oth-
er features, such as HOG features used in [5].
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