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Abstract. Depth estimation from a single image is of paramount im-
portance in various vision tasks, such as obstacle detection, robot nav-
igation, 3D reconstruction, etc. However, how to get an accurate depth
map with clear details and a fine resolution remains an unresolved issue.
As an attempt to solve this problem, we propose a novel CNN-based ap-
proach, namely MSCNNS , which involves multi-scale sub-pixel convolu-
tions and a neighborhood smoothness constraint. Specifically, MSCNNS

makes use of sub-pixel convolutions which fuse multi-scale features from
different branches of the network to retrieve a high resolution depth
map with fine details of the scene. Furthermore, MSCNNS incorporates
a neighborhood smoothness regularization term to make sure that spa-
tially closer pixels with similar features would have close depth values.
The effectiveness and efficiency of MSCNNS have been corroborated
through extensive experiments conducted on benchmark datasets.

Keywords: Monocular depth estimation · Multi-scale feature fusion ·
Sub-pixel convolution · Neighborhood smoothness.

1 Introduction

Accurate depth information is vital to many computer vision tasks, such as
scene understanding [5, 20, 3], 3D reconstruction [33], obstacle detection [28], etc.
However, collecting depth is expensive or even impossible in some scenarios and
in those cases, depth estimation is required. Generally, stereo vision approaches
[7, 32, 24] are good solutions for this task. However, they require binocular images
from two cameras and are very time consuming to get an accurate disparity
map. Therefore, for data consisting of only monocular images, how to predict
depth from a single still image becomes profoundly important. However, it is
a very challenging task since one captured image may correspond to numerous
real world scenes [2] and there are no reliable depth cues available, e.g. stereo
correspondences or motions [16].
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To handle such a problem, various solutions have been proposed in the lit-
erature. Primary methods [15, 22, 23] in this field usually formulated depth es-
timation as a markov random field (MRF) learning problem and resorted to
hand-crafted features, such as SIFT, GIST, PHOG, etc. Later, data-driven ap-
proaches [9, 11] were explored. Those approaches made use of hand-crafted fea-
tures to retrieve the most similar candidates in the training set for a given query
image. And then, the corresponding depth candidates were warped and fused to
produce the final prediction. However, all these methods were usually designed
for specific conditions and thus could only achieve reluctantly acceptable results.

With the emergence and popularity of CNNs (Convolutional Neural Net-
works), recently, researchers have begun exploring CNNs in the context of depth
estimation and preliminary better results in terms of both the efficiency and
the accuracy have been achieved. Inspired by the great success already achieved
along this direction, in this paper, we focus on how to further explore deep models
for solving the depth estimation problem and propose a CNN-based approach
with multi-scale sub-pixel convolutions and a neighborhood smoothness con-
straint, namely MSCNNS (Multi-scale Sub-pixel Convolutional Network with a
Neighborhood Smoothness constraint). In our approach, we use multi-scale fea-
tures from different branches of our network to get fine details in the prediction
and further improve our model with the neighborhood smoothness constraint as
a regularization term during the training phase.

The remainder of this paper is organized as follows. We first introduce the
related work and our contributions in Section 2 and then present the proposed
method MSCNNS in Section 3. After that, the experimental results and analysis
are elaborated in Section 4. Finally, we conclude the paper in Section 5.

2 Related Work & Our Contributions

2.1 Related Work

In this paper, we focus on how to better explore deep models for solving the prob-
lem of depth estimation from monocular images. Some representative methods
closely related to our study are briefly reviewed here.

The first depth estimation model exploiting CNN was proposed by Eigen
et al. [2]. In Eigen et al.’s model, there were two paths, the coarse-scale one
and the fine-scale one, mapping the input image to the target prediction. The
coarse-scale path outputted a coarse depth map and the fine-scale path refined
the output with more details of the scene. In their later work [1], Eigen and Fer-
gus extended their model [2] using more paths to solve multiple tasks, including
depth estimation, semantic segmentation and surface normal prediction. In [19],
inspired by Eigen et al.’s work [2, 1], Mousavian et al. followed such a multi-path
network to predict the semantic label and the depth value of each pixel jointly
with shared representations. In Li et al.’s work [14], authors considered local
details in the predictions and proposed a two-streamed CNN that could simulta-
neously predict depth and depth gradients, which were then fused together into
an accurate and detailed depth map.
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Different from Eigen et al.’s work [2, 1], other methods added more spices into
CNNs for depth estimation. Liu et al. [16] assumed that pixels in one super-pixel
own the same depth value and inferred the pixel-level depth through a condi-
tional random field (CRF) whose unary and pairwise potentials were learned by
a CNN. Later, they improved their model by introducing a super-pixel pooling
operation [17] to remove redundant convolutions and reduce computation costs.
Similarly, Li et al. [13] and Wang et al. [27] involved super-pixel-level predictions
and then refined them to the pixel-level predictions via CRFs. Moreover, Roy et
al. [21] combined CNNs with a regression forest, using shallow architectures at
each tree node, to avoid the request of large datasets.

More recently, deeper networks for this task have been exploited. Laina et al.
[12] leveraged the residual learning from ResNet [6] and proposed a fully con-
volutional architecture with a novel up-sampling method called up-projection,
while Xu et al. [30, 31] proposed two kinds of sequential deep networks, the cas-
cade one and the unified graphical one, which fused complementary information
derived from multiple side outputs of ResNet by the means of CRFs.

2.2 Our Motivations & Contributions

Having investigated the literature, we find that in the field of depth estimation
based on CNNs there is still large room for further improvement. First, since
CNN is usually to reduce feature maps’ dimensions, many CNN-based works [2,
1, 12] can only generate low resolution outputs and adopt bilinear interpolation
to restore the resolution, which leads to blur in the predictions. Second, even
though multi-scale features are involved, there are still many details missing in
current methods [2, 1, 19].

In this work, we attempt to solve the aforementioned problems to some extent
by proposing a CNN-based approach with multi-scale sub-pixel convolutions and
a neighborhood smoothness constraint, namely MSCNNS . The advantages and
novelties of MSCNNS are highlighted as follows:

(1) We formulate depth estimation problem as a super-resolution problem on
depth and take a novel multi-scale target learning method which benefits large
network training. And our model, MSCNNS , is able to achieve the state-of-
the-art results on popular datasets for monocular depth estimation, as well as
running much faster than existing methods.

(2) For a fine prediction, MSCNNS makes a good use of multi-scale sub-pixel
convolutions, which fuse multi-scale features derived from different branches of
the network. Such structures are quite novel as well as reasonable. First, recover-
ing the resolution of depth map can be naturally formulated as a super-resolution
problem on depths and the sub-pixel convolution originally proposed by Shi et
al. [25] is an efficient method to deal with RGB image super-resolution problem.
Thus, the sub-pixel convolution is very likely to be effective on depth estima-
tion. Second, many previous studies e.g. [2, 1, 19, 29] have shown that, for depth
estimation as well as for other pixel-level classification or regression problems,
more accurate predictions can be obtained by combining information from mul-
tiple scales. Based on those considerations, we propose the multi-scale sub-pixel



4 S. Zhao et al.

convolution as a first attempt to explore super-resolution techniques on depth
estimation. More details concerning the sub-pixel convolution will be described
in Section 3.3.

(3) Considering that adjacent pixels with similar features in an image should
have close depth values, we have proposed a neighborhood smoothness con-
straint as a regularization term to train MSCNNS . When constructing such a
constraint, we adopt features learned from CNN automatically instead of tradi-
tional hand-crafted features to evaluate the similarity of adjacent pixels in order
that it can be integrated with other parts of our model seamlessly. Additionally,
our neighborhood smoothness constraint is highly explainable by regarding it as
a pixel level conditional random field (CRF).

3 MSCNNS: The Proposed Method

In this section, we present details of the proposed depth estimation approach
MSCNNS , including the problem formulation, the network architecture, the
multi-scale sub-pixel convolution and the neighborhood smoothness constraint.
Fig. 1 gives the outline of the model, which will be described later.

3.1 Problem Formulation & Overiew

Fig. 1. The outline of our model. The blue objects represent the smoothness branch
and other coloured objects connecting to the main path with vertical arrows are scale
branches. Note that scale branches have no interaction with each other and the hori-
zontal arrows just mean the features from a scale branch will be fused into the corre-
sponding sub-pixel convolution.

Following previous works, we formulate the task of depth estimation from
monocular RGB images as the problem of learning a non-linear mapping F :
I → D, which maps the image space I to the depth space D. We denote the
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training set as T = (Xi, Yi), i ∈ N, where Xi ∈ I and Yi ∈ D representing the
corresponding depth map of Xi, and denote the test set by Q. Our goal is to
construct an F which (a) minimizes the distance of F (Xj) and Yj , (b) ensures
that the resolution of F (Xj) is the same as Yj ’s and (c) preserves fine details of
the scene in F (Xj) for a given input Xj ∈ Q.

For (a) and (b), we consider making use of CNN with a low resolution output
and taking advantage of the sub-pixel convolution to recover the resolution.
And for (c), we introduce multi-scale features into the sub-pixel convolution.
Therefore, our method can be defined as,

Pfinal = F1(Xj)

Fn(Xj) = SPn(F2n(Xj), ϕ2n(Xj), ϕ22n(Xj), ..., ϕ2kn(Xj)) (1)

where n, k ∈ N, Pfinal refers to our final prediction, n and 2kn refer to the
downscaling factors, SPn refers to a sub-pixel convolution which recovers the
resolution to 1/n of the original input resolution and ϕ2tn(·) (t = 1, 2, ..., k)
refers to an function to get feature maps related to a downscaling factor of 2tn.

3.2 Network Architecture

We now describe the details of our model. As shown in Fig. 1, our network
contains a main path, a sub-pixel convolution path, a smoothness branch and
several scale branches. The main path follows the design of DenseNet [8] without
the global pooling and the fully connection. We denote the features at a certain
scale from the main path by Mn× where n is the downscaling factor of the fea-
tures whose dimensions are 1/n the size of the input. Note that n ∈ {4, 8, 16, 32}
which we call the scale set and denote by S.

Each scale branch uses Mn× with a certain n, generates features of larger
scales via a cascade of transposed convolutions and finally outputs a predicted
depth map. We denote the scale branch using Mn× by Bn× and the prediction
of Bn× by On×. Note that On× has the same resolution as input’s and n in
Bn× means that features with a downscaling factor of n (i.e., Mn×) from the
main path are used. As for features at different scales generated by transposed
convolutions of the branch, we denote them by Bn×

m×, respectively, where m is
the downscaling factor of the features and m = {x | x ∈ {2, 4, 8, 16}, x < n}.
The smoothness branch takes M2× (features coming from the main path with
a downscaling factor of 2) as input and tries to learn features to measure the
similarity of neighboring pixels.

The sub-pixel convolution path contains four multi-scale sub-pixel convolu-
tions. Each sub-pixel convolution fuses Bn×

m× (∀n ∈ S ∧ n > m) with a certain
m and the output of the previous sub-pixel convolution and then generates a
higher resolution depth map with a downscaling factor of t (t = m/2). We call
this sub-pixel convolution SPt× and denote its output by Pt×. For illustration,
P4× can be presented as,

P4× = SP4×(P8×, B
16×
8× , B32×

8× ) . (2)
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During the training phase of our approach, we adopt a multi-scale target
learning method to train the sub-pixel convolutions. That is, for a given sample
(Xi, Yi) ∈ T we minimize the l2 distance between Yi and each of 1× scale
predictions which contain P1× and On× (n = 4, 8, 16, 32, respectively). And
then, we down-sample Yi to Y t

i where t is the downscaling factor and minimize
the l2 distance of Y t

i and the corresponding Pt× to make sure that details of the
scene are preserved. Moreover, we fuse 1× scale predictions via weighted average
and minimize the l2 distance between Yi and the averaged prediction. Thus, our
loss function can be defined as a sum of several l2 distances,

L2 = l2(Yi, P1×) + l2(Yi, Ỹfs) + λ1
∑
n∈S

l2(Yi, O
n×) +

∑
t∈{2,4,8}

λt2l2(Y t
i , Pt×) (3)

where l2(·) refers to the l2 distance, λ1 and λt2 are given constants, S is the scale
set and Ỹfs refers to the weighted average prediction defined as,

Ỹfs = w0P1× +
∑
i∈S

wiO
i× (4)

where w0 and wi are weights for fusing 1× scale predictions and those weights
are learned automatically via CNN.

Additionally, we formulate the neighborhood smoothness constraint as a reg-
ularization term, Lsmooth, for training our model, which will be described con-
cretely in Section 3.4. Finally, our final loss function can be defined as,

L = L2 + Lsmooth . (5)

3.3 Multi-scale Sub-pixel Convolution

Convolution Pixelshuffle

(a) Sub-pixel convolution

I

PixelshuffleMultiple branches convolution

(b) Multi-scale sub-pixel convolution

Fig. 2. (a) illustrates the original sub-pixel convolution proposed by [25]. (b) outlines
our multi-scale sub-pixel convolution, which fuses more features from different scale
branches. The circle with I in it means concatenating features from different branches.
And the number of branches before concatenation may be less or more than 3, depend-
ing on the output scale of the multi-scale sub-pixel convolution.
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Sub-pixel convolution is first proposed by Shi et al. [25] as an efficient up-
sampling method for RGB image super-resolution problem. It is originally de-
fined as,

ISR = fL(ILR) = PS(WL ∗ fL−1(ILR) + bL) (6)

where ILR refers to a low resolution RGB image, ISR refers to the high resolution
RGB image to be recovered, fL−1 refers to a neural network with L-1 layers,
WL and bL are parameters of Layer L and PS(·) is a shuffling operator that
rearranges the elements of an H ×W × C · r2 tensor to a tensor of the shape
rH × rW × C where r is the upscaling factor.

Inspired by this, we formulate predicting depth map of a fine resolution as
a multi-stage super-resolution problem on depths. In each stage, the predicted
depth map is up-sampled by the factor of 2. Therefore, different scale targets
should be considered during training and our multi-scale target learning strategy
is born. Furthermore, considering that features from early layers of a CNN carry
more detail information of the input image and the information is very likely to
benefit preserving more details of the scene in the prediction, we construct several
branches called scale branches in our network and fuse features of different scales
from those branches into the sub-pixel convolution. Finally, suppose that the
resolution of the original input image is H ×W and our multi-scale sub-pixel
convolution can be defined as,

Pn× = PS(H([P2n×, B
22n×
2n× , B23n×

2n× , ..., B32×
2n×])), n ∈ {1, 2, 4, 8} (7)

where [·] refers to the concatenation of input feature maps, H(·) refers to a
series of convolutional layers which output a tensor with the shape of H/(2n)×
W/(2n) × 1 · 4 and PS(·) represents a pixelshuffle operation which shuffles the
output of H(·) to a predicted depth map of resolution H/n ×W/n. Note that
the aforementioned notation SPn(·) in (1) is equivalent to PS(H(·)) in (7). Fig.
2 gives illustrations of the original sub-pixel convolution and our multi-scale
sub-pixel convolution.

3.4 Neighborhood Smoothness

The neighborhood smoothness constraint is based on the prior that neighboring
pixels with similar appearances in an image are likely to correspond to close
depth values. In Liu et al.’s work [16], it is presumed that pixels within a super-
pixel have the same depth value and superpixels with similar appearances have
closer depth values. And they make use of hand-crafted features to measure the
similarity of adjacent superpixels. Different from them, we use features learned
by CNN to measure the similarity of neighboring pixels and the features of each
pixel are extracted in a patch whose center is this pixel. And then, we use the
weighted average of features of a pixel to represent the appearance of the pixel
and define a constraint term in the loss function, Lsmooth, as,

Lsmooth =
λ3
2

∑
j−i=1

(yi − yj)2e−t(ri−rj)
2

(8)
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where λ3 and t are positive constants, i and j are the location of two adjacent
pixels in a row or a column, ri and rj refer to appearances of the two pixels, and
yi and yj refer to predicted depth values. For better comprehensibility, we will
explain why we choose such a formulation and how we implement it, together
with why it should work in the following.

As (8) shows, there are two parts, namely, L2 and the weight part. L2 is used
to make the predictions of adjacent pixels closer. However, not all adjacent pixels
should own close depth. So weights are introduced for such situations. Adjacent
pixels which look “different” should own a smaller weight whereas similar pixels
should own a larger weight. Therefore, we choose ex as weights and x should be
related to the similarity. We expect to use low level features to formulate the
similarity and the first several layers of the CNN are able to learn various low
level features. Therefore, we feed 2× feature maps (M2×, blue one in Fig. 1)
from the main path to one DenseBlock with 128 output channels. A convolution
layer with a kernel size of 5× 5 follows this DenseBlock and generates 4 channel
output. The 4 channel output is then shuffled into one channel to up-sample its
dimension to the original input’s. Finally, each value in the output is regarded
as the feature of the pixel in the same location (e.g. ri or rj in (8)).

Actually, our neighborhood smoothness constraint can be explained as a
conditional random field (CRF) with pairwise potentials defined as,

ϕ(yi, yj , ri, rj) = µ (yi, yj) k (ri, rj) (9)

µ (yi, yj) =
1

2
(yi − yj)2 , k (ri, rj) = λe−t(ri−rj)

2

where µ(yi, yj) represents the compatibility function between pixel i and j and
k(ri, rj) represents a self-defined weight kernel.

4 Experiments

4.1 Experimental Protocol

We evaluate our method on two popular datasets which are publicly available
and widely used in the area of depth estimation, Make3D Range Image Dataset
[23] and NYU Depth Dataset V2 [26]. The same as prior works, four criteria
were considered for quantitative evaluation.

– Average relative error (rel): 1
T

∑
i

|yi−y∗
i |

y∗
i

.

– Root mean squared error (rms):
√

1
T

∑
i

(yi − y∗i )
2

.

– Average log10 error (log10): 1
T

∑
i

|log10y∗i − log10yi| .

– Accuracy with threshold (thr): percentage (%) of yi

s.t. : max
(

yi

y∗
i
,
y∗
i

yi

)
= δ < thr .
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where yi and y∗i are the predicted depth and the ground-truth depth of the pixel
i, respectively, and T is the total number of pixels in the evaluated image.

To clearly validate the effectiveness of the multi-scale target learning, the
multi-scale sub-pixel convolution and the neighborhood smoothness constraint,
we considered the following four baselines:

– DenseNet-TC (DenseNet with Transposed Convolution): We trained a
DenseNet without the global pooling and the fully connection for depth
estimation and used transposed convolution to get a fine resolution of the
predicted depth map.

– DenseNet-MT (DenseNet with Multi-scale Targets): We trained a network
similar as DenseNet-TC and added the multi-scale target learning to it. Spe-
cially, each transposed convolution was followed with an extra convolution
layer to get an output of a certain scale.

– DenseNet-SC (DenseNet with Sub-pixel Convolution): We replaced the
transposed convolution in DenseNet-MT with the original sub-pixel convo-
lution in [25].

– MSCN (multi-scale sub-pixel convolution network): The proposed approach
without the neighborhood smoothness constraint.

4.2 Implementation Details

We implement our method on the popular CNN platform, PyTorch 3. Training
is done on Ubuntu 16.04 with an NVIDIA Titan X Pascal GPU. We choose
DenseNet-121 as the main path. We reference the implementation of DenseNet-
121 in the vision project 4 and use the pre-trained model to initialize parameters
of the four denseblocks. Other layers of the network are initialized by the mean of
xavier [4]. We use Adam strategy with weight decay = 0.0005 and set λ1 = 0.5,
λi2 = 1/i, (i = 2, 4, 8), λ3 = 0.01 and t = 2. The batch size is set to 16 due to
the memory limitation. The learning rate is set to 0.001 at the very beginning
and reduced 70% every M epochs. The value of M depends on the size of the
dataset. Generally, we set it to 6∼10 for NYU Depth v2 and 20∼60 for Make3D.

For data augmentation, we follow the strategies proposed in [2] and the pa-
rameters are described here. The scaling factor s ∈ {1, 1.2, 1.5}, the rotation
factor r ∈ [−5, 5], and the color scaling factor c ∈ [0.85, 1.15]. Moreover, trans-
lation and flipping are conducted over all image pairs.

4.3 Ablation study on components

We compare the proposed method MSCNNS with several aforementioned base-
lines to validate the effectiveness of the multi-scale target learning, the multi-
scale sub-pixel convolution and the neighborhood smoothness constraint, respec-
tively. The results are shown in Table 1, from which we could have the following

3 http://pytorch.org/
4 https://github.com/pytorch/vision
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Table 1. Baseline comparison on NYU Depth v2. DenseNet-TC and DenseNet-MT ver-
ify multi-scale target learning. DenseNet-SC and MSCN verify the multi-scale sub-pixel
convolution. MSCN and MSCNNS verify the neighborhood smoothness constraint.

Method
Error (lower is better) Accuracy (higher is better)

rel log10 rms δ < 1.25 δ < 1.252 δ < 1.253

DenseNet-TC 0.248 0.101 0.786 0.585 0.870 0.962
DenseNet-MT 0.240 0.097 0.761 0.601 0.879 0.965
DenseNet-SC 0.227 0.094 0.720 0.613 0.885 0.969
MSCN 0.154 0.068 0.569 0.755 0.941 0.986
MSCNNS 0.128 0.059 0.523 0.813 0.964 0.992

Table 2. Intermediate output comparison on NYU Depth v2. O4× ∼ O32× are outputs
of corresponding scale branches. P8× ∼ P1× are outputs of corresponding sub-pixel
convolutions. Note that P1× is the final output of our method.

Output
Error (lower is better) Accuracy (higher is better)

rel log10 rms δ < 1.25 δ < 1.252 δ < 1.253

O4× 0.289 0.136 1.049 0.426 0.742 0.911
O8× 0.203 0.098 0.772 0.596 0.870 0.966
O16× 0.156 0.076 0.634 0.719 0.914 0.978
O32× 0.154 0.075 0.635 0.726 0.915 0.978

P8× 0.174 0.087 0.748 0.656 0.902 0.974
P4× 0.154 0.075 0.663 0.723 0.932 0.982
P2× 0.137 0.064 0.573 0.781 0.954 0.990
P1× 0.128 0.059 0.523 0.813 0.964 0.992

Fig. 3. One test sample in NYU Depth V2. The first row (from left to right) is the
RGB image, O4×, O8× and O16× and the second row (from left to right) is O32×, P8×,
P4×, P2×, P1× (the final prediction) and the ground-truth depth map.
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Table 3. Performance evaluation of different methods on NYU Depth v2.

Method
Error (lower is better) Accuracy (higher is better)

rel log10 rms δ < 1.25 δ < 1.252 δ < 1.253

Saxena et al. [23] 0.349 - 1.214 0.447 0.745 0.897
Karsch et al. [10] 0.350 0.131 1.2 - - -
Liu et al. [18] 0.335 0.127 1.06 - - -
Eigen et al. [2] 0.215 - 0.907 0.611 0.887 0.971
Liu et al. [17] 0.234 0.095 0.842 0.604 0.885 0.973
Mousavian et al. [19] 0.200 - 0.816 0.568 0.856 0.956
Roy and Todorovic [21] 0.187 0.078 0.744 - - -
Eigen and Fergus [1] 0.158 - 0.641 0.769 0.950 0.988
Li et al. [14] 0.143 0.063 0.635 0.788 0.958 0.991
Laina et al. (l2) [12] 0.138 0.060 0.592 0.785 0.952 0.980

MSCNNS (Ours) 0.128 0.059 0.523 0.813 0.964 0.992

Table 4. Time evaluation on NYU Depth v2. All methods are evaluated using the
same computer with an NVIDIA Titan X (Pascal) GPU.

Method Time

Karsch et al. [10] 60s
Eigen et al. [2] 2.091s
Eigen and Fergus [1] 5.622s
Liu et al. [17] 1.291s
Laina et al. [12] 0.257s

MSCNNS (Ours) 0.019s

Table 5. Performance evaluation of different methods on Make3D.

Method
C1 error(lower is better) C2 error(lower is better)

rel log10 rms rel log10 rms

Saxena et al. [23] - - - 0.370 0.187 -
Karsch et al. [10] 0.355 0.127 9.20 0.361 0.148 15.10
Liu et al. [18] 0.335 0.137 9.49 0.338 0.134 12.60
Liu et al. [16] 0.314 0.119 8.60 0.307 0.125 12.89
Zhang et al. [34] 0.374 0.127 9.18 0.364 0.141 14.11
Liu et al. [17] 0.312 0.113 9.10 0.305 0.120 13.24
Roy and Todorovic [21] - - - 0.260 0.119 12.40
Li et al. [13] 0.278 0.092 7.19 0.279 0.102 10.67

MSCNNS (Ours) 0.254 0.080 6.92 0.249 0.088 10.47
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RGB Image Ground truth Liu et al. [17] Eigen et al. [2] Eigen and Fergus [1] Laina et al. [12] Proposed

Fig. 4. Qualitative evaluations on NYU Depth v2. Note that the output resolution of
the proposed method is the same as input’s, whereas Eigen et al.’s [2] is 1/4 of the
input’s, Eigen and Fergus’s [1] is 1/2 of the input’s and Laina et al.’s [12] is 1/2 of the
input’s.
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Fig. 5. Qualitative evaluations of our approach on Make3D. Fine boundaries of objects
in different environments are provided in our predictions.
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findings. First, all approaches with the multi-scale target learning perform better
than DenseNet-TC, indicating that our multi-scale target learning is very effec-
tive for depth estimation. Second, DenseNet-SC outperforms DenseNet-MT and
MSCN outperforms both DenseNet-SC and DenseNet-MT with a great increase
on performance. Such a result clearly demonstrates that sub-pixel convolution is
more suitable than the widely used transposed convolution for this task and the
proposed multi-scale sub-pixel convolution is very powerful for improving the
predictions. This result is quite reasonable, since multi-scale information bene-
fits keeping details of the scene in the prediction. Third, compared with MSCN,
MSCNNS gains obvious performance increases on all criteria. Considering that
the only difference between them is that the former is trained with the neighbor-
hood smoothness regularization term, we can conclude that our neighborhood
smoothness constraint further improve the results.

Since there are multiple outputs (O4× ∼ O32× and P8× ∼ P1×) in our
network, we display the qualitative results of them in Fig. 3 and present the
quantitative comparisons in Table 2, from which several interesting conclusions
can be drawn. First, the performances from O4× to O32× increase sequentially
whereas the figures become less sharp. Such a phenomenon clearly illustrates that
the early layers of the network provide more information about the contour of the
object and deeper layers provide more useful information for depth values. Thus,
there is a trade-off between sharpness and accuracy using single scale features.
Second, P8× ∼ P1× are nearly the same irrespective of the resolution, which
indicates that our multi-scale sub-pixel convolution overcomes this trade-off and
is able to provide a sharp and accurate prediction.

4.4 Evaluation on NYU Depth Dataset v2

The NYU Depth Dataset V2 [26] is an indoor scene RGB-D dataset. Follow-
ing Laina et al.’s work [12], we sample frames with a fixed step out of each
training sequence and acquire approximately 12k images. After the offline data
augmentation, we finally get around 72k samples for training. For test, we use
the standard test set, which contains 694 images with filled-in depth values,
to compare with previous works. During our experiment, all images with the
corresponding depth maps are down-sampled to 320× 240.

To show the superiority of MSCNNS , we compare it with the state-of-the-art
methods in terms of the prediction accuracy and the inference speed. The results
are listed in Table 3 and Table 4. It can be seen that our method outperforms
other methods on all criteria. And it runs much faster and only consumes 1/13
the time of the runner-up, meaning that it can meet the requirement of real-time
application. Moreover, our training set with 72K images is smaller than Laina et
al.’s [12] with 95K images, as well as Eigen and Fergus’s [1] with 120K images.
Besides, the size of our model is approximately 100 M, which is 40% that of
Laina et al.’s and 1/8 that of Eigen and Fergus’s. For further comparison, we
provide qualitative results of several methods in Fig. 4.



14 S. Zhao et al.

4.5 Evaluation on Make3D

The Make3D dataset [23] is an outdoor scene RGB-D dataset, containing 534
images with the resolution of 1704× 2272. Officially, images of this dataset are
split into 400 images for training and 134 images for test. We get 9.6K images
via offline data augmentation and resize all images to 345×460. Following Laina
et al.’s work [12], we further reduce the resolution of the images by half as the
input of our network. Following previous works, we report our results using two
kinds of criteria, C1 error and C2 error, as previous works used. C1 errors are
calculated only in the regions with the ground-truth less than 70 meters while
C2 errors are calculated over the entire images.

We evaluate our method using the official test set with 134 images and list
the comparison results with several state-of-the-art approaches in Table 5. It
can be observed that our method outperforms all competitors on all criteria.
Moreover, it should be noted that Make3D is an outdoor depth dataset. And
thus the range of its depth values is much larger than that of indoor dataset like
NYU Depth v2, which brings more challenges for the prediction. Nevertheless,
our method makes a great improvement on the metric log10 which refers to an
absolute error on logarithm. Therefore, it can be concluded that our method is
superior to predict relatively accurate depth value in spite of a large range of
ground truth value.

We also provide the qualitative evaluations on Make3D, which are presented
in Fig. 5. Since the depth range is large, we provide the reverse depth map for
better visualization. As is shown, our method provides fine boundaries of objects
even in complex environments involving buildings, shrubs and trees.

5 Conclusion

In this paper, we have presented a CNN-based approach for depth estimation
from a single monocular image. In our model, there is a main path, a sub-
pixel convolution path, a smoothness branch and four scale branches. The main
path and scale branches generate features of different scales. And the sub-pixel
convolution path leverages the multi-scale sub-pixel convolutions to get an ac-
curate depth map. During training, a novel multi-scale target learning strategy
is adopted to train the sub-pixel convolutions. Moreover, we have proposed a
novel neighborhood smoothness constraint that makes use of features from the
smoothness branch to further improve the performance. Our approach is able to
achieve the state-of-the-art results, as well as running much faster. Additionally,
it can provide more details of the scene and high resolution depth maps.
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