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Simulation of Atmospheric Visibility Impairment
Lin Zhang , Senior Member, IEEE, Anqi Zhu, Shiyu Zhao , and Yicong Zhou , Senior Member, IEEE

Abstract— Changes in aerosol composition and its proportions
can cause changes in atmospheric visibility. Vision systems
deployed outdoors must take into account the negative effects
brought by visibility impairment. In order to develop vision
algorithms that can adapt to low atmospheric visibility condi-
tions, a large-scale dataset containing pairs of clear images and
their visibility-impaired versions (along with other annotations
if necessary) is usually indispensable. However, it is almost
impossible to collect large amounts of such image pairs in a
real physical environment. A natural and reasonable solution is
to use virtual simulation technologies, which is also the focus of
this paper. In this paper, we first deeply analyze the limitations
and irrationalities of the existing work specializing on simulation
of atmospheric visibility impairment. We point out that many
simulation schemes actually even violate the assumptions of
the Koschmieder’s law. Second, more importantly, based on a
thorough investigation of the relevant studies in the field of
atmospheric science, we present simulation strategies for five
most commonly encountered visibility impairment phenomena,
including mist, fog, natural haze, smog, and Asian dust. Our
work establishes a direct link between the fields of atmospheric
science and computer vision. In addition, as a byproduct,
with the proposed simulation schemes, a large-scale synthetic
dataset is established, comprising 40,000 clear source images
and their 800,000 visibility-impaired versions. To make our work
reproducible, source codes and the dataset have been released at
https://cslinzhang.github.io/AVID/.

Index Terms— Atmospheric visibility impairment, atmospheric
science, image simulation, synthetic datasets.

I. INTRODUCTION

IN RECENT years, more and more imaging sensors and
the accompanying vision systems have been being widely

used for outdoor applications, such as surveillance [1], remote
sensing [2], auto-driving vehicles [3], etc. While these sen-
sors and algorithms are continuously getter better, they are
mainly designed to operate well on clear weather condi-
tions. Researchers are beginning to notice that vision sys-
tems deployed outdoors must consider the adverse effects
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of atmospheric visibility impairment. As a result, recently,
a number of low atmospheric visibility oriented research
areas have begun to receive great attention, such as defog-
ging/dehazing [4]–[11], foggy scene understanding [12], [13],
visibility estimation [14], etc. Actually, there are a plethora
of previous studies focusing on vision problems related to
mist or fog. By contrast, natural haze, smog, and dust are
rarely investigated, which are also common natural phenom-
ena. Studies on a broader range of atmospheric degradation
phenomena can benefit the restoration of images suffering
from atmospheric visibility impairment. They are of great
significance to vision-based intelligent systems, such as traffic
monitoring systems or driving assistance systems.

In most cases, to train and to evaluate vision algorithms that
can adapt to low atmospheric visibility conditions, a dataset
that comprises a large number of pairs of clear images and
their visibility-degraded versions is eagerly desired. However,
to collect large amounts of such image pairs from real world is
nearly impossible. A feasible solution to conquer this problem
is to use virtual simulation technologies, which is also the
focus of this paper.

In this work, we focus on how to simulate atmospheric
visibility impairment phenomena aroused by changes in
aerosol composition and its proportions. Specifically, simu-
lating strategies for five most commonly encountered natural
phenomena, mist, fog, natural haze, smog, and Asian dust, are
given. In Fig. 1, real world images and our simulation results
are shown for comparison. Images in the left column of Fig. 1
are collected from the real world while the ones in the right
column are our simulation results. From the first row to the
fifth row, the related natural phenomena are mist, fog, natural
haze, smog, and Asian dust, respectively. By comparing with
the real world images, it can be seen that our simulation results
are quite realistic.

The remainder of this paper is organized as follows. Sect.
II introduces the related work and our contributions. Sect. III
reviews the Koschmieder’s law and the Duntley’s law in
atmosphere science. Our proposed schemes for atmospheric
visibility impairment simulation are presented in Sect. IV.
Experimental results are reported in Sect. V. Finally, Sect. VI
concludes the paper.

II. RELATED WORK AND OUR CONTRIBUTIONS

A. Synthetic Data for Computer Vision
Recent progress in computer vision has been propelled by

high capacity models trained on large datasets. Unfortunately,
establishing large-scale datasets comprising real images with
manual annotations is extremely costly and cumbersome and
in some cases is even not feasible. This has spurred the
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Fig. 1. Real world images and our simulation results are shown for
comparison. Images in the left column are collected from the real world while
the ones in the right column are simulation results by our proposed schemes.
From the first row to the fifth row, the related natural phenomena are mist,
fog, natural haze, smog, and Asian dust, respectively.

development of methods for producing photo-realistic,
computer generated images with corresponding pixel-level
annotations and labels. Generally speaking, using simulation
techniques to create training data has the following merits:
1) creating virtual synthetic data is cheaper and easier than
collecting real world data; 2) nearly all the relevant factors
for rendering images can be controlled, such as objects in the
scene, the illumination, the camera pose, etc.; and 3) consistent
and accurate annotations usually can be naturally generated as
byproducts. More importantly, some studies have confirmed
that for some specific applications (e.g. vehicle detection)
models trained on synthetic data can generalize quite well to
real data [15]. Representative studies focusing on synthetic
data generation for solving vision tasks are briefly reviewed
as follows.

The first category of schemes in this field rely on simu-
lators created by game engines, such as Unity1 or Unreal.2

1https://unity3d.com/
2https://www.unrealengine.com/

In [16], Ros et al. presented the SYNTHIA dataset, which
contains 13,400 annotated frames for the semantic segmen-
tation task. Since the dataset was constructed from a virtual
city implemented with Unity, more data could be collected at
any time with zero additional budget for annotation. Virtual
KITTI [17] is another dataset captured from a virtual city
created by Unity. It contains 35 synthetic videos for a total of
approximately 17,000 frames, all with automatic ground truth
for object detection, tracking, depth, optical flow, as well as
scene and instance segmentation at the pixel level. In [18],
Müller et al. constructed a training and evaluation simulator,
namely Sim4CV, which was built on top of Unreal Engine.
Sim4CV integrates full featured physics based cars, unmanned
aerial vehicles, and animated human actors in diverse urban
and suburban 3D environments. Similar as Sim4CV [18],
Dosovitskiy et al. constructed an open-source simulator for
autonomous driving research, namely CARLA (CAR Learning
to Act) [19]. CARLA was developed from the ground up to
support development, training, and validation of autonomous
urban driving systems. As pointed by [20], [21], a shared
drawback of these approaches is the significant gap in quality
of synthetic images with respect to real world images.

Another category of approaches resort to commercial video
games, such as Grand Theft Auto V (GTAV),3 to produce
datasets of photo-realistic scenes and corresponding annota-
tions. It is generally accepted that scenes created in this way
are more realistic than those created by simulators directly
relying on game engines [20], [21]. In [22], Richter et al.
proposed the idea of “playing for data” (PFD). PFD relied on
inserting middleware between the game engine and the graph-
ics hardware to extract desired information from GTAV with-
out having access to the game’s code or content. Later in [20],
Richter et al. extended their earlier work [22] to generate 25K
video frames with ground-truth data for optical flow, semantic
instance segmentation, object detection/tracking, object-level
3D scene layout, and visual odometry. In [21], Augus et al.
established the dataset URSA (Unlimited Road-scene Syn-
thetic Annotation), whose scenes were also extracted from
GTAV. Angus et al. overcame the inaccessibility of in-game
content by leveraging tools traditionally used for game mod-
ifications. In [15], Johnson-Roberson et al. presented a fully
automated system to extract data used to train instance seg-
mentation algorithms from GTAV. Specifically, they extracted
data from the game using two plugins, Script Hook V4

and Script Hook V. Net,5 developed by the open source
community.

B. Existing Studies for Atmospheric Visibility Impairment
Simulation

Though preeminent synthetic datasets as reviewed in
Sect. II-A have been created to help train vision algorithms,
none of them has systematically taken the negative effects
of atmospheric visibility impairment into account. Studies
focusing on simulation of atmospheric visibility impairment

3https://www.rockstargames.com/V/
4http://www.dev-c.com/gtav/scripthookv/
5https://www.gta5-mods.com/tools/scripthookv-net
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actually are quite sporadic. In this sub-section, they will be
reviewed and analyzed deeply.

To our knowledge, in the field of computer vision,
the studies of atmospheric visibility impairment simula-
tion are all about “fog”. In addition, all these simula-
tion schemes actually resort to the same physical model,
i.g. Koschmieder’s law (Eq. 1) for horizontal vision and
non-absorbing atmosphere [30].

An earlier work in this field was conducted by
Tarel et al. [12]. Using the SiVICTM software which allows
to build physically-based road environments, they constructed
the dataset FRIDA (Foggy Road Image DAtabase). FRIDA
comprises 90 synthetic images of 18 urban road scenes.
In their later work [23], Tarel et al. upgraded FRIDA to
FRIDA2, which contains 330 synthetic images of 66 diverse
scenes. Obviously, FRIDA and FRIDA2 are both quite small
in scale and actually their images are not realistic-looking.

A quite recent work focusing on synthesizing foggy images
is [13]. In [13], Sakaridis et al. attempted to address the
problem of semantic foggy scene understanding and proposed
a pipeline to add synthetic fog to real, clear-weather images in
Cityscapes [31]. Sakaridis et al.’ work has the following poten-
tial shortcomings. First, the contrast of images in Cityscapes
is not very high since sensors used to collect them were
mounted behind the windshield. Thus, it is not appropriate
to use Cityscapes images as supervisory signals for some
applications, e.g. defogging. Second, the depth information
(which is indispensable for fog simulation) in Cityscapes is
not complete and its completion is a great challenge itself.
An inaccurate depth map will definitely give rise to errors
in fog synthesis. Third, the way Sakaridis et al. estimated
the horizon sky luminance A (see Eq. 1) was questionable.
Given an image from Cityscapes, they took the median of
all the 0.1% pixels with largest dark channel values as A.
Actually, such a method to estimate A makes sense only when
the sky is overcast. According to Koschmieder’s law [30],
strictly speaking, A should be the luminance of the horizon
sky. When the weather is overcast, we can assume that the
sky luminance is uniform across all the sky regions. However,
such an assumption does not hold for most Cityscapes images
since they were collected on clear days.

In [6], Li et al. established a dataset RESIDE (REalistic
Single-Image DEhazing) and performed a thorough evalu-
ation of single-image defogging algorithms. RESIDE com-
prises both indoor and outdoor scenes and we refer to
them as “RESIDE-indoor” and “RESIDE-outdoor”, respec-
tively. For indoor foggy scene synthesis, they made use
of images with depth maps selected from NYU2 [32] and
Middlebury stereo [33]. For the outdoor case, they collected
2,071 real world outdoor images and resorted to [34] to
estimate the depth map from each image. The simulation
pipeline of RESIDE-indoor actually violates the premise
that Koschmieder’s law is established. In Koschmieder’s law
(Eq. 1), A should be the luminance of the horizon sky;
however, for indoor scenes, no sky exists. Furthermore,
Koschmieder’s law assumes that the linear dimensions of
the objects in the scene are small in comparison to their
distances from the observer, which does not hold either for

indoor scenes. The potential risk of RESIDE-outdoor lies in
its way to generate depth maps. Depth maps estimated by a
computational model are usually not reliable since singe-image
based depth estimation is a highly ill-posed, still open prob-
lem. Unreliable depth maps can make the simulation results
unpredictable and less useful.6

In the field of image defogging, to train and validate
defogging models, researchers usually used depth datasets
comprising clear images and associated depth maps to create
synthetic foggy scenes. Most of them [5], [8], [9], [24],
[25] resorted to indoor depth datasets (such as NYU2 [32],
Middlebury stereo [33], and SUN3D [35]) and of course the
synthesized results suffer from the same problem as “RESIDE-
indoor”. Another few of them, e.g. Li et al.’s work [7], used
the outdoor depth dataset Make3D [36]. However, the depth
information in Make3D is not precise. As pointed in [6],
Make3D has at least 4 meters of average error.

It can be regarded as a physical way to simulate foggy
image by using fog/haze machines to generate a dense
vapor [26]–[29]. Actually, the images in these datasets
[26]–[29] were taken from quite few viewpoints, limiting their
scene varieties. I-HAZE [26] only contains 35 indoor scenes,
O-HAZE [27] contains 45 outdoor scenes, Dense-Haze [28]
contains 33 outdoor scenes and 22 indoor scenes, and
NH-Haze [29] contains 55 outdoor scenes. The small scales of
these datasets make them only suitable for performance evalu-
ation of defogging algorithms, not for large-scale model train-
ing. When collecting the datasets [26]–[29], the researchers
first recorded the ground truth (haze-free image) and then
immediately started introducing fog in the scene. However,
the produced fog covers a much smaller area than the area
covered by natural fog. Additionally, since the haze-free image
and its foggy version are not shot at the same time, these
schemes cannot avoid small changes in the same scene, such
as leaves, lawns, etc. What’s more, the collection cost of these
methods of using fog/haze machines is very high.

Shortcomings or irrationalities of existing studies focusing
on foggy scene synthesis are summarized in Table I.

C. Our Motivations and Contributions

Having investigated the literature, we find that existing
studies of atmospheric visibility impairment simulation have
limitations in at least three aspects.

First, the vast majority of researchers in the field of CV
actually do not notice the difference between “fog” and “haze”.
These two words are often mixed incorrectly.

Second, as reviewed in Sect. II-B, many researchers are not
aware that their foggy scene simulation schemes actually are
not quite reasonable. For synthesizing fog, all the schemes
used Koschmieder’s law [30]. However, the conditions under
which Koschmieder’s law could hold are often mistakenly
ignored.

Third, the existing studies of atmospheric visibility
impairment simulation are all about “fog”. Other commonly
encountered natural phenomena that can also cause visibility

6An example can be found in Fig. 6.
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TABLE I

SHORTCOMINGS OR IRRATIONALITIES OF EXISTING STUDIES OF FOGGY SCENE SYNTHESIS

degradation (such as mist, smog, Asian dust, etc.) have not
been considered.

In this work, we attempt to fill the aforementioned research
gaps to some extent and our major contributions are summa-
rized as follows.

(1) We clearly point out that fog and haze have different
physical origins and optical properties. Hence, these two words
cannot be used interchangeably. From the view of optics,
the inherent difference between fog and haze is that their
extinction coefficients have different optical properties. Firstly,
the extinction coefficient of fog is wavelength independent
which is not true for haze. Secondly, in foggy days, the light
absorption can be neglected; however, for most cases of haze,
the light absorption should be taken into account. In other
words, fog and haze should be described by different physical
models.

(2) Conditions under which Koschmieder’s law can hold are
stated explicitly. For a long time, these conditions have not
caught the attention of CV researchers. In addition, we point
out that if the light absorption needs to be considered, Dunt-
ley’s law (Eq. 4) [37] is a valid model candidate instead of
Koschmieder’s law. To our knowledge, we are the first to
introduce Duntley’s law to the CV field.

(3) We present simulation schemes for five commonly
encountered atmospheric visibility impairment phenomena.
Based on a thorough investigation of the relevant studies
in atmospheric science, we set up computational models
for mist, fog (both homogenous and heterogeneous), natural
haze, smog, and Asian dust. To our knowledge, our work
is the first in the CV field to give schemes for simulating
atmospheric visibility impairment phenomena other than fog.
As a byproduct, with the proposed simulation strategies,
we have constructed an Atmospheric Visibility Impairment
Dataset, AVID for short. To obtain clear images and the
associated depth maps, we resort to GTAV since quite a
number of previous studies have corroborated that scenes
created by GTAV are quite photo-realistic. AVID comprises
40,000 clear source images (with associated depth maps).
For each clear image, 20 visibility-impaired versions are
created, and thus AVID contains 800,000 visibility-impaired
images. AVID can be explored to train algorithms for restoring

images with atmospheric visibility impairment or algorithms
of image-based visibility estimation.

III. KOSCHMIEDER’S LAW AND DUNTLEY’S LAW

In atmospheric science, Koschmieder’s law [30] is widely
used to model the relationship among factors of the apparent
luminance, the intrinsic luminance, the extinction coefficient,
and the observing distance. It can be expressed as,

L (λ) = L0 (λ) e−b(λ)d + A (λ)
(

1 − e−b(λ)d
)

(1)

where L(λ) is the observed luminance, L0 (λ) is the clear
scene radiance, A (λ) is the luminance of the horizon sky,
b (λ) is the extinction coefficient of the atmosphere, and λ is
the light wavelength. The extinction coefficient b (λ) can be
depicted as the sum of several components [38],

b (λ) = bRayleigh (λ)+bscat (λ) + babs−gas (λ)+babs−aero (λ)

(2)

where bRayleigh (λ) represents the scattering due to gaseous
air (the blue-sky scatter), bscat (λ) represents the compo-
nent due to light scattering by aerosol, and babs−gas (λ)
and babs−aero (λ) represent the absorption due to gases and
particles, respectively. In the literature, a convenient and
easily visualized substitute for the extinction coefficient is the
“visibility” (also called “meteorological range”). The visibility
v has the following relationship with the extinction coefficient
b (λ) [30], [38],

v = − ln 0.05

b(λ)|λ=550nm
(3)

Actually, all the existing schemes for synthesizing foggy
scenes are based on Koschmieder’s law (Eq. 1). However, few
of them has noticed that there are several assumptions to make
it hold [30]. These assumptions are listed as follows.

(a) Koschmider’s law applies only to horizontal vision;
otherwise, the extinction coefficient b(λ) cannot be considered
as a constant along the sight path.

(b) It applies only to non-absorbing atmosphere. In other
words, if the atmospheric absorption should be taken into
account, this law cannot be used.
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(c) It assumes that the surface of the earth is considered
as a uniform horizontal plane, implying that all parts of the
atmosphere in the horizontal plane are equally illuminated.

(d) The extinction coefficient (with respect to a specific light
wavelength) is constant in the horizontal plane along the sight
path.

(e) The linear dimensions of the object are small in com-
parison to its distance from the observer.

The main difference between Koschmieder’s law and Dunt-
ley’s law is whether the atmospheric absorption is considered.
If the atmospheric absorption should be considered, we must
adopt a slightly different physical model developed by Dunt-
ley [37]. Duntley’s law can be expressed as,

L (λ) = L0 (λ) e−b(λ)d + La (λ)

b (λ)

(
1 − e−b(λ)d

)
(4)

where La (λ) is the constant luminance of the air between
the object and the observer. Except that the atmosphere can
be absorbing, all the other conditions to make Koschmieder’s
law hold are also required by Duntley’s law.

Koschmieder’s law and Duntley’s law will be explored by
us for atmospheric visibility impairment simulation. Sect. IV
gives details.

IV. SCHEMES FOR ATMOSPHERIC VISIBILITY

IMPAIRMENT SIMULATION

In this section, schemes for simulating five most commonly
encountered atmospheric visibility impairment phenomena,
including mist, fog, natural haze, smog, and Asian dust, are
presented. At first, it needs to be emphasized that when
atmospheric visibility impairment happens, the associated
bRayleigh (λ) is much smaller than bscat (λ) + babs−gas (λ) +
babs−aero (λ) and can be omitted when modeling. Thus, in the
following parts of this section, b (λ) is simplified from Eq. 2
to Eq. 5,

b (λ) = bscat (λ) + babs−gas (λ) + babs−aero (λ) (5)

Details of proposed simulation pipelines for mist, fog,
natural haze, smog, and Asian dust are presented in Sect. IV-A,
Sec. IV-B, Sect. IV-C, Sect. IV-D, and Sect. IV-E, respectively.
How to determine the horizon sky luminance A and how to
get the clear scene L0 (λ) and the associate depth map are
introduced in Sect. IV-F.

A. Mist

Condensation of water vapour on atmospheric nuclei leads
to the formation of mist and fog [39]. The only difference
between mist and fog lies in the visibility. The term “fog”
refers to a state of the atmosphere for which the visibility is
less than 1, 000m while for “mist”, the “visibility” is greater
than 1, 000m [39].

Compared to the scattering, the effect of light absorption
is negligible in the water droplets. In his masterpiece [30],
Middleton pointed out that even serious pollution of the
cloud droplets has little effect on the spectral radiance of the
overcast sky. Thus, for modeling mist or fog, babs−gas (λ) and

babs−aero (λ) can be omitted and we only need to consider one
term bscat (λ).

For mist or fog, water droplets are larger compared with the
wavelength in the visible region. Thus, the effect of scattering
may then be deduced by geometrical optics and is independent
of wavelength [30], [39]. Consequently, bscat (λ) does not
depend on λ anymore and we denote it by b�

scat .
For mist/fog, since the light absorption can be neglected,

we use Koschmieder’s law (Eq. 1) for its simulation.
In implementation, the synthesized scene has RGB three
channels. Concrete formulas to generate them are given
below,⎧⎪⎪⎪⎨

⎪⎪⎪⎩
L R (x) = L R

0 (x) e−b�
scat d(x) + AR

(
1 − e−b�

scat d(x)
)

LG (x) = LG
0 (x) e−b�

scat d(x) + AG
(

1 − e−b�
scat d(x)

)
L B (x) = L B

0 (x) e−b�
scat d(x) + AB

(
1 − e−b�

scat d(x)
) (6)

where
(
L R (x) , LG (x) , L B (x)

)
are the RGB values of the

synthesized image at the position x,
(
L R

0 (x) , LG
0 (x) , L B

0 (x)
)

are the RGB values of the clear scene at x, d (x) is the
scene depth at x, and

(
AR, AG, AB

)
specifies the horizon sky

luminance.
For constructing AVID, from each clear image, three mist

scenes were synthesized, whose visibilities were randomly
chosen from the ranges [1000m, 3000m), [3000m, 5000m),
and [5000m, 10000m), respectively. Given the visibility, b�

scat
can be computed by Eq. 3.

B. Fog

As we have mentioned, fog can be actually seen as “dense
mist” and can also be modeled by Eq. 6. According to
National Standard of China [40], fog can be classified as
four levels based on its visibility, heavy fog, thick fog,
dense fog, and super-dense fog, whose visibility ranges are
[500m, 1000m), [200m, 500m), [50m, 200m), and [0m, 50m).
As a result, when constructing AVID, from each clear
image, four foggy scenes were synthesized, whose visibili-
ties were randomly chosen from the ranges [500m, 1000m),
[200m, 500m), [50m, 200m), and [15m, 50m), respectively.

It can be noticed that with the aforementioned fog simula-
tion strategy, the whole foggy scene has the same extinction
coefficient. That means the whole scene has the same fog
density everywhere. Such fog is called “homogenous fog”.
However, the natural phenomena usually do not change in
regular ways but have a large degree of randomness. Such
a feature is also present in fog. Sometimes, fog will have
irregular shapes due to wind and air turbulence, which is
referred to as “heterogeneous fog”. Perlin noise [41] has been
proved to be a good choice to simulate random visual effects
in nature. Thus, to simulate heterogenous fog, we multiply
a random perturbation specified by Perlin noise [41] to the
scene’s extinction coefficients and thus the extinction coeffi-
cient at x denoted by b�

scat (x) can be expressed as b�
scat (x) =

b�
scat · perlin_noise(x). When constructing AVID, from each

clear image, two heterogenous foggy images were created for
“thick fog” and “dense fog”.
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C. Natural Haze

Haze often occurs when dust and smoke particles accumu-
late in relatively dry air. In hazy days, extremely small, dry
particles suspend in the air and give the air an opalescent
appearance. It needs to be stressed that different from fog the
extinction coefficient of haze is wavelength dependant [39].
According to the degree related to industrial pollution, haze
can be further classified as “natural haze” and “smog” (refer
to Sect. IV-D) [42]. Natural haze is mild and is not related
to industrial pollution. A typical example of the natural haze
is the “blue haze” phenomenon, in which nano-particles are
formed by the interaction between biogenic organic acids and
sulfuric acid [43]. Blue haze often happens over forested areas.

Since natural haze contains little pollutants, its absorption
effect on solar radiation can be neglected and thus babs−gas (λ)
and babs−aero (λ) can be omitted. As a result, when simulating
natural haze, with respect to its extinction coefficient, we only
need to consider the part bscat (λ) and for the sake of clarity
we denote it by bN H

scat (λ) in the context of natural haze.
In atmospheric science, scientists suggest that bN H

scat (λ) can
be well modeled as [30], [39],

bN H
scat (λ) = C · λ−γ (7)

where C and γ are two constants. C is determined by the
visibility. For determining γ , some empirical studies have been
conducted and suggest that [39],

γ =
{

1.3, i f 6km < v < 20km

0.585v1/3, i f 0km < v ≤ 6km
(8)

where v represents the visibility. If v and γ are given, C can
be derived from Eq. 3 and Eq. 7 and expressed as,

C = − ln 0.05

(550)−γ v
(9)

For natural haze, as the light absorption can be ignored,
we use Koschmieder’s law (Eq. 1) for its simulation. Since
bN H

scat (λ) is dependant on wavelength λ, to synthesize scenes
represented by RGB images, we must know the wavelengths
for the three primary colors. According to CIE1964, the wave-
lengths for the three primary colors, red, green, and blue are
645.2nm, 526.3nm, and 444.4nm, respectively [44]. Concrete
formulas to synthesize RGB images with natural haze are then
given as,⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

L R (x) = L R
0 (x) e

−C·d(x)
(645.2)α + AR

(
1 − e

−C·d(x)
(645.2)α

)

LG (x) = LG
0 (x) e

−C·d(x)
(526.3)α + AG

(
1 − e

−C·d(x)
(526.3)α

)

L B (x) = L B
0 (x) e

−C·d(x)
(444.4)α + AB

(
1 − e

−C·d(x)
(444.4)α

) (10)

When establishing AVID, from each clear image, four
images with natural haze were synthesized, whose visibil-
ities were randomly chosen from the ranges [1km, 2km),
[2km, 4km), [4km, 6km), and [6km, 20km), respectively.

D. Smog

When the haze is heavy and is highly relevant to industrial
pollution, it is referred to as “smog”. The word smog was
coined in the early 20th century as a portmanteau of the
words smoke and fog [45]. This kind of visible air pollution is
composed of nitrogen oxides, sulphur oxides, ozone, smoke or
dirt particles and also less visible particles. Human-made smog
is derived from coal emissions, vehicular emissions, industrial
emissions, forest and agricultural fires and photochemical
reactions of these emissions.

Typically, smog has a reddish-brown or yellowish-brown
color [46], mainly owing to the light absorption at shorter
wavelengths by the gases (e.g. NO2 [38], [47]) and particles
(e.g. black carbon [48], [49], organic carbon [48], and mineral
dust [49], [50]) in the smog. Therefore, for modeling smog,
all the three terms bscat (λ), babs−gas (λ), and babs−aero (λ) of
the extinction coefficient b (λ) should be considered.

For smog, bscat (λ) was found empirically to be an inverse
power function of wavelength in the visible band and can be
expressed as [51],

bscat (λ) = C1 · λ−α, α ∈ [1.3, 2.3] (11)

where C1 is a constant related to the visibility. The main source
of gas for light absorption at the visible band is NO2 and
according to [52], babs−gas (λ) (when the gas is NO2) roughly
conforms to the following relations,

babs−gas (λ) =
{

C2 · λ−3, f or blue light

C2 · λ−4, f or green or red light
(12)

For smog, babs−aero (λ) has also been studied and can be
parameterized using a power law relationship [48],

babs−aero (λ) = C3 · λ−β, β ∈ [1, 2] (13)

Since light absorption should be taken into account, Dunt-
ley’s law (Eq. 4) is used for smog simulation. As a result,
formulas to synthesize RGB scenes with smog are,⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

L R (x) = L R
0 (x) e−bRd(x) + L R

a

bR

(
1 − e−bRd(x)

)
LG (x) = LG

0 (x) e−bGd(x) + LG
a

bG

(
1 − e−bGd(x)

)
L B (x) = L B

0 (x) e−bB d(x) + L B
a

bB

(
1 − e−bBd(x)

)
(14)

For implementation, we need to determine
(
L R

a , LG
a , L B

a

)
and

(
bR, bG , bB

)
. By some mathematical derivations and

approximations, we can get the following equations,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L R
a = k RbR AR

LG
a = k Rk RGbR AG

L B
a = k Rk R BbR AB

bG = − ln 0.05

v
bR = C RGbG

bB = bR

C R B

(15)
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Fig. 2. The pipeline for acquiring images and corresponding depth maps
from GTAV.

where k R ∈ (0.9, 1), k RG ∈
(

0.8
kR , 1.2

kR

)
, k R B ∈(

0.8
kR , 1.2

kR

)
, v is the visibility, C RG ∈

[
645.2−4

526.3−4 , 645.2−1

526.3−1

]
, and

C R B ∈
[

645.2−4

444.4−3 , 645.2−1

444.4−1

]
∩

[
C RG 526.3−4

444.4−3 , C RG 526.3−1

444.4−1

]
. With

respect to detailed derivations for Eq. 15, please refer to
Appendix A. When simulating smog, k R , k RG , k R B , C RG ,
and C R B are randomly selected from their possible value
ranges.

When constructing AVID, from each clear image, three ver-
sions with smog were synthesized, whose visibilities were ran-
domly chosen from the ranges [50m, 100m), [200m, 500m),
and [500m, 1000m), respectively.

E. Asian Dust

Asian dust, also called “yellow dust”, “yellow sand”,
or “China dust storms”, is a meteorological phenomenon
which affects much of East Asia year round but especially
during the spring months [53]. The dust originates in the
deserts of Mongolia, northern China and Kazakhstan where
high-speed surface winds and intense dust storms kick up
dense clouds of fine, dry soil particles. These clouds are then
carried eastward by prevailing winds and pass over China,
North and South Korea, and Japan, as well as parts of the
Russian Far East.

The solid particles of Asian dust mainly come from crustal
sources. The mass concentration of mineral ions, such as
Mg2+, K+, Na+, and Ca2+, which came mainly from natural
dust sources, is higher during Asian dust days compared to
normal or smog days [54]. Stronger absorption at shorter
wavelengths could arise due to the presence of mineral dusts
in atmospheric aerosols [49]. In Asian dust days, the concen-
tration of nitrogen oxides is similar as normal days [54]. Thus,
when modeling Asian dust, babs−gas (λ) can be neglected and
only two terms bscat (λ) and babs−aero (λ) need to be consid-
ered. That is, for Asian dust days, the extinction coefficient is
b(λ) = bscat (λ) + babs−aero (λ).

For Asian dust, bscat (λ) can be modeled as the form
Eq. 11 and babs−aero (λ) can be modeled as the form Eq. 13.
Since light absorption should be taken into account in Asian
dust days, we also need to resort to Duntley’s law for its
simulation. Consequently, Asian dust can also be simulated

Fig. 3. (a) is an RGB image extracted from GTAV and (b) is its depth map.

by Eq. 14 and Eq. 15. Actually, it can be noticed that
the strategy for simulating Asian dust is quite similar to
that used for simulating smog. The only exception is that
babs−gas (λ) is omitted for the Asian dust case. That will lead
to changes of the value ranges of C RG and C R B compared
with the smog case. Specifically, for Asian dust simulation,
C RG and C R B are specified as C RG ∈

[
645.2−2.3

526.3−2.3 , 645.2−1

526.3−1

]
and

C R B ∈
[

645.2−2.3

444.4−2.3 , 645.2−1

444.4−1

]
∩

[
C RG 526.3−2.3

444.4−2.3 , C RG 526.3−1

444.4−1

]
.

Details can be found in Appendix B.
When constructing AVID, from each clear image, 4 versions

with Asian dust were synthesized, whose visibilities were
randomly chosen form the ranges [15m, 50m), [50m, 500m),
[500m, 1000m), and [1000m, 10000m), respectively.

F. Strategies to Get the Horizon Sky Luminance, the Clear
Scene, and the Scene Depth

For the aforementioned simulation pipelines, three common
issues have not been discussed yet, including how to get the
horizon sky luminance

(
AR, AG , AB

)
, how to get the clear

scene
(
L R

0 (x) , LG
0 (x) , L B

0 (x)
)

and the associated depth map
d (x). They are presented in detail in this subsection.

In overcast weather, the sunlight happens Mie scattering
in the atmosphere and hence the sky luminance can be
considered as nearly uniform. The luminance of any sky
region is roughly equal to the luminance of the horizon sky.
Based on this prior knowledge, we collected 500 typical
real foggy images and recorded their sky luminance vectors
as

{
skylumi : |skylumi ∈ R3}500

i=1. When a
(

AR, AG , AB
)

is
desired, it can be randomly selected from {skylumi }.

From the conditions that Koschmieder’s law or Duntley’s
law should satisfy, it can be known that the atmospheric
visibility impairment simulation can only be conducted on
outdoor scenes. However, to get accurate depth information
for real-world outdoor scenes is a formidable task. Therefore,
in this paper, we resort to GTAV to collect clear outdoor
images with corresponding depth maps. GTAV is famous for
its photo-realistic rendering and extensive content. The most
obvious advantage to using such an open-world video game
to collect data is that we can get accurate depth maps pro-
grammable. The publisher of GTAV allows non-commercial
use of footage from the game. The implementation details are
shown in Fig. 2. We follow the detouring strategy proposed
in [22] and make use of RenderDoc,7 a graphics debugging
tool, to acquire images and corresponding depth maps from
GTAV. Specifically, we took advantage of some game auxiliary

7https://renderdoc.org/



8720 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 30, 2021

Fig. 4. Sample images in our large-scale synthetic image dataset AVID, which comprises 40,000 clear source images (with depth maps) along with their
800,000 visibility-impaired versions.

TABLE II

CHARACTERISTICS OF DATASETS RELATED TO ATMOSPHERIC VISIBILITY IMPAIRMENT SIMULATION

functions provided by Script Hook V.Net, such as character
roaming and automatic driving, to achieve automated data
collection. Then the depth is computed as the z-axis value with
respect to the standard equipment coordinate system. Frame
data collection and information extraction are time-consuming,
and thus for the sake of efficiency, we build an asynchronous
data acquisition scheme to analyze the data of previous frames
while collecting the current frame. In Fig. 3, a sample clear
image and its depth map extracted from GTAV are shown.

V. EXPERIMENTAL RESULTS

In experiments, we want to demonstrate that the proposed
simulation strategies are feasible and the simulation results
are vivid and photo-realistic. In addition, we want to show
that the collected dataset AVID is superior to other existing
relevant datasets on key indicators. To make our results fully
reproducible, the codes and the data have been released at
https://cslinzhang.github.io/AVID/.

A. Atmospheric Visibility Impairment Dataset

With the proposed simulation pipelines introduced in
Sect. IV, we constructed a large-scale synthetic image dataset,
namely Atmospheric Visibility Impairment Dataset, AVID for
short. Specifically, we collected 40,000 clear images with asso-
ciated depth maps from GTAV. For each clear source image,
20 visibility-impaired versions were synthesized, including
3 versions with mist, 4 versions with homogeneous fog,

2 versions with heterogeneous fog, 4 versions with natural
haze, 3 versions with smog, and 4 versions with Asian dust.
Thus, altogether, AVID comprises 40,000 clear source images
(with depth maps) along with their 800,000 visibility-impaired
versions. Fig. 4 shows a variety of photo-realistic scenes in
AVID.

B. Qualitative Evaluation

In this subsection, we qualitatively compare AVID and
the relevant datasets in the literature, including FRIDA [12],
FRIDA2 [23], Foggy Cityscapes [13], RESIDE-indoor [6],
RESIDE-outdoor [6], Ren et al.’s dataset [9], Li et al.’s
dataset [5], Zhang et al.’s dataset [25], and D-Hazy [24].
Their characteristics in terms of “whether conforms to
Koschmieder’s law or Duntley’s law?”, “types of visibility
impairment”, “has accurate depth?”, “uses real or synthetic
source images?”, “number of source images”, and “number of
images with visibility impairment” are summarized in Table II.

The results in Table II lead us to the following conclusions.
First, only a half of the datasets conform to Koschmieder’s law
or Duntley’s law. They are FRIDA [12], FRIDA2 [23], Foggy
Cityscapes [13], RESIDE-outdoor [6], and AVID. The simula-
tion pipelines of the other datasets actually are not physically
reasonable and the reasons have been analyzed in Sect. II-B.
Second, the types of visibility impairment included in AVID
are much more versatile. Specifically, the compared datasets
only contain foggy scenes while AVID contains four more
visibility impairment types, including mist, natural haze, smog,
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Fig. 5. Samples in datasets related to atmospheric visibility impairment simulation. (a) is selected from FRIDA [12]. (b) is from FRIDA2 [23]. (c) is selected
from Li et al.’s dataset [5]. (d) is from D-Hazy [24]. (e) is from NH-Haze [29]. (f) is from RESIDE-indoor [6]. (g) is from Zhang et al.’s dataset [25]. (h) is
from AVID.

Fig. 6. (a) and (d) are clear images selected from foggy Cityscapes [13] and RESIDE-outdoor [6], respectively. (b) is (a)’s depth map obtained by a depth
map completion algorithm [13]. (e) is (d)’s depth map obtained by using a “depth map from a single-image” method [34]. Apparent errors can be observed
on (b) and (d), leading to weird simulation results as shown in (c) and (f).

and Asian dust. Third, Foggy Cityscapes [13] and RESIDE-
outdoor [6] do not have accurate depth maps, which will
surely reduce the quality of the synthesized results. Fourth,
AVID is much larger in scale both with respect to the number
of clear source images and the number of visibility-impaired
ones. In short, AVID is superior to existing relevant datasets
on nearly all the key indicators, making it a better candidate
to train vision algorithms in which the atmospheric visibility
impairment should be considered, e.g. image restoration from
visibility-impaired outdoor images or image-based visibility
estimation.

C. Realness Evaluation

Realness degree is a key metric to evaluate the quality of
a dataset constructed to simulate natural phenomena. Thus,
in this experiment, to assess the realness of AVID in compar-
ison with other synthetic datasets, we conducted a perceptual
study.

Fig. 5 provides some samples selected from the datasets
related to atmospheric visibility impairment simulation.
Among the relevant datasets, RESIDE-indoor [6], Li et al.’s
dataset [5], Zhang et al.’s dataset [25], and D-Hazy [24] only
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TABLE III

RESULTS OF REALNESS EVALUATION OF SYNTHETIC FOGGY IMAGES

comprise indoor scenes. However, it is almost impossible to
have fog in ordinary indoor scenes in the real physical world.
As shown in Fig. 5(c), (d), (f) and (g), foggy indoor scenes
violate human’s visual cognition, and they would be easily
judged as unrealistic. Fig. 5(a) and (b) are selected from
FRIDA [12] and FRIDA2 [23], respectively. It can be seen
that the synthesized results are not photo-realistic. Fig. 5(e)
is a sample selected from NH-Haze [29]. The artificial fog
in Fig. 5(e), that is, the vapor produced by fog/haze machines,
covers a much smaller area than the area covered by nat-
ural fog. By contrast, the synthetic result in Fig. 5(h) is
realistic-looking where the scene is more natural, and the
distribution of fog is consistent with the change of scene
depth.

In Foggy Cityscapes [13] and RESIDE-outdoor [6],
the quality of depth maps cannot be guaranteed and conse-
quently the reality of their synthesized foggy scenes is not
reliable. Such a fact is demonstrated in Fig. 6. Fig. 6(a)
and (d) are clear images selected from foggy Cityscapes and
RESIDE-outdoor, respectively. Fig. 6(b) is Fig. 6(a)’s depth
map obtained by using a depth map completion algorithm.
Fig. 6(e) is Fig. 6(d)’s depth map obtained by using a “depth
map from a single-image” method [34]. Apparent errors can
be observed on Fig. 6(b) and (e), leading to weird simulation
results as shown in Fig. 6(c) and (f).

To objectively evaluate the realness of synthetic foggy
images, we adopt the Authenticity Evaluator for Synthetic
foggy/hazy Images (AuthESI for short) proposed in [55].
AuthESI is based on constructing a collection of typical
natural scene statistic (NSS) features of fog/haze and fit-
ting them to a multivariate Gaussian (MVG) model. The
realness of the synthetic image is expressed as the modi-
fied Bhattacharyya distance between the natural MVG model
and the simulated image’s MVG model. A smaller distance
means that the simulated image is more natural-looking.
In order to show the efficacy of our simulation model,
we compared our results with relevant outdoor datasets,
including FRIDA/FRIDA2 [12], [23], Foggy Cityscapes [13],
RESIDE-outdoor [6], O-HAZE [27], Dense-Haze [28] and
NH-Haze [29]. Since FRIDA and FRIDA2 were established
following the same strategy and both are small in scale,
we combined them as “FRIDA+”, including 336 foggy
images. In addition, as the competing datasets only contain
foggy (homogeneous and heterogeneous) scenes, to be fair and
to make the results interpretable, we only used foggy images in
AVID in this experiment and denote the set containing them

Fig. 7. Results of perceptual realness comparison between AVID and
FRIDA+. Seven histograms for individual subjects or all subjects are given.
In each histogram, the averages and variances of percentages for different
preferences are displayed in three columns.

by “AVID-fog”. We used the model pre-trained on 180 real
foggy and hazy images in [55], and sample 100 images from
each dataset for testing. If the number of images in the dataset
is less than 100, we used all the data.

The quantitative results are presented in Table III. Exper-
imental results show that AVID-fog achieved the lowest
AuthESI value, which means that its NSS features are closest
to natural fog/haze. The inaccurate depth maps used by Foggy
Cityscapes [13] and RESIDE-outdoor [6] make the fog part of
their real-world images not authentic enough. O-HAZE [27],
Dense-Haze [28] and NH-Haze [29] all introduce artificial
fog into the scene by physical means. The spatial distribution
of the artificial fog in O-HAZE [27] and NH-Haze [29] is
unnaturally uneven, accounts for their lower AuthESI value.
The overall fog density in the Dense-Haze [28] is higher, and
its visibility is lower, which may cause its foggy patches to
be closer to the real dense fog image. Among the relevant
datasets, FRIDA+ has the closest configurations to AVID.
Their scenes are outdoor. They have accurate depth maps, and
their clear source images are also synthetic. In order to further
compare the authenticity of FRIDA+ and AVID, we performed
a comprehensive comparison of AVID-fog and FRIDA+ in
terms of realness.

Six volunteers were invited in this experiment. For each
subject, he/she needed to complete 5 batches of tests. For
each batch, we randomly selected 100 samples from FRIDA+
and 100 samples from AVID-fog. Then, the images were
shown in pair to the subject. For each pairwise compari-
son, the subject had three options: “left is more realistic”,
“right is more realistic”, and “no preference”. To avoid the
subjective bias, the order of pairs and the placement of left
and right images within each pair are randomized and are
unknown to subjects. The results of this perceptual study are
summarized in graphs shown in Fig. 7 where there are seven
histograms for individual subjects or all subjects. In each his-
togram, the averages and variances of percentages for different
preferences are displayed in three columns. The participants
showed a strong bias in preference towards synthetic results
in AVID. Specially, the histogram summarizing preferences of
all subjects indicates that: 1) AVID-fog is preferred at the rate
of 76.9%; b) FRIDA+ is preferred at the rate of 10.53%; and
3) no preference is selected at the rate of 12.57%. Therefore,
we can reach the conclusion that AVID-fog is more realistic
than FRIDA+.
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Fig. 8. The left image of (a) is a clear source image while the right one is its
depth map. Based on (a), scenes with mist, homogeneous fog, heterogeneous
fog, natural haze, smog, and Asian dust are synthesized and the results are
shown as (b) ∼ (g), respectively. For each row of (b) ∼ (g), the left image
has a larger visibility than the right one.

To facilitate readers to visually examine the realness of
images in AVID, synthesized results from a selected clear
scene are shown in Fig. 8. The left image of Fig. 8(a) is

a clear source image while the right one is its depth map.
Based on Fig. 8(a), scenes with mist, homogeneous fog,
heterogeneous fog, natural haze, smog, and Asian dust are
synthesized and the results are shown as Figs. 8(b) ∼ (g),
respectively. For each row of Figs. 8(b) ∼ (g), the left image
has a larger visibility than the right one. It can be seen
that images synthesized using the proposed schemes are quite
realistic.

VI. CONCLUSION

In the era of deep learning, atmospheric visibility impair-
ment simulation is an issue worthy of deep study. The reason is
that it can provide a large amount of data to train vision algo-
rithms that take visibility degradation into account. However,
this research direction has not attracted much attention from
researchers. In this paper, we first analyzed the limitations and
irrationalities of the relevant studies. Then, based on knowl-
edge from the atmospheric science, we proposed approaches
to simulate five most commonly seen visibility impairment
phenomena, including mist, fog, natural haze, smog, and
Asian dust. Using the proposed methods, a large-scale syn-
thetic image dataset AVID was constructed, which contains
40,000 clear source images along with 800,000 visibility-
impaired versions. In near future, we will attempt to make
use of AVID to develop algorithms for restoring images
with atmospheric visibility impairment and algorithms of
image-based visibility estimation.

APPENDIX A
DERIVATION FOR EQ. 15

For the smog case, the three terms bscat(λ), babs−gas(λ),
and babs−aero(λ) of the extinction coefficient b(λ) are given
as Eqs. 11, 12, 13 in the paper. Then, for the red light, green
light, and blue light, the corresponding extinction coefficients
bR , bG , bB can be expressed as,⎧⎪⎨

⎪⎩
bR = C1 · 645.2−α + C2 · 645.2−4 + C3 · 645.2−β

bG = C1 · 526.3−α + C2 · 526.3−4 + C3 · 526.3−β

bB = C1 · 444.4−α + C2 · 444.4−3 + C3 · 444.4−β

(16)

We define C RG as,

C RG � bR

bG
= C1 · 645.2−α + C2 · 645.2−4 + C3 · 645.2−β

C1 · 526.3−α + C2 · 526.3−4 + C3 · 526.3−β

(17)

On the other hand, it can be proved that if a > 0, b > 0,
c > 0, d > 0, e > 0 and f > 0, the following inequality
holds,

min

(
a

b
,

c

d
,

e

f

)
≤ a + c + e

b + d + f
≤ max

(
a

b
,

c

d
,

e

f

)
(18)

Based on Eq. 18, it can be verified that 645.2−4

526.3−4 ≤ C RG ≤
645.2−1

526.3−1 . We define C R B as,

C R B � bR

bB
= C1 · 645.2−α + C2 · 645.2−4 + C3 · 645.2−β

C1 · 444.4−α + C2 · 444.4−3 + C3 · 444.4−β

(19)
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It can be verified that 645.2−4

444.4−3 ≤ C R B ≤ 645.2−1

444.4−1 . We define
CG B as,

CG B � bG

bB = C1 · 526.3−α + C2 · 526.3−4 + C3 · 526.3−β

C1 · 444.4−α + C2 · 444.4−3 + C3 · 444.4−β

(20)

It can be verified that 526.3−4

444.4−3 ≤ CG B ≤ 526.3−1

444.4−1 . From the
definitions of C RG , C R B , and CG B , it can be known that,

C R B = C RG · CG B (21)

Thus, the value range of C R B can be further shrinked as,
C R B ∈

[
645.2−4

444.4−3 , 645.2−1

444.4−1

]
∩

[
C RG 526.3−4

444.4−3 , C RG 526.3−1

444.4−1

]
when

C RG is fixed.
When the light absorption is ignored, Duntley’s law (Eq. 4

in the paper) actually is equivalent to Koschmieder’s law (Eq. 1
in the paper) and we have La(λ) = A(λ)b(λ). For smog case,
the light absorption should be considered, and thus La(λ) <
A(λ)b(λ). Or in another form, we have,

L R
a = k RbR AR (22)

LG
a = kGbG AG (23)

L B
a = k BbB AB (24)

where k R ∈ (0, 1), kG ∈ (0, 1) and k B ∈ (0, 1). By collecting
many images with smog and fog, we found that k R is actually
very close to 1. Thus, in our implementation, the value range
of k R is shrinked to k R ∈ (0.9, 1).

From Eqs. 17, 22, and 23, we can have,

C RG = bR

bG
= L R

a /
(
k R AR

)
LG

a /
(
kG AG

) = L R
a kG AG

LG
a k R AR

(25)

Then, we can have,

kG = C RG · LG
a AR

L R
a AG

· k R (26)

We define k RG = LG
a AR

L R
a AG . Then, we have,

kG = C RG · k RG · k R (27)

By observing many images with smog and fog, we found
that the value range of kG is very close to that of C RG . So,
we assume that k RGk R is around 1.0. In our implementation,
we set 0.8 < k RGk R < 1.2. Thus, if k R is fixed, k RG ∈(

0.8
kR , 1.2

kR

)
.

From Eqs. 19, 22, and 24, we can have

C R B = bR

bB
= L R

a /
(
k R AR

)
L B

a /
(
k B AB

) = L R
a k B AB

L B
a k R AR

(28)

Then, we can have

k B = C R B · L B
a AR

L R
a AB

· k R (29)

We define k R B = L B
a AR

L R
a AB . Then we have,

k B = C R B · k R B · k R (30)

By observing many images with smog and fog, we found
that the value range of k B is very close to that of C R B . So,

we assume that k R Bk R is around 1.0. In our implementation,
we set 0.8 < k R Bk R < 1.2. Thus, if k R is fixed, k R B ∈(

0.8
kR , 1.2

kR

)
.

From Eqs. 17, 23, and 27, we can have

LG
a = bGkG AG = bGC RG k RGk R AG = k Rk RGbR AG (31)

From Eqs. 19, 24, and 30, we can have,

L B
a = bBk B AB = bBC R Bk R Bk R AB = k Rk R BbR AB (32)

The wavelength of the green light is close to 550nm.
Therefore, according to Eq. 3 in the paper, when the visibility
v is given, bG can be roughly computed as,

bG = − ln 0.05

v
(33)

Putting Eqs. 22, 31, 32, 33, 17, and 19 together, we can get
Eq. 15 in the paper as,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L R
a = k RbR AR

LG
a = k Rk RGbR AG

L B
a = k Rk R BbR AB

bG = − ln 0.05

v
bR = C RGbG

bB = bR

C R B

(34)

APPENDIX B
DERIVATIONS OF VALUE RANGES OF C RG AND C R B

FOR SYNTHESIZING ASIAN DUST

The scheme for Asian dust simulation is quite similar to
that for smog. The only difference is that for Asian dust
babs−gas(λ) can be neglected and thus b(λ) = bscat(λ) +
babs−aero(λ). Then, for the red light, green light, and blue
light, the corresponding extinction coefficients bR , bG , bB can
be expressed as,⎧⎪⎨

⎪⎩
bR = C1 · 645.2−α + C3 · 645.2−β

bG = C1 · 526.3−α + C3 · 526.3−β

bB = C1 · 444.4−α + C3 · 444.4−β

(35)

In this case, C RG is,

C RG � bR

bG
= C1 · 645.2−α + C3 · 645.2−β

C1 · 526.3−α + C3 · 526.3−β
(36)

It can be verified that 645.2−2.3

526.3−2.3 ≤ C RG ≤ 645.2−1

526.3−1 . C R B is,

C R B � bR

bB
= C1 · 645.2−α + C3 · 645.2−β

C1 · 444.4−α + C3 · 444.4−β
(37)

It can be verified that 645.2−2.3

444.4−2.3 ≤ C R B ≤ 645.2−1

444.4−1 . CG B is,

CG B � bG

bB
= C1 · 526.3−α + C3 · 526.3−β

C1 · 444.4−α + C3 · 444.4−β
(38)
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It can be verified that 526.3−2.3

444.4−2.3 ≤ CG B ≤ 526.3−1

444.4−1 . Since
C R B = C RG · CG B , the value range of C R B can be further
shrinked as,

C R B ∈
[

645.2−2.3

444.4−2.3 ,
645.2−1

444.4−1

]

∩
[

C RG 526.3−2.3

444.4−2.3 , C RG 526.3−1

444.4−1

]
(39)

when C RG is fixed.
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