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For the task of autonomous indoor parking, various Visual-Inertial Simultaneous Localization And Mapping

(SLAM) systems are expected to achieve comparable results with the benefit of complementary effects of

visual cameras and the Inertial Measurement Units. To compare these competing SLAM systems, it is nec-

essary to have publicly available datasets, offering an objective way to demonstrate the pros/cons of each

SLAM system. However, the availability of such high-quality datasets is surprisingly limited due to the pro-

found challenge of the groundtruth trajectory acquisition in the Global Positioning Satellite denied indoor

parking environments. In this article, we establish BeVIS, a large-scale Benchmark dataset with V isual (front-

view), Inertial and Surround-view sensors for evaluating the performance of SLAM systems developed for

autonomous indoor parking, which is the first of its kind where both the raw data and the groundtruth tra-

jectories are available. In BeVIS, the groundtruth trajectories are obtained by tracking artificial landmarks

scattered in the indoor parking environments, whose coordinates are recorded in a surveying manner with

a high-precision Electronic Total Station. Moreover, the groundtruth trajectories are comprehensively evalu-

ated in terms of two respects, the reprojection error and the pose volatility, respectively. Apart from BeVIS,

we propose a novel tightly coupled semantic SLAM framework, namely VISSLAM-2, leveraging V isual (front-

view), Inertial, and Surround-view sensor modalities, specially for the task of autonomous indoor parking. It

is the first work attempting to provide a general form to model various semantic objects on the ground. Ex-

periments on BeVIS demonstrate the effectiveness of the proposed VISSLAM-2. Our benchmark dataset BeVIS

is publicly available at https://shaoxuan92.github.io/BeVIS.
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1 INTRODUCTION

Autonomous parking without human intervention is one of the most demanded and challeng-
ing tasks for an autonomous vehicle. The key to this task is the precise real-time localization of
the autonomous vehicle. Currently there are different approaches to this task according to the
parking environment of the autonomous vehicle. In an outdoor parking environment, a Global

Navigation Satellite System (GNSS), especially the Global Positioning System (GPS), is a
natural choice for the localization mission. As the poor coverage of satellite signals caused by oc-
clusions weakens the performance of GNSS-based approaches, alternative approaches to reliable
localization in an indoor parking environment are necessary. Among them, the Simultaneous

Localization And Mapping (SLAM) systems enable an autonomous vehicle to simultaneously
build a map of the indoor parking environment and track its position using this built map, simply
by its on-board sensors. Since both visual cameras and the Inertial Measurement Units (IMU)

are cheap, ubiquitous, and complementary, researchers have shown great enthusiasm for build-
ing VI-SLAM (Visual-Inertial SLAM) systems and a number of relevant VI-SLAM systems for
autonomous indoor parking have been presented [3, 21, 27, 41, 53].

To compare these competing VI-SLAM systems for autonomous indoor parking, it is necessary
to have publicly available benchmark datasets to demonstrate the pros/cons of each VI-SLAM sys-
tem in an objective way. However, the availability of such high-quality datasets is surprisingly
limited. A profound challenge with building such datasets lies in the difficulty of the groundtruth
trajectory acquisition in an indoor parking environment. For the groundtruth trajectory acquisi-
tion in an outdoor parking environment, a GNSS is usually combined with other high-precision
systems, such as the Inertial Navigation System (INS), to ensure a reliable groundtruth trajec-
tory. Due to the poor coverage of satellite signals in an indoor parking environment, a motion
capture system is commonly selected instead. But the equipment is costly and time-consuming to
set up, and its coverage capability is limited.

Additionally, while existing VI-SLAM systems for autonomous indoor parking have been suc-
cessfully demonstrated in specific circumstances by incorporating semantic information in the
indoor parking environment, the performance of these VI-SLAM systems would be unsatisfacto-
rily compromised in the case of unexpected changes of the environment. For instance, the presence
of a moving vehicle might lead to a large localization error over time without effective data asso-
ciation among stable features. Nevertheless, semantic objects on the ground (parking-slots, speed
bumps and parking-slot IDs) are stable and salient features for this specific application scenario of
autonomous indoor parking, exhibiting strong semantic consistency. Unfortunately, few eminent
VI-SLAM systems have fully explored these features at present.

As mentioned, although the task of autonomous indoor parking has been explored for some time,
appropriate benchmark datasets with groundtruth trajectories and reliable, mature SLAM systems
are still lacking. In this work, we attempt to address these issues and the main contributions of
this work are summarized as follows:

(1) We establish a benchmark dataset called Benchmark dataset with V isual (front-view),

Inertial and Surround-view sensors (BeVIS) for evaluating the performance of SLAM
systems developed for autonomous indoor parking. In BeVIS, the groundtruth trajectories
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are obtained by tracking artificial landmarks scattered in the indoor parking environments,
whose coordinates are recorded in a surveying manner with a high-precision Electronic To-

tal Station (ETS), ensuring objective evaluation of different SLAM systems. To the best of
our knowledge, BeVIS is a large-scale dataset where both the raw data and the groundtruth
trajectories are provided, which is the first of its kind. BeVIS has been released to the com-
munity, which will facilitate the relevant studies for autonomous indoor parking.

(2) The groundtruth trajectories of the vehicle in BeVIS are comprehensively evaluated in terms
of two respects, the reprojection error and the pose volatility, respectively. The reprojection
error is used to quantify how closely an estimate of a three-dimensional (3D) point recreates
the point’s true projection to the camera. As for the pose volatility, it reflects the fluctuation
of estimated camera pose when the vehicle remains stationary. Results demonstrate the ef-
fectiveness of our proposed approach to the groundtruth trajectory acquisition (please refer
to Section 3.2 for details).

(3) We propose a tightly coupled semantic SLAM system, namely VISSLAM-2, inspired by
VISSLAM proposed in Reference [41], specially for the task of autonomous indoor parking.
Compared with VISSLAM, VISSLAM-2 is the first framework attempting to provide a general
form to model all semantic objects on the ground. Its superiority over its rivals has been
corroborated by extensive qualitative and quantitative experiments.

The remainder of this article is organized as follows. Section 2 introduces the related work. The
benchmark dataset BeVIS and the evaluation of the groundtruth trajectory acquisition approach
are presented in Section 3. Section 4 details the proposed VISSLAM-2 for autonomous indoor park-
ing. Section 5 reports the experimental results and Section 6 concludes the article.

2 RELATED WORK

In this section, we give an overview of the benchmark datasets for evaluating SLAM systems and
the VI-SLAM systems for autonomous indoor parking.

2.1 SLAM Benchmark Datasets

To evaluate the performance of different SLAM systems, several benchmark datasets were estab-
lished. According to different sensor setups when collecting the datasets, two categories of datasets
are briefly reviewed in this subsection, visual SLAM datasets and visual-inertial SLAM datasets.

Visual SLAM Datasets. The TUM Mono VO dataset [11] and the TUM RGB-D dataset [42] are
two typical benchmark datasets for evaluating visual SLAM systems. The TUM Mono VO dataset
is collected for evaluating the monocular odometry. It contains sequences in indoor and outdoor
environments, which have been photometrically calibrated with respect to the exposure time and
the lens vignetting, and so on. But, the groundtruth trajectories are not provided in the dataset.
The TUM RGB-D dataset has been extensively used by the research community for the evaluation
of RGB-D SLAM systems. It totally provides 47 RGB-D sequences with groundtruth trajectories
recorded with a motion capture system. However, due to the limited coverage of a motion capture
system, it can only record groundtruth trajectories in a small part of the environment.

Visual-inertial SLAM Datasets. Apart from visual images, visual-inertial SLAM datasets also
involve motion data from IMUs, offering additional information for building robust VI-SLAM sys-
tems. The Kitti [16] and Malaga Urban [4] datasets are two popular datasets collected in the outdoor
environments, in which the groundtruth trajectories are also given. But the IMU measurements in
both datasets fail to be time synchronized with the visual images. To fully utilize the data from dif-
ferent sensors, datasets with time-synchronized visual and IMU data have been established. Among
them, the Urban@CRAS [15] and KAIST Urban [19] datasets are recorded on urban outdoor roads
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Table 1. Comparisons of Benchmark Datasets for Evaluating
Different SLAM Systems

Benchmark Dataset Environment Sensor Groundtruth

TUM Mono VO [11] indoor V ×
TUM RGB-D [42] in/outdoor V MCS

Kitti [16] outdoor V-I GPS/INS
Malaga Urban [4] outdoor V-I GPS

Urban@CRAS [15] outdoor V-I GPS
KAIST Urban [19] outdoor V-I GPS

Oxford Multimotion [20] indoor V-I MCS
EuRoC MAV [7] indoor V-I MCS

TUM VI [39] in/outdoor V-I MCS

BeVIS indoor V-I-S ETS

(S: surround-view system; MCS: motion capture system).

under various driving conditions. For the aforementioned four datasets, the Malaga Urban [4], Ur-
ban@CRAS [15], and KAIST Urban [19] datasets provide coarse groundtruth trajectories from a
low-cost GPS, whereas the Kitti dataset [16] provides GPS/INS-based groundtruth trajectories with
an accuracy within 10 cm. However, the GPS-based groundtruth trajectory acquisition approaches
are not applicable in the indoor environments due to the poor coverage of satellite signals in such
environments.

Typical datasets collected in the indoor environments are the Oxford Multimotion dataset [20],
the EuRoC Micro Aerial Vehicle (MAV) dataset [7], and the TUM VI dataset [39]. The Oxford
Multimotion dataset [20] provides sequences for the evaluation of the vehicle’s localization accu-
racy in dynamic indoor environments with multiple moving objects. The EuRoC MAV dataset [7]
includes 11 indoor sequences recorded with a Skybotix stereo VI sensor from a MAV. The TUM VI
dataset [39] provides 20-Hz images and time-synchronized accelerometer and gyro measurements
at 200 Hz. But the groundtruth trajectories in the above three datasets are acquired using a motion
capture system.

To summarize, the approaches to the groundtruth trajectory acquisition used in existing datasets
are not applicable in the GPS-denied indoor parking environments or fail to guarantee the in-
tegrity of the groundtruth trajectories. This article seeks to establish a benchmark dataset BeVIS
with groundtruth trajectories provided with the benefit of an ETS, which is both affordable and
applicable in the indoor parking environments. The differences between BeVIS and other datasets
for evaluating SLAM systems are presented in Table 1.

2.2 VI-SLAM Systems

According to the types of sensor fusion, VI-SLAM systems can be roughly divided into two cate-
gories, loosely coupled approaches [25, 47] and tightly coupled ones [5, 8, 23, 27, 31–33]. It needs
to be noted that maps constructed by these VI-SLAM systems only provide geometric informa-
tion, lacking a semantic understanding of the environment. To acquire a semantic understanding
of the surrounding environment, VI-SLAM systems have recently begun to incorporate semantic
features to build semantic VI-SLAM systems. First attemps among this line include References
[9, 10, 12, 38]. Salas-Moreno et al. [38] proposed an object-oriented SLAM++, where semantic ob-
jects are manually edited in advance and the Iterative Closest Point method is used to obtain the
camera pose during driving. To reduce the scale ambiguity and drift during driving, Frost et al.
[12] proposed a SLAM system in which semantic objects in the environment are incorporated in a
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bundle adjustment-inspired framework. However, features used in these systems are handcrafted,
limiting their application in complicated scenarios with irregular and unexpected objects.

The rapid proliferation of deep learning techniques [6, 17, 18, 34–36] has given rise to a growing
number of robust feature extraction strategies, which have boosted the localization accuracy of nu-
merous VI-SLAM systems. Yang et al. [50] proposed a real-time monocular plane SLAM system
that extracts planar features from a 3D plane model in the low-texture environments. Sünderhauf
et al. [43] correlated labels with semantic objects based on the nearest neighbor method. These
labelled semantic objects are served as semantic landmarks to effectively improve the localization
accuracy of the SLAM system. Yang et al. [49] proposed a general SLAM system CubeSLAM for
monocular 3D object detection and mapping. In CubeSLAM, a joint camera-object-point optimiza-
tion scheme is utilized to construct the pose and scale constraints for graph optimization, enabling
object-level mapping and localization of the SLAM system. To deal with dynamic objects in the
surrounding environment, Mask-SLAM [21] and DynaSLAM [3] systems were proposed based on
the ORB-SLAM2 system [26]. All a priori dynamic objects are segmented out in Mask-SLAM and
DynaSLAM systems by the multi-view geometry technology. Nicholson et al. [28] developed a
factor graph-based SLAM system that jointly estimates the camera pose and a 3D landmark repre-
sentation of the environment.

However, an apparent shortcoming of the aforementioned SLAM systems is that they are
prone to tracking inconsistency during driving. Specifically, when building SLAM systems for
autonomous indoor parking, correct data association is essential to improve their localization ac-
curacy and robustness. But the high presence of dynamic objects in the environment, like a mov-
ing car or pedestrian, corrupts the quality of pose estimation by deceiving the data association
in these SLAM systems. By contrast, semantic objects on the ground (parking-slots, speed bumps,
and parking-slot IDs) embody the most stable and consistent information in the indoor parking
environment. Unfortunately, few SLAM systems hold the ability to perceive such salient features
on the ground. The first work that leverages objects detected on the ground is the one established
in Reference [53]. Zhao et al. [53] detected parking-slots in the surround-view images and incorpo-
rated them to the SLAM system. However, artificial landmarks are used to facilitate localization in
Zhao et al.’s system, whereas parking-slots contribute little for optimization of the system. To the
best of our knowledge, the latest work that leveraged objects detected on the ground is the one es-
tablished in Reference [41]. Shao et al. [41] proposed the VISSLAM system where parking-slots in the
surround-views are incorporated during optimization. However, surround-view features selected
in VISSLAM are parking-slot specific, resulting in tracking inconsistency in circumstances where
parking-slots are occluded by a parked car. Besides, the property of two neighboring parking-slots
used in VISSLAM are scenario specific, rather than being completely general when it comes to differ-
ent indoor parking environments where there are no neighboring parking-slots. The differences
between our proposed VISSLAM-2 and other SLAM systems for autonomous indoor parking are
summarized in Table 2.

3 THE BENCHMARK DATASET BEVIS

BeVIS established in this work is a large-scale benchmark dataset for evaluating the performance
of SLAM systems developed for autonomous indoor parking. In this section, we will present the
way we establish BeVIS.

3.1 Pipeline to Establish BeVIS

The pipeline to establish BeVIS is shown in Figure 1. As can be seen from Figure 1, there are four
major steps involved: platform establishment, sensor calibration, data collection and groundtruth
trajectory acquisition. Platform establishment ensures a modified electric vehicle with the
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Table 2. Comparisons of SLAM Systems for Indoor Parking

SLAM System Localization Mapping MSO

Mur-Artal et al.’s work [27] V + I geometric ×
Mask-SLAM [21] V + I semantic ×
DynaSLAM [3] V + I semantic ×

Zhao et al.’s work [53] V + I + T (Tags) semantic ×
VISSLAM [41] V + I + S semantic ×

VISSLAM-2 V + I + S semantic
√

(MSO: multiple surround-view objects).

Fig. 1. Pipeline to establish BeVIS. There are four major steps involved, platform establishment, sensor cali-
bration, data collection, and groundtruth trajectory acquisition. Platform establishment ensures a modified
electric vehicle with the multi-sensor setup for the perception of the indoor parking environments. Sensor
calibration is responsible for both the intrinsic and extrinsic calibration of all the sensors mounted on the
vehicle. Afterwards, both the perceptual and navigational data are collected when driving the vehicle in dif-
ferent indoor parking environments. Finally, the groundtruth trajectories in BeVIS are obtained with the aid
of an ETS.

multi-sensor setup for the perception of the indoor parking environments. Sensor calibration is re-
sponsible for both the intrinsic and extrinsic calibration of all the sensors mounted on the vehicle.
Afterwards, both the perceptual and navigational data are collected when driving the vehicle in
different indoor parking environments, followed by a classification process for the division of the
difficulty level. Finally, the groundtruth trajectories in BeVIS are obtained with the aid of an ETS,
which is both affordable and applicable in the indoor parking environments.

3.1.1 Platform Establishment. We selected an electric vehicle as our base platform for data col-
lection. The vehicle was equipped with two types of sensors, perception sensors and navigation
sensors. In the following, we briefly describe all the on-board sensors.
• Front-view Perception Sensor: The front-view perception sensor on the platform is a pinhole

global-shutter visual camera, MYNTEYE D-1000-50, capturing images straight ahead of the vehi-
cle. The camera can provide an image with the resolution of 1,280 × 720 at 30 frames per second

(fps). The HFOV, VFOV, and DFOV of the front-view perception sensor are 64°, 38°, and 70°, respec-
tively. The Infrared Radiation module in the camera improves its adaptability to different lighting
conditions of the indoor parking environments.
• Surround-view Perception Sensor: The surround-view perception sensor on the platform con-

sists of four fisheye cameras, Leopard Imaging OV-10640-490, mounted on the front, left, back
and right sides of the electric vehicle to form a surround-view camera system. The resolution,
field-of-view, and acquisition frequency of each fisheye camera in the surround-view system are
1,280 × 1,080, 190◦ and 30 fps, respectively.
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Table 3. The Data for the Calibration of All the Cameras on the Platform

Data
Sensor Surround-view System

Front-view Total
Front Left Back Right

intrinCalib-1 105 108 113 120 115 561
intrinCalib-2 84 98 86 100 95 463

extrinCalib-1 60 60 60 60 308 548
extrinCalib-2 312 312 312 312 1,353 2,601
extrinCalib-3 402 402 402 402 1,959 3,567

• Navigation Sensor: The navigation sensor on the platform is a consumer-grade, low-weight,
6 Degrees of Freedom IMU rigidly connected to the front-view camera. It can provide both the
translation and orientation measurements through its accelerometers and gyroscopes, reflecting
the ego-motion of the vehicle.

As seen in Figure 1(a), the orientation of each camera in the surround-view system is about 45◦

ground-oriented, capturing images of the ground around the vehicle. By calibrating the extrinsic
parameters between the surround-view camera system and the ground plane, four fisheye images
can be synthesized into a surround-view image from a top-down, bird’s-eye view. The front-view
camera was fixed higher than the front-view camera in the surround-view system, facing straight
ahead to ensure a broad view of the camera.

3.1.2 Sensor Calibration. Sensor calibration consists of the intrinsic calibration and the extrin-
sic calibration of all sensors. The intrinsic calibration can be achieved in advance in an offline
manner [48, 52].

For all the sensors, a schematic view of their coordinate systems is shown in Figure 1(b). In
Figure 1(b), the dotted line indicates a temporally changing pose when moving the vehicle. The left
green circle and the right blue rectangle contain the sensors that are rigidly connected to the vehi-
cle, among which are a front-view camera, an IMU and a surround-view camera system. As for the
extrinsic calibration, the rigid-body transformation matrix TBA, which allows the reprojection of
any point from one coordinate systemA to the other coordinate system B, is computed. According
to different types of sensors, the extrinsic calibration can be categorized into three respects: camera-
IMU calibration, camera-ground calibration and surround-view camera system calibration. Follow-
ing References [13, 24], the transformation matrix TF B from the IMU coordinate system B to the
front-view camera coordinate system F and the transformation matrix TFG from the ground coor-
dinate systemG to F can be obtained, respectively. Additionally, for the calibration of the surround-
view camera system, it can be performed according to the methods proposed in References [40, 45].

Meanwhile, in BeVIS, we make the data for the calibration of all the cameras on the platform ac-
cessible such that users can perform their own calibration, even though we provide our calibration
results. As seen in Table 3, the data can be divided into two categories as follows:

• intrinCalib-1/2: They are for the intrinsic calibration of the front-view camera and four fish-
eye cameras in the surround-view system. Images of a handheld 9 × 6 checkerboard were
recorded by placing the checkerboard at different positions in front of each camera.
• extrinCalib-1/2/3: They are for the extrinsic calibration of all the cameras. One 10m × 10m

calibration site on the ground was first established. This calibration site is with 10 × 10
squares and each square is 1 m in length. One point P was selected where all the cameras
can see enough squares on the calibration site. By parking the electric vehicle on P, images
recorded by the surround-view camera system and the front-view camera were then simul-
taneously collected.
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Table 4. The Overview of the Characteristics of Each Sequence in BeVIS

Sequence
Char. Environment Characteristics Trajectory Characteristics

DynaObj Lighting Feature Scale Speed Initialization

SLAM-easy-01 small bright less 560s, 3 rounds slow long T, small R

SLAM-moderate-02 large bright abundant 263s, 1.5 rounds fast short T, big R

SLAM-difficult-03 moderate changing less 697s, 4 rounds moderate short T, small R
SLAM-difficult-04 small dark abundant 320s, 4.5 rounds fast short T, small R

(DynaObj: dynamic object; s: second; T: translation; R: rotation).

3.1.3 Data Collection. After sensor calibration, sequences in BeVIS were collected when driv-
ing the modified electric vehicle at around 10–40 km/h in four typical indoor parking sites. Note
that for the front-view camera and the surround-view camera system, they are “software” syn-
chronized by capturing images controlled by a multi-thread data collection function. For these
cameras, each of them can capture images at 30 fps or higher theoretically. However, to ensure the
image quality, the data collection frequency of each camera should be decreased to some extent.
The sensors mounted on the vehicle would capture both perceptual and navigational data in a
synchronized fashion during driving. We ensure the high quality of the collected images by the
following two ways. First, for the selection of cameras, we chose the commonly used industrial
cameras to ensure that all cameras can output high-resolution, high-quality images. Second, dur-
ing data collection, we adjusted the collection frequency of each camera so that each frame can be
successfully collected and saved.

Based on different characteristics of collected sequences in BeVIS, we manually classified them
into three levels, “easy,” “moderate,” and “difficult.” Specifically, both the environment and the tra-
jectory characteristics are considered. The environment characteristics include the number of dy-
namic objects in the indoor parking environment, the illumination condition of the indoor parking
environment, and the number of features in the indoor parking environment. The trajectory char-
acteristics involve the total duration/rounds of each trajectory, the average speed of the vehicle,
and the scale of initial movement (translation and rotation) of the vehicle. Note that if the initial
translation and rotation of the vehicle is large, then all six axes of the IMU on the vehicle can be
fully excited for better IMU initialization. Characteristics of each sequence in BeVIS are illustrated
in Table 4.

3.1.4 Groundtruth Trajectory Acquisition. Actually, when establishing BeVIS, the groundtruth
trajectories are crucial for the objective evaluation of different SLAM systems. Unfortunately, they
are generally unavailable due to the fact that the current groundtruth trajectory acquisition ap-
proaches are unsuitable in the GNSS-denied indoor parking environments or fail to guarantee
the integrity of the trajectories due to the high cost of a motion capture system. To address the
problem, we provide an effective yet cost-efficient groundtruth trajectory acquisition approach.
As can be seen in Figure 2, three steps are involved, artificial landmarks deployment, coordinates
measurement and camera poses estimation. Specifically, artificial landmarks deployment ensures
a tailored indoor parking environment with artificial landmarks that can be easily detected. Co-
ordinates measurement is responsible for the 3D coordinates of these artificial landmarks to be
measured by the ETS with a small measurement error. Afterwards, the front-view camera on the
vehicle can be localized accordingly by tracking above artificial landmarks when driving the vehi-
cle in the indoor parking environment.

Artificial Landmarks Deployment. The purpose of the artificial landmarks deployment is to
ensure a tailored indoor parking environment with artificial landmarks that can be easily detected.
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Fig. 2. Approach to groundtruth trajectory acquisition. Three steps are involved in this approach, artificial
landmarks deployment, coordinates measurement, and camera poses estimation. Artificial landmarks de-
ployment ensures a tailored indoor parking site with artificial landmarks. Coordinates measurement is re-
sponsible for the 3D coordinates of these artificial landmarks to be measured by the ETS. Afterwards, the
front-view camera on the vehicle is localized accordingly by tracking above artificial landmarks.

In this step, AprilTags, the popular printable visual fiducial markers [29, 37, 46], are selected as the
artificial landmarks. AprilTags are conceptually similar to QR Codes, but are designed to encode
far smaller data payloads, allowing them to be detected more robustly in poor lighting conditions
of the indoor parking environment. For each AprilTag, it is represented by one “quad,” a valid four-
sided region [29]. As seen in Figure 2(a), by evenly placing AprilTags in an indoor parking site,
one can create a set of artificial landmarks scattered throughout the site.

Coordinates Measurement. Accurate coordinates of artificial landmarks are prerequisite for
the high-precision camera poses estimation. To achieve this goal, the coordinates of four corners
of the valid quad in each AprilTag are measured with an ETS, the most widely used equipment in
the surveying field. An ETS is a compact, lightweight and portable equipment with an electronic
theodolite for angle measurement and an Electromagnetic Distance Measuring instrument for dis-
tance measurement. With an ETS, an operator can take measurements of all the visible points’
coordinates with accuracy within a couple of millimeters. As seen in Figure 2(b), there are five
basic steps involved in coordinates measurement by an ETS.
• Set up the Tripod Stand. A survey point O on the ground is first selected where points in all

directions can be observed as many as possible. Then the tripod stand is set up on O by extending
the tripod legs to make the tripod head approximately level. By centering the tribrach on the tripod
stand, both instruments are fastened together via a connecting screw.
• Coarse-level the ETS. Leveling the ETS must be accomplished in sufficient accuracy, otherwise

it will not report results. Before attaching the ETS, the optical plummet on the tribrach is used
to coarse-level the tripod stand. First, while holding two tripod legs, the operator should move
the third tripod leg to keep the tripod as level as possible. And the optical plummet allows the
operator to view the tribrach’s center and place its cross-hair precisely over O. Then, the ETS can
be secured to the top of the tribrach.
• Fine-level the ETS. Apart from the optical plummet, the tribrach features a bubble level and

three leveling screws to fine-level the tripod as necessary. Viewing the bubble level, the operator
can adjust the height of two tripod legs so that the bubble is close to the center of the bubble
level. A more precise leveling result can be guaranteed by adjusting three leveling screws until the
bubble is precisely in the center of the bubble level. By turning the ETS such that its face-plate is
parallel with two leveling screws, the third screw is used to make the final fine adjustment.
• Establish the Coordinate System. To set up the coordinate system, three concurrent lines or-

thogonal with one another are required. Thus, four points are needed. First, O is defined as the
origin of the coordinate system. By placing the ETS over O and designating a back-sight point
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Fig. 3. Principles of (a) the computation of Z coordinate value, (b) the computation of X and Y coordinate
values, and (c) the resection method.

M, the X-axis is then built pointing from O to the projection of M on the ground. The Y-axis is de-
fined by a vector pointing from O that is orthogonal to the X-axis. And the Z-axis is perpendicular
to both X and Y axes, which is directed vertically downward.
•Measure the 3D Coordinate. Based on the angle and distance measurements of the target point

P by the ETS, P’s coordinate values, XP, YP and ZP, can be calculated accordingly. As can be seen
in Figure 3(a), ZP is represented by HP, the height of P,

ZP = HP = HO + SOP · cosα + HE, (1)

where HO is the height of O, SOP is the distance from O to P, α is the vertical angle of
−−→
OP, and HE

is the height of the ETS.
As seen in Figure 3(b), XP and YP can be obtained by the following equation:

XP = XO + DOP · cosαOP,
YP = YO + DOP · sinαOP,

(2)

where DOP and αOP are defined as

DOP = SOP · sinα ,
αOP = αOM + β,

(3)

where αOM is the azimuth angle of
−−→
OM and β is the horizontal angle of

−−→
OP.

By moving the ETS around, the coordinates of all artificial landmarks throughout the indoor
parking site can be precisely acquired by the resection method [2]. As seen in Figure 3(c), assume
A (XA,YA) and B (XB,YB) are two points whose coordinates are measured at O, and C is a new

survey point. The slope distances of
−−→
AC and

−−→
BC are denoted by S1 and S2, respectively. XC and YC

can be formulated as
XC = S1 · sinβ1,
YC = S1 · cosβ1,

(4)

where β1 can be obtained according to cosine theorem, i.e.,

S2
2 = S2

1 + S
2
0 − 2S1S0cosβ1

→ β1 = arccos
S 2

1+S 2
0−S 2

2

2S1S0
.

(5)

Knowing the coordinates of C, the coordinates of points that are visible at C can be similarly
acquired according to Equation (1) and Equation (2).

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 19, No. 1, Article 1. Publication date: January 2023.



SLAM for Indoor Parking 1:11

Camera Poses Estimation. When driving the vehicle in an indoor parking site, its mounted
front-view camera could capture images of the site. Perspective-n-Point (PnP) can be applied
to obtain the camera poses for each image.
• PnP. As seen in Figure 2(c), by aligning artificial landmarks with known 3D coordinates and

their 2D projections into the front-view camera at time t with known pixel coordinates, the esti-
mation of the camera pose Tt

CW at time t can be casted as solving a PnP problem, i.e.,

Tt
CW = arg min

Tt
CW

N∑
i=1

et
i = arg min

Tt
CW

N∑
i=1

���
���f
(
Tt

CW ,P
i
W ,D

)
− pt,i

C
���
���
2

2
, (6)

where D is the set comprising the distortion coefficients of the camera, and f (...,D) is the camera
distortion model that transforms each point Pi

W in the world coordinate system to the point on the

camera’s imaging plane pt,i
C

at time t . EPnP algorithm [22, 24] is adopted to solve the problem and
several variants include DLT [1], P3P [14] and UPnP [30] can also be used to solve this problem.
The optimal camera pose Tt

CW is acquired in an iterative manner for robustness and accuracy.

Initially, Tt
CW is obtained using the RANSAC method and points with large reprojection errors are

removed. Afterwards, Tt
CW is further refined using the remaining points until the number of the

remaining points is stable. Make sure at least four AprilTags are visible in the front-view camera,
providing a better tradeoff between speed and effectiveness.

3.2 Evaluation of the Groundtruth Trajectory Acquisition Approach

To comprehensively evaluate the performance of our proposed approach to the groundtruth tra-
jectory acquisition, we define two metrics, Re-Projection Error (RPE) and Pose Volatility (PV ).
RPE is a geometric error corresponding to the image distance between a projected point and its
measured counterpart. It is used to quantify how closely an estimate of a 3D point recreates the
point’s true projection. As for PV, it reflects the overall fluctuation of estimated camera pose in X,
Y and Z directions when the vehicle remains stationary, i.e.,

PV =
(

1

N

N∑
i=1

���
���trans

(
Ti

CW

)
− E (trans (TCW ))���

���
2
) 1

2

, (7)

where N is the total number of images in each sequence, trans (Ti
CW ) is the translation part of

the camera pose of the ith image, representing the camera’s motion in the X, Y, and Z directions.
E (trans (TCW )) in Equation (7) is the average of translation parts of all camera poses in the se-
quence. When the vehicle remains stationary, the pose of its mounted camera is expected to be
stably unchanged. Thus, a smaller PV indicates a higher accuracy of the estimated camera pose.

Meanwhile, nine image sequences were collected for the quantitative evaluation of the perfor-
mance of the groundtruth trajectory acquisition approach. Among these sequences, there are five
sequences that are collected in the “straight” areas of the indoor parking sites and four sequences
in the “corner” areas, respectively. Characteristics of each sequence, the number of images in the
sequence, the number of visible AprilTags in each image of the sequence, the number of survey
points at which coordinates of these AprilTags are measured and the average distance of all these
AprilTags to the camera, are detailed in Table 5.

4 VISSLAM-2 FOR AUTONOMOUS INDOOR PARKING

VISSLAM-2 is inspired by VISSLAM proposed in Reference [41]. Designed for navigation in the indoor
parking site, VISSLAM-2 is a tightly coupled semantic SLAM system that fully explores semantic
objects detected in surround-views in its optimization framework. Specifically, to enhance the
system’s robustness against varying illumination and low-texture conditions, semantic objects
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Table 5. Characteristics of Sequences for the Evaluation of Groundtruth Trajectory
Acquisition Approach

Sequence
Characteristic

Images AprilTags Survey Points Avg. Distance

GT-straight-01 111 3 1 0.43 m
GT-straight-02 101 3 1 0.77 m
GT-straight-03 171 12 ≥2 0.94 m
GT-straight-04 90 7 ≥2 0.60 m
GT-straight-05 108 5 ≥2 1.31 m
GT-corner-06 121 3 1 0.80 m
GT-corner-07 151 5 ≥2 1.90 m
GT-corner-08 101 9 ≥2 1.24 m
GT-corner-09 86 14 ≥2 0.78 m

on the ground including parking-slots, speed bumps and parking-slot IDs are extracted from the
surround-view images. And strong semantic constraints induced by these semantic objects are
introduced in VISSLAM-2. Compared with VISSLAM that incorporates only adjacent parking-slots
in indoor parking environments, VISSLAM-2 provides a general form to model various semantic
objects on the ground. The joint optimization model of VISSLAM-2 will be detailed in this section
with regard to its formulation and all error terms involved.

4.1 Joint Optimization Model Formulation

We first introduce the measurements and unknowns in VISSLAM-2. Given keypointsZ in the front-
view image, IMU measurementsM and semantic observations O in the surround-view image, the
proposed joint optimization approach for VISSLAM-2 determines optimal camera poses T , map
points P matched with Z as well as surround-view landmarks L, jointly. Such an optimization
problem can be casted as,

{T ,P,L}∗ = arg max
T ,P,L

p (T ,P,L|Z,M,O).

= arg max
T ,P,L

p (T ,P,L)p (Z,M,O|T ,P,L)

= arg max
T ,P,L

p (T ,P,L)p (Z|T ,P,L)p (M|T ,P,L)p (O|T ,P,L)

= arg max
T ,P,L

p (T )p (P )︸������︷︷������︸
pr ior

p (Z|T ,P )p (M|T )︸��������������������︷︷��������������������︸
visual−iner t ial term

pr ior︷︸︸︷
p (L)

observation︷�������︸︸�������︷
p (O|T ,L)︸���������������︷︷���������������︸

surround−view term

.

(8)

To find out optimal estimation of T , P and L, we jointly optimize visual, inertial and surround-
view error terms, EV , EI , and ES , in a tightly coupled objective,

{L,T ,P}∗ = arg min
L,T ,P

EV + EI + ES + C. (9)

4.2 Surround-view Error Term Formulation

The visual-inertial error terms EV and EI can be modelled following References [27, 41], respec-
tively. The error term ES can be split into a prior error term EPr ior and an observation error term
EObs corresponding to p (L) and p (O|T ,L), respectively. Therefore, ES can be defined as

ES = EPr ior + EObs . (10)
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4.2.1 Notation. Assuming that there exist M surround-view landmarks in the indoor parking
environment. At time t , the vehicle obtains Kt surround-view observations, denoted by Ot =

{O1
t ; O2

t ; . . . ; OKt

t }. Data association of each observation is denoted byyi
t ∈ {1; . . . ;M }. For example,

at time t = 1, the surround-view camera system obtains two observationsO1 = {O1
1; O2

1}. And these
two observations are from surround-view landmarks No. 2 and No. 4, then y1

1 = 2 and y2
1 = 4.

4.2.2 Semantic Object Detection and Localization. The semantic object detection framework
used in VISSLAM-2 is inspired by a similar architecture dedicated to parking-slot detection pub-
lished in our previous work [51]. Specifically, we proposed a two-stage object detection framework
by first detecting marking-points of a parking-slot, the endpoints of a speed bump and the center
of a parking-slot ID. Then, for parking-slot and speed bump detection, another classification mod-
ule is used to tell if two marking-points/endpoints belong to the same parking-slot/speed bump.
The position Lyi

t
of the ith surround-view landmark at time t in the world coordinate system can

be obtained by the following equation, Lyi
t
= T−1

t Oi
t , where Oi

t is the position of the ith seman-

tic observation at time t in the front-view camera coordinate system, which can be obtained by
calibrating the transformation matrix between the front-view camera coordinate system and the
ground coordinate system. Tt is the front-view camera pose in the world coordinate system at
time t , which is returned by the visual odometry.

4.2.3 Prior Error Term. p (L) models the prior distribution for positions of all surround-view
landmarks, i.e.,

p (L) =
T∏

t=1

p (Lyt
), Lyt

= {Lyi
t
}Nt

i=0, (11)

where p (Lyt
) is the prior distribution of the positions of surround-view landmarks at time t , Lyi

t
is

the position of the ith surround-view landmark at time t , and Nt is the total number of surround-
view landmarks at time t . p (Lyt

) can be reformulated as

p (Lyt
) = p (Ly1

t
)

Nt∏
i=2

p (Lyi
t
|Lyi−1

t
Lyi−2

t
...Ly1

t
)

∝ p (Ly1
t
)

Nt∏
i=2

i−1∏
j=1

p (Lyi
t
|L

y
j
t
),

(12)

where p (Ly1
t
) follows a uniform distribution and p (Lyi

t
|L

y
j
t
) is defined as

p (Lyi
t
|L

y
j
t
) = N

(
д
(
y j

t

)
,Λi,t

)
, (13)

where N ( . , . ) represents a normal distribution, д(y j
t ) is the position of the ith surround-view

landmark in the map induced by the jth surround-view landmark at time t , and Λi,t models the
uncertainty. As seen in Figure 4, when a semantic object on the ground is detected in the surround-
view image, its coordinates in the ground coordinate system can be automatically obtained. So,
the spatial relationship between any two observed semantic objects is naturally reflected in the

surround-view image. Thus, д(y j
t ) is defined as

д
(
y j

t

)
= L

y
j
t
+ D

yi
t ,y

j
t
s

i, j
t

where s
i, j
t // O

j
t Oi

t ,
(14)

where s
i, j
t is a unit vector pointing to the ith surround-view observation from the jth surround-

view observation at time t , and D
yi

t ,y
j
t

is the distance between two surround-view objects. Thus,
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Fig. 4. Overview of the prior error term. When a semantic object on the ground is detected in the surround-
view image, its coordinates in the ground coordinate system can be automatically obtained. So the spatial
relationship between any two observed semantic objects on the ground is naturally reflected in the surround-
view image.

the prior error term for the ith surround-view landmark at time t is given by

ei,t
pr ior = D

yi
t ,y

j
t
s

i, j
t − (Lyi

t
− L

y
j
t
). (15)

Intuitively, minimizing the prior error term implies iteratively tweaking each surround-view
landmark in the map to ensure that its spatial relationship with any surround-view landmark
conforms with that in the surround-view image.

4.2.4 Surround-view Error Term. Combining both the prior and the observation terms for all
semantic objects, the surround-view error term ES can be constructed, i.e.,

ES = EPr ior + EObs

=

T∑
t=1

Nt∑
i=1

(
ei,t

pr ior

)T
Λi,t ei,t

pr ior +

T∑
t=1

Kt∑
k=1

(
ek,t

obs

)T
Φk,t ek,t

obs
,

(16)

where ek,t
obs

is the observation error term of the kth surround-view landmark observed at time
t , whose definition is the same with the registration term in Reference [41]. Both Λi,t and Φk,t

in Equation (16) are in proportion to the detection confidence of each surround-view semantic
object.

5 EXPERIMENTAL RESULTS AND DISCUSSIONS

5.1 Comparison of BeVIS and Its Counterparts

To facilitate the SLAM study for autonomous indoor parking, we have established and released
BeVIS, which now can be publicly accessed at https://shaoxuan92.github.io/BeVIS. Actually, Shao
et al. [41] released a dataset for autonomous indoor parking, the publicly available one in this field,
and in this article it is referred to as Tongji Indoor Parking Dataset (TJIP for short). Information
of both datasets is summarized in Table 6. It can be seen from Table 6 that from the perspectives
of their scales and imaging conditions, BeVIS is much better than TJIP. Besides, compared with
TJIP, the groundtruth trajectories are, for the first time, provided in BeVIS. Sequences for camera
calibration and evaluation of the groundtruth trajectory acquisition approach are also provided.
Thus, the following experiments were all conducted on BeVIS.
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Table 6. Comparison of TJIP [41] and BeVIS. (GT: groundtruth)

Aspect
Benchmark Dataset

TJIP BeVIS

Number of Indoor Parking Sites 1 4
Number of Front-view Images/IMU data 5,000+ 34,000+

Number of Surround-view Images 1,500+ 12,000+
Imaging Conditions simple diverse

Groundtruth Trajectories ×
√

Camera Calibration Sequences ×
√

GT Trajectories Evaluation Sequences ×
√

Fig. 5. Results of how selected factors influence the pose fluctuation in three directions. These factors are
(a) the number of AprilTags, (b) the average distance to the camera of the AprilTags, and (c) the number of
survey points at which AprilTags are measured. Note that “1.2e-3” and “6e-4” are two empirical thresholds
for the factor D. When D > 1.2e-3, the average distance between the camera and the AprilTags is regarded
as “near.” When 6e-4 < D < 1.2e-3, the average distance between the camera and the AprilTags is regarded as
“medium.” When D < 6e-4, the average distance between the camera and the AprilTags is regarded as “far.”

5.2 Factors Influencing the Performance of the GT Trajectory Acquisition Approach

Four factors, the number, the average size, and the average distance to the camera of the AprilT-
ags as well as the number of survey points at which these AprilTags are measured, are selected
to explore their influences on the performance of the groundtruth trajectory acquisition approach.
Particularly, for the size and distance factors, we define a new factor D that simultaneously con-
siders both factors,

D =
1

m

m∑
i=1

1

ni

ni∑
j=1

W i, j
q · H i, j

q

W i
I
· H i

I

, (17)

where m and ni are the total number of images and the number of AprilTags detected in the ith

image, respectively. W i, j
q , H i, j

q , W i
I

, and H i
I

in Equation (17) are the width and height of the jth
AprilTag detected in the ith image as well as the width and the height of the ith image, respectively.
In this experiment, the pose fluctuation in the X, Y, and Z directions is used as the performance
measure, and the results are shown in Figure 5.

The Number of AprilTags. For each AprilTag, it is represented by four landmarks correspond-
ing to its four corners. From Figure 5(a), we can see that as the number of landmarks increases,
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Table 7. The Evaluation of the Accuracy of Groundtruth Trajectories in BeVIS

Sequence
Metric

Landmarks
Pose Fluctuation

PV RPE
X Y Z

GT-straight-01 12 0.99 3.88 0.93 4.11 0.25
GT-straight-02 12 1.32 3.07 0.87 3.45 0.30
GT-straight-03 20 1.71 4.60 6.44 8.10 0.57
GT-straight-04 14 0.26 0.40 0.28 0.56 0.28
GT-straight-05 8 9.3 21.08 8.96 24.96 0.52
GT-corner-06 20 0.70 0.74 0.71 1.24 0.39
GT-corner-07 20 2.24 0.44 0.60 2.37 0.52
GT-corner-08 12 2.05 1.79 2.02 3.39 0.26
GT-corner-09 16 0.26 3.03 3.07 4.32 0.24

Avg. (straight) 13 2.72 6.61 3.50 7.61 0.38
Avg. (corner) 17 1.31 1.50 1.60 2.83 0.35
Avg. (total) 15 2.09 4.34 2.65 5.49 0.37

the pose fluctuation in the X, Y, and Z directions drops by a large margin. Actually, 16 landmarks
or more (4 AprilTags at least) can ensure an accurate estimation of the camera pose.

The Average Distance to the Camera of the AprilTags. Since all AprilTags are of the same
size, a larger D indicates that the camera is much closer to the AprilTags. From Figure 5(b), we
find that when D decreases, which means the average distance gets larger between the AprilTags
and the camera, the approach would not report stable results. Additionally, to guarantee a stable
outcome of the camera pose, D should be larger than 1.2e-3, an empirical threshold.

The Number of Survey Points at Which AprilTags Are Measured. From Figure 5(c), we
find that if all AprilTags are measured at the same survey point, then a more consistent and stable
camera pose can be guaranteed. Otherwise the camera pose would be unstable. Note that since we
move the ETS roughly along the X direction, the cumulative errors in this direction will increase,
leading to a relatively large value of the pose fluctuation in the X direction. These unstable camera
poses will be filtered out, which will not affect the accuracy of the trajectory groundtruth.

In addition, we calculate both RPE and PV values for sequences from GT-straight-01 to GT-

corner-09 to evaluate the accuracy of groundtruth trajectories in BeVIS. The results are detailed
in Table 7. It can be seen from Table 7 that the average PV and RPE values are 5.49 cm and 0.37 px,
respectively, both of which demonstrate the effectiveness of our proposed groundtruth trajectory
acquisition approach. Besides, both RPE and PV values in the “straight” areas are larger than those
in the “corner” areas. This is largely due to the fact that the average distance to the camera of the
AprilTags in the “straight” areas is larger than that in the “corner” areas.

5.3 Quantitative Evaluation of VISSLAM-2

Four evaluation metrics are selected for quantitative evaluation of VISSLAM-2, the revisiting error

(RE), the absolute trajectory error (ATE), the distance of adjacent semantic objects (DAS)

and the average processing time (APT).
(1) Revisiting Error. The revisiting error can be used to evaluate the localization accuracy of a

SLAM system. It is valid in localization evaluation, because an autonomous parking system allows
for an absolute localization error during driving. As long as the revisiting error is small enough,
the vehicle will adopt a consistent driving strategy when it drives to the same position. We define
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Table 8. The Revisiting Error of VISSLAM-2 in Sequences of BeVIS

Reference Point
Revisiting Error

Δ x Δ y Δ z RE

S-e-01
−0.452 0.047 −0.250 0.01 0.01 0.01 0.017
−5.591 −0.046 3.047 0.05 0.01 0.01 0.052

S-m-02
−19.70 −0.364 13.84 0.02 0.01 0.01 0.025
−0.404 0.412 −7.98 0.03 0.01 0.01 0.033

S-d-03
−31.87 1.128 −0.643 0.01 0.01 0.01 0.017
−42.96 0.592 6.370 0.03 0.01 0.01 0.033

S-d-04
−3.178 0.117 0.575 0.03 0.01 0.01 0.033
−37.65 −0.201 19.78 0.05 0.02 0.01 0.055

(unit: meter).

the revisiting error as

eRE =
��
�

1

MN

M∑
i=1

N∑
j=1

���
���trans

(
P

j+1
i

)
− trans

(
P

j
i

) ������
2��
	

1
2

, (18)

whereM denotes the total number of reference points, N is the total rounds, P
j
i denotes the camera

pose of the ith reference point at the jth round, P
j+1
i is the camera pose of the reference point at

the (j+1)-th round, and trans ( . ) represents the translation part of the pose. From Table 8, we find
that the average RE in BeVIS benchmark dataset is 0.033 m, demonstrating the effectiveness of our
proposed VISSLAM-2.

(2) Absolute Trajectory Error. With the groundtruth trajectories acquired in Section 3, the abso-
lute trajectory error can be used to evaluate the SLAM system’s performance directly by comparing
the difference between the estimated and the groundtruth trajectories, i.e.,

eAT E = �
�

1

M

M∑
i=1

���
���trans

(
Q−1

i Pi

) ������
2�
	

1
2

, Qi ,Pi ∈ SE (3), (19)

whereM is the total number of frames in each sequence and trans(.) represents the translation part
of a camera pose. {Qi }Mi=1 and {Pi }Mi=1 in Equation (19) are the aligned groundtruth and estimated
poses of all frames, respectively. Note that the different coordination systems of the estimated
trajectory and the groundtruth trajectory can be aligned with the Umeyama’s method [44], which
is a point cloud matching algorithm to transform the source cloud into the same coordinate system
as the target cloud. We denote the original position of each point in the estimated trajectory by

P
′
i . A square root error can be established for the estimation of the transformation matrix between

the estimated and the groundtruth trajectories,

e = �
�

1

M

M∑
i=1

| |Qi − (sRP
′
i + t) | |2�

	

1
2

, (20)

where R, t, and s are the rotation matrix, the translation matrix and the scale factor. By calculating
the mean and variance of both trajectories as well as the SVD, the optimal R∗, t∗ and s∗ can be

obtained accordingly. When calculating the absolute trajectory error, Pi = R∗P
′
i + t∗. Similarly,

esAT E , which is the difference between the estimated and the groundtruth trajectories after being
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Table 9. ATE and DAS of VISSLAM-2 in BeVIS w/o Surround-view Error Terms

Metric
Sequence

S-e-1 S-m-2 S-d-3 S-d-4 Average

ATE
Without ES 0.520 0.608 0.943 0.872 0.736

With ES 0.133 0.419 0.581 0.621 0.438
Decrease 0.387 0.189 0.362 0.251 0.322

sATE
Without ES 0.512 0.201 0.243 0.193 0.287

With ES 0.132 0.104 0.279 0.105 0.155
Decrease 0.380 0.097 -0.036 0.088 0.132

DAS
Without ES 0.137 0.268 0.178 0.289 0.218

With ES 0.078 0.118 0.104 0.144 0.111
Decrease 0.059 0.150 0.074 0.145 0.107

(unit: meter).

Fig. 6. The absolute trajectory error of VISSLAM-2 using different number of ORB features.

scaled to the same metric, can be defined as

esAT E = �
�

1

M

M∑
i=1

trans(Q−1
i (s∗R∗P

′
i + t∗)) | |2�

	

1
2

. (21)

From Table 9, we find that the average ATE of all sequences is 0.438 m, which demonstrates the
effectiveness of our VISSLAM-2. Besides, ATE in each sequence decreases after the optimization with
ES . It can be also found in Table 9 that sATE, which is the difference between the estimated and the
groundtruth trajectories after being scaled to the same metric, is smaller than ATE. But compared
with ATE, sATE does not reflect the real trajectories differences, since the scale of the estimated
trajectory is not the same with the groundtruth trajectory. Additionally, the relationship between
ATE and the number of ORB features has been depicted in Figure 6. As shown in Figure 6, the ATE
of VISSLAM-2 can be improved by increasing the number of extracted feature points. Actually, how
to achieve a balance between speed and accuracy is a common practical engineering problem. It
actually depends on which factor the end user attaches more importance to. In our system, when
the number of used features is 1,000, the ATE can be as low as 0.438 m, and the processing speed
can reach 14 fps. According to our experience, such mapping accuracy and processing speed can
meet the needs of autonomous parking tasks.
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Table 10. The Average Processing Time of VISSLAM-2 in BeVIS

Metric
Sequence

S-e-1 S-m-2 S-d-3 S-d-4 Avg.

APT 0.068 0.072 0.067 0.078 0.071

(unit: second).

Fig. 7. The average processing time of VISSLAM-2 using different number of ORB features.

(3) Distance of Adjacent Semantic Objects. Distance of adjacent semantic objects is selected to
evaluate the mapping accuracy of SLAM system. As can be seen from Table 9, we find that the
average DAS of all sequences in BeVIS is 0.111 m, which demonstrates the effectiveness of our
proposed VISSLAM-2. Besides, the DAS in each sequence decreases after the optimization with ES ,
demonstrating the effectiveness of the surround-view error term ES .

(4) Average Processing Time. We recorded the average processing time per frame of VISSLAM-2
when 1,000 ORB features are used. The result is presented in Table 10. It can be found that APT
of VISSLAM-2 is 0.071 seconds, reaching 14 fps, which is qualified when the vehicle runs at a low
speed in an indoor parking site. Additionally, APTs of VISSLAM-2 using different number of ORB
features are also presented in Figure 7. In fact, the frame rate of VISSLAM-2 can be improved by
reducing the number of extracted feature points. When the number of feature points is set as 500,
the running speed undergoes a considerable improvement. Therefore, if there is a requirement for
a higher frame rate, then we can reduce the number of extracted feature points.

5.4 Quantitative Comparison of VISSLAM-2 with Its Competitors

As seen in Section 2.2, among the existing SLAM studies for autonomous indoor parking, only
Zhao et al.’s scheme [53] and Shao et al.’s scheme [41] make use of surround-view information.
Therefore, in this quantitative comparison experiment, Zhao et al.’s work [53] and Shao et al.’s
work [41] are chosen as the comparison targets. Apart from these two schemes, as a typical VI-
SLAM system, Mur-Artal et al.’s scheme [27] is also included. The performance of these three
competitors was evaluated in terms of RE, ATE, DAS, and APT, and the results are summarized in
Table 11. It can be seen from Table 11 that Mur-Artal et al.’s work can reach satisfying performance
with respect to three evaluation metrics of RE, ATE and APT. But it is not suitable for autonomous
indoor parking due to the fact that it provides no semantic information during driving. From Ta-
ble 11, we can see that VISSLAM-2 gains 88% and 78% of the favor compared with RE of 0.280 m in
Zhao et al.’s work [53] and 0.157 m in Shao et al.’s work [41], respectively. Meanwhile, both ATE
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Table 11. Quantitative Comparison of VISSLAM-2 with Its Competitors

Method
Metric

RE ATE DAS APT

Mur-Artal et al. [27] 0.239 0.501 — 0.055

Zhao et al. [53] 0.280 — — 0.137
Shao et al. [41] 0.157 0.534 0.194 0.069

VISSLAM-2 0.033 0.438 0.111 0.071

The best result with respect to each performance metric is highlighted in bold.

Fig. 8. Qualitative results of VISSLAM-2. (a) A sketch of the indoor parking site in SLAM-easy-01. (b) Mapping
result using visual and inertial error terms during optimization. (c) Mapping result by VISSLAM-2 (parking-
slot IDs are omitted here for display). (d) Difference between the estimated and the groundtruth trajectories.
(e) Mapping result of SLAM-moderate-02. (f) Mapping result of SLAM-difficult-03. (g) Mapping result of
SLAM-difficult-04.

and DAS of VISSLAM-2 enjoy a dramatic improvement by 0.096 m and 0.083 m compared with Shao
et al.’s work [41], confirming the superiority of the localization and mapping accuracy of VISSLAM-
2. Additionally, APT of VISSLAM-2 is significantly reduced compared with Zhao et al.’s work [53].
But compared with Shao et al.’s work [41], APT of VISSLAM-2 has a slight increase of 0.008s, which
is due to the incorporation of more surround-view landmarks in its optimization model.

5.5 Qualitative Results of VISSLAM-2 in BeVIS

To qualitatively validate the effectiveness of the proposed VISSLAM-2, we evaluated it in terms
of both the localization and mapping results in BeVIS. The mapping result of SLAM-easy-01

is shown in Figure 8. Figure 8(a) depicts the sketch of the indoor parking site from a top-down
viewpoint. Figure 8(b) illustrates the result incorporating both visual and IMU error terms during
optimization. It records the driving path and maps the 3D landmarks in the indoor parking site (3D
landmarks are omitted here for display). However, semantic objects on the ground that are essen-
tial for autonomous indoor parking are not incorporated in the map. Figure 8(c) demonstrates the
result of VISSLAM-2, by which not only 3D landmarks but semantic objects detected in surround-
view images are incorporated in the map. From Figure 8(c), we can find that the distances between
each pair of adjacent parking-slots and the distances between the speed bumps and the parking-
slots are in line with the spatial distribution of the real scene, which demonstrate the effectiveness
of VISSLAM-2. Additionally, the difference between the trajectory estimated by our VISSLAM-2 and
the groundtruth trajectory is illustrated in Figure 8(d). It can be seen from Figure 8(d) that the esti-
mated and the groundtruth trajectories are roughly coincident, demonstrating the higher accuracy
of the localization result of VISSLAM-2. Mapping results of other sequences in BeVIS are shown in
Figure 8(e)–(g). Note that there are some parking-slots missing in the map. This is due to the fact
that the entrance points of these parking-slots had been worn out or were occluded by parked
cars.
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Table 12. Optimization Results Using Various Error Terms

Configuration
Metric

RE ATE DAS APT

V-ISLAM 0.239 0.501 — 0.055

VIS-TSLAM 0.251 0.736 0.218 0.063
VISSLAM-2 0.033 0.438 0.111 0.071

The best result with respect to each performance metric is highlighted in bold.

5.6 Ablation Study of VISSLAM-2

We demonstrate how different error terms in our framework affect the optimization results by
comparing VISSLAM-2 with two baselines using different optimization strategies. The two baselines
are (1) V-ISLAM: a visual-inertial error term based system without the incorporation of surround-
view semantic features and (2) VIS-TSLAM: a system that incorporates surround-view semantic
features in optimization only during the tracking phase. The results are presented in Table 12.
It can be seen from Table 12 that V-ISLAM can reach satisfying performance with respect to three
evaluation metrics of RE, ATE, and APT, which are 0.239 m, 0.501 m, and 0.055 seconds, respectively.
But V-ISLAM is not suitable for autonomous indoor parking due to the fact that it provides no
semantic information during driving. As for the performance of VIS-TSLAM, we can find that if
we incorporate semantic features extracted from surround-views in optimization only during the
tracking phase, then the optimization results are compromised and large RE and ATE errors occur.
But if the surround-view semantic features are incorporated in optimization during all the phases
of tracking, then local mapping and loop closing just as VISSLAM-2 does, three evaluation metrics
of RE, ATE and DAS can be all considerably diminished, confirming the effectiveness of VISSLAM-2.
In addition, APT of VISSLAM-2 is about 0.071 seconds (over 14 fps), which can be acceptable for an
autonomous parking system running at a moderate speed.

6 CONCLUSION

In this article, we first establish a large-scale dataset called BeVIS, short for Benchmark dataset with
V isual (front-view), Inertial and Surround-view sensors. It contains synchronous multi-sensor data
collected when driving a modified electric vehicle in four typical indoor parking sites. Notably,
the groundtruth trajectories in BeVIS are obtained by tracking artificial landmarks scattered in
these four indoor parking sites, whose coordinates are recorded in a surveying manner with a
high-precision equipment ETS, enabling objective evaluation of different SLAM systems for au-
tonomous indoor parking. The groundtruth trajectories are comprehensively evaluated in terms
of two respects, the reprojection error and the pose volatility, respectively. To the best of our
knowledge, as a benchmark dataset for evaluating the performance of SLAM systems developed
for autonomous indoor parking, BeVIS is the first large-scale dataset where both the raw data and
groundtruth trajectories are provided. Moreover, we propose a tightly coupled semantic SLAM
framework, namely VISSLAM-2, leveraging V isual (front-view), Inertial, and Surround-view sensor
modalities, especially for the task of autonomous indoor parking. It is the first work attempting
to provide a general form to model the surround-view objects, and its effectiveness is verified by
extensive experiments on BeVIS. In the future, we will continue enlarging BeVIS to make it a better
benchmark in this field.
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