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CVIDS: A Collaborative Localization and Dense
Mapping Framework for Multi-Agent

Based Visual-Inertial SLAM
Tianjun Zhang, Lin Zhang , Senior Member, IEEE, Yang Chen , and Yicong Zhou , Senior Member, IEEE

Abstract— Nowadays, visual SLAM (Simultaneous Localiza-
tion And Mapping) has become a hot research topic due to
its low costs and wide application scopes. Traditional visual
SLAM frameworks are usually designed for single-agent systems,
completing both the localization and the mapping with sensors
equipped on a single robot or a mobile device. However, the
mobility and work capacity of the single agent are usually limited.
In reality, robots or mobile devices sometimes may be deployed
in the form of clusters, such as drone formations, wearable
motion capture systems, and so on. As far as we know, existing
SLAM systems designed for multi-agents are still sporadic,
and most of them have non-negligible limitations in functions.
Specifically, on one hand, most of the existing multi-agent
SLAM systems can only extract some key features and build
sparse maps. On the other hand, schemes that can reconstruct
the environment densely cannot get rid of the dependence on
depth sensors, such as RGBD cameras or LiDARs. Systems
that can yield high-density maps just with monocular camera
suites are temporarily lacking. As an attempt to fill in the
research gap to some extent, we design a novel collaborative
SLAM system, namely CVIDS (Collaborative Visual-Inertial
Dense SLAM), which follows a centralized and loosely coupled
framework and can be integrated with any existing Visual-
Inertial Odometry (VIO) to accomplish the co-localization and
the dense reconstruction. Integrating our proposed robust loop
closure detection module and two-stage pose-graph optimization
pipeline, the co-localization module of CVIDS can estimate the
poses of different agents in a unified coordinate system efficiently
from the packed images and local poses sent by the client-ends
of different agents. Besides, our motion-based dense mapping
module can effectively recover the 3D structures of selected
keyframes and then fuse their depth information to the global
map for reconstruction. The superior performance of CVIDS is
corroborated by both quantitative and qualitative experimental
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I. INTRODUCTION

A PROFOUND knowledge of the environment is indis-
pensable in numerous fields, ranging from augmented

reality [1], [2], [3] to autonomous driving [4], [5], [6].
To obtain such an understanding, the SLAM (Simultaneous
Localization And Mapping) technique, which can model the
surrounding environment only by equipped sensors, is one
of the most practical solutions. Among all of the research
branches in this field, visual SLAM, VSLAM in short, has
drawn many interests in recent years [7], [8], [9], [10], [11],
[12], [13], on account of its compact and affordable sensor
configurations. Existing VSLAM systems may be designed for
UAVs (Unmanned Aerial Vehicle), wheeled robots, or hand-
held devices, but mostly can only be applied in the single-agent
manner. However, in reality, sometimes the robots or devices
are put into use in the form of clusters or formations, such
as drone formations and wearable motion capture systems.
In such cases, since the single-agent-oriented systems cannot
yield the relative poses of different agents in a unified coordi-
nate system, they will no longer be appropriate. Instead, col-
laborative SLAM frameworks for multi-agent systems should
be employed.

In terms of the density of the constructed map, SLAM
systems roughly fall into two categories, sparse ones [7], [8],
[9], [10] and dense ones [11], [12], [13]. For one frame, sparse
systems extract and reconstruct only a set of key features in
the image, whereas dense ones aim to utilize all pixels. Sparse
maps usually play important roles in the tasks of tracking
and localization. However, due to the insufficient density, they
cannot effectively support some significant decision-making
tasks, like obstacle avoidance. Therefore, in recent years,
SLAM systems are often required to be able to recover the
dense 3D structure of the surrounding environment, especially
in industry. As a sub-branch, collaborative SLAM frameworks
are naturally pinned on similar expectations.

However, most of the existing collaborative SLAM systems
still cannot fully satisfy the researchers’ requirements in
terms of dense mapping. On the one hand, most existing

1941-0042 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TONGJI UNIVERSITY. Downloaded on October 23,2022 at 01:58:50 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-4360-5523
https://orcid.org/0000-0001-8187-2000
https://orcid.org/0000-0002-4487-6384


ZHANG et al.: CVIDS: A COLLABORATIVE LOCALIZATION AND DENSE MAPPING FRAMEWORK 6563

collaborative VSLAM systems can only yield sparse maps.
Related researchers spend most of the processor’s power in
the co-localization of multi-agents, ignoring the denseness
requirements on mapping. On the other hand, the existing
dense systems almost all resort to specific sensors to recover
the depth information. LiDARs, stereo cameras and RGB-D
cameras are all commonly used depth sensors. Compared with
monocular suites, like the monocular visual-inertial suites,
LiDARs and stereo cameras are usually much more expensive
and cumbersome, and RGB-D cameras usually underperform
in outdoor environments. Thus far, to the best of our knowl-
edge, a collaborative SLAM system that can reconstruct the
scene densely just with the monocular suite is still lacking.

As an attempt to fill in the research gap to some extent,
in this work we propose a novel dense collaborative SLAM
framework, namely CVIDS. As far as we know, this is the
first collaborative SLAM system that can accomplish dense
reconstruction without the assistance of depth sensors. Our
contributions can be mainly summarized as follows.

1) The first dense collaborative SLAM system, CVIDS, that
does not rely on depth sensors is implemented, implying
that by using CVIDS the depth information is recovered
by algorithms rather than depth sensors, hereby the
hardware cost can be greatly saved. Thanks to the
acceleration of GPU, both the collaborative localization
of multi-agents and the dense reconstruction can be
achieved in real time.

2) A novel robust loop closure detection (LCD) strategy
for the Visual-Inertial Odometry (VIO) based on the
pairwise consistency evaluation is designed. Taking the
observability of the VIO into consideration, we utilize
the four-DoF (Degree of Freedom) error instead of the
full-DoF one for consistency evaluation. Besides, since
we have deduced the covariance of the error state, the
error can be computed in a probabilistic way rather
than heuristically. In CVIDS, such a strategy is adopted,
thus the loop closure detection module in CVIDS can
provide a set of consistent long-term data associations
and eliminate outlier measurements, which significantly
improves the localization stability.

3) An efficient two-stage pose-graph optimization pipeline
of a cascade structure is designed and such a pipeline is
integrated to the back-end of CVIDS. The first stage
of the pipeline actually performs the EM-based pose
smoothing, which aims to provide better initial values
to the second stage for better convergence with an
economical time cost, while the second stage fulfills the
conventional non-linear optimization. Such a pipeline
shows an excellent convergence speed while ensuring
the accuracy, which guarantees the real-time perfor-
mance of CVIDS.

4) A novel solution to the motion-based depth estimation
is proposed. On the basis of the multi-view stereo,
we further fuse the depth priori of sparse features
and introduce the semi-global regularization for the
smoothness of the recovered depth map. Thanks to the
introduced extra prior knowledge, both the accuracy in
weak-texture regions and the convergence speed of the

depth estimation of our scheme have been significantly
improved. Besides, we also apply a probabilistic depth
filter to fuse the depth estimation from different match-
ing frames so as to weaken the adverse effects brought
by noise and outliers.

The remainder of this paper is organized as follows. Sect. II
introduces related work and analyzes the existing research
gaps. The overall framework of CVIDS is summarized in
Sect. III. Details about the collaborative localization pipeline
and the dense mapping module in CVIDS are presented in
Sect. IV and V, respectively. Experimental results are reported
in Sect. VI. Finally, Sect. VII concludes the paper.

II. RELATED WORK

A. Monocular Suites Based Dense SLAM

Compared with RGBD-based mapping [14], [15], [16],
owing to the affordable manufacturing cost and the lightweight
structure of the sensor, the problem of monocular dense
mapping in an online manner has attracted a lot of researching
interests in the past decade or so. Since the depth information
will be lost during the imaging process of a monocular camera,
compared with RGBD-based or stereo-based ones, the dense
reconstruction based on a monocular camera is much more
challenging. Most of the solutions in this field in early years
were designed for the offline environment, while with the
continuous development in both algorithms and hardware,
more and more researchers tried to complete the real-time
dense reconstruction in an online manner.

In [17], Pradeep et al. firstly presented a system for real-
time reconstruction with a web camera, namely MonoFusion.
On account of its relatively rough implementation in the
tracking module, the localization stability of MonoFusion is
somewhat unsatisfactory, and it can only perform well in tasks
with small-scale workspaces, such as the model scanning.
Afterwards, as a milestone work of the monocular SLAM,
LSD-SLAM [12] which exhibits a distinguished performance
was proposed. LSD-SLAM can accomplish both the local-
ization and the real-time semi-dense mapping simultaneously
without the assistance of GPU. However, the densities of its
yielded maps were insufficient so that it was considered as
“semi-dense” rather than “dense”. In the same year, another
influential system, namely ReMode [18], was presented. Its
authors resorted to the probabilistic depth filter presented
in [19] and reused the localization module of SVO, which
is the salient work proposed by Forster et al. in [20]. Since
the depth estimation in ReMode is fully based on template
matching, it usually underperforms in weak-texture regions.

Except for the aforementioned “pure” monocular sys-
tems, researchers also attempted to further introduce other
lightweight sensors such as IMU (Inertial Measurement Unit)
to their schemes. In 2017, Yang et al. presented a novel
dense SLAM system under the monocular visual-inertial con-
figuration, namely VI-MEAN [21]. Inheriting the implemen-
tations of VINS-Mono [22], VI-MEAN also integrates the
classic stereo-vision algorithm, SGM (Semi-Global Match-
ing) [23]. Thanks to the introduction of the semi-global reg-
ularization, VI-MEAN shows decent performance in weakly
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Fig. 1. Overall architecture of CVIDS. The client handler in the communication module running on each agent packs and then sends the raw data of
keyframes to the handler of the central server-end. Then the co-localization module will align the local coordinate systems of different agents to a unified
global one. After that, the dense mapping module will estimate the depth maps of selected keyframes and fused them to the global TSDF map. Finally, via
meshing, the dense structure of the scene can be recovered.

textured regions. However, its authors ignored the culling of
outliers in the depth estimation phase while directly fused the
depth map recovered from two frames to the global TSDF
map, so a considerable amount of outliers were prone to appear
in the final constructed maps.

B. Collaborative VSLAM With Monocular Suites

The earliest monocular collaborative SLAM system can be
traced back to the work of Forster et al. in [24], which is
specially designed for Micro Aerial Vehicles and follows a
traditional structure-from-motion pipeline. As a seminal work,
it is relatively straightforward in implementations and current
state-of-the-art outperforms it in both accuracy and robustness.
In [25], Zou and Tan presented another milestone collaborative
SLAM system namely CoSLAM, which takes the interference
brought by dynamic objects into account so as to improve the
robustness. In CoSLAM, all agents are required to be strictly
time-synchronized. Specifically, all agents’ equipped cam-
eras must capture images simultaneously, which undoubtedly
increases the hardware cost. In [26], Deutsch et al. creatively
abstracted the client-end of the collaborative SLAM system.
In Deutsch et al.’s system, the odometry running on each agent
is regarded as a black box, that is, only its output map points
and poses are utilized, ignoring detailed implementations.
Under such a mechanism, the system can theoretically be
integrated with any appropriate visual odometry, exhibiting an
outstanding adaptation ability to the hardware environment.
However, as a 2D system, the current advanced 3D visual
odometries can’t be integrated with it. CCM-SLAM presented
by Schmuck and Chli in [27] is a tightly-coupled monocular
collaborative SLAM system with an outstanding localization
accuracy. It possesses a relatively modern architecture and
is currently the state-of-the-art in this field. In addition to
typical monocular systems, in recent years, many researchers

devoted themselves to upgrading the sensor to a visual-inertial
monocular suite to improve the localization stability, and some
remarkable works have already been released [22], [28], [29].
However, it’s a pity that most of these systems just support the
single-agent mode. As far as we know, the only collaborative
SLAM system designed for monocular visual-inertial suites is
CVI-SLAM proposed in [30]. CVI-SLAM follows a similar
design as CCM-SLAM [27], while the equipped sensor on
each agent is substituted from a monocular camera to a
visual-inertial suite. Due to the upgrading of the sensor, the
final localization accuracy of CVI-SLAM is also significantly
improved.

Although a lot of research passions have been devoted to
the collaborative SLAM under the sensor configurations of
monocular suites, as far as we know, existing schemes can
only recover the sparse structure of the scene rather than the
dense one. Thus, application scopes of these schemes in reality
may still be limited. Collaborative SLAM systems that can
yield dense maps just with monocular camera suites are still
lacking.

III. SYSTEM OVERVIEW

The overall framework of CVIDS is illustrated in Fig. 1.
It mainly consists of three modules, including the commu-
nication module, the co-localization module, and the dense
mapping module. Among them, both the co-localization mod-
ule and the dense mapping one only run on the central server,
while the communication module runs on both the server-end
and the client-end corresponding to each agent. The client-
end of the communication module is well encapsulated and
can theoretically be integrated with any existing VIO (Visual-
Inertial Odometry), while in our current implementations,
we temporarily selected VINS-Mono [22]. Such a sub-module
takes poses, map points and images from the local VIO as the
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input, packs the received raw data into messages and then send
the messages to the central server. The server-end sub-module
is responsible for unpacking the data received from the client-
end of any agent. For the co-localization module and the dense
mapping module, we will introduce them in detail in Sect. IV
and Sect. V, respectively.

IV. CO-LOCALIZATION MODULE

The co-localization module is mainly responsible for align-
ing the local reference coordinate systems (CSs) and then
co-localizing all registered agents in a unified reference CS.
After the server-end communication module receives and
unpacks the raw data sent by the client, the co-localization
module will primarily construct the keyframe object and
register it to the corresponding local map in the server-end.
Afterwards, the loop closure detection will be conducted,
including the intra-agent detection and the inter-agent one.
If the inter-agent loop closure is successfully triggered, corre-
sponding unaligned local maps can then be aligned. Besides,
the pairwise consistency of all loop closure measurements will
be evaluated so as to eliminate outliers. Once a new loop
closure is established, our two-stage optimization pipeline will
be activated.

A. Keyframe Construction and Registration

The raw data of each frame sent by the client mainly
consist of an image, the associated pose under the local
reference CS and the corresponding map points (including
the 2D pixel coordinates and the relevant 3D positions).
During the construction of a new keyframe, preparing for
the subsequent LCD, the BRIEF descriptor [31] of each map
point is extracted. Besides, the sparsity of map points will
limit the performance of the LCD. Thus, we also detect the
Shi-Tomasi corners [32] on the image for supplementary, and
then compute their corresponding BRIEF descriptors. For the
sake of distinction, we call those points sent by clients as
“map points” and the Shi-Tomasi corners as “2D features”.
Afterwards, a server-side keyframe object can be constructed
and registered to the local map of the corresponding agent.
It’s worth mentioning that, when an agent sends a keyframe
to the central server for the first time, a local map dedicated
to the agent will be created and all subsequent frames from
the same agent will be stored in the local map.

B. Loop Closure Detection and Map Alignment

For a newly constructed keyframe, we first search for
loop candidates among all past frames via the Bags-of-Words
(BoW) model. Subsequently, we match map points of the
selected loop frame with 2D features of the current frame to
form a set of 3D-2D pairs, and then solve the PnP (Perspective-
n-Points) problem under the RANSAC framework to obtain
the relative pose between those two frames. For the strategy
of selecting the qualified loop frame from multiple candidates,
please refer to Sect. IV-C.

If the selected qualified loop closure is across two different
local maps and one of them has already been aligned while the

Fig. 2. Illustration of the view-frustum-based LCD. The left one shows the
bounding sphere of one frame, the middle one illustrates the successful case
of the detection while the right one is the failure case.

other hasn’t, the transformation between the reference CSs of
these two local maps will be determined to align the unaligned
one. It’s worth mentioning that, since both the pitch angle and
the roll angle are observable for VIO, the alignment parameters
that need to determine are merely about the translation and the
yaw angle.

To fully make use of the advantages of multi-agent systems
in terms of the coverage of observations, the view-frustum-
based LCD is further conducted to supplement data associa-
tions. For two frames F1 and F2 from different aligned local
maps, we first check if these two frames are theoretically
common-view. Since it’s complicated to determine whether
two frustums intersect, a certain degree of simplification is
made. Specifically, as shown in Fig. 2, if the bounding sphere
of F2’s view-frustum is fully outside the view-frustum of F1,
it’s impossible for these two frames to be common-view. The
center O2 and radius r2 of F2’s bounding sphere are given as,

O2 = T−1
2 [0, 0, r2, 1]T

r2 =
D(1+ 2 tan2 θ)

2
, (1)

where T 2 is F2’s pose, D is the corresponding range of
visibility, and θ is the angle of the FoV (Field of View) of
F2’s corresponding camera. If two frames are common-view,
the following condition should be satisfied,

∃N ∈ N , |(T 1 O2) · N| − r2 < 0, (2)

where N is the set that consists of normal vectors of all
surfaces of the view-frustum in its camera CS. Eq. 2 checks
if the view-frustum of F1 is intersected with the bounding
sphere of F2, which is also the prerequisite for F1 and F2 to
be common-view. Only if Eq. 2 is satisfied, we will further
check whether the relative pose between F1 and F2 can be
recovered successfully, so as to determine whether the inter-
agent constraint between F1 and F2 can be established.

C. Qualified Loop Frame Selection

In both the BoW-based loop closure detection and the view-
frustum-based one, for the same current frame, generally there
won’t be a unique output but multiple candidates may be
yielded. To ensure the stability of the loop closure, we only
select the best one among all candidates each time. To align
all local maps as soon as possible and eliminate accumulated
errors more effectively, for all candidates, their priorities are
assigned according to the following three principles:
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1) If the local map which the current frame belongs to has
already been aligned, frames in unaligned local maps
are preferred, while in the unaligned case, the selected
frame must be in aligned local maps.

2) On the premise of the first principle, frames in different
local maps from the current one will be selected prefer-
entially.

3) On the premise of the first two principles, the oldest
candidate will be chosen as a priority.

To ensure the correctness of the loop closure, a stringent
inspection mechanism to determine whether the loop closure is
qualified is adopted, including the requirements on the quantity
of matched feature pairs, and the limitation on the amount
of rotation and translation of the relative pose. Only when a
candidate passes all the checks, the frame can be selected to
be the loop frame of the current one. For all candidate loop
frames, according to the aforementioned priorities, we further
try to recover the relative pose between candidate frames and
the current one and check if the loop closure is qualified in
order until success. And then the corresponding constraint
representing the relative pose will be established between the
current frame and the selected loop closure one.

D. Pairwise Consistency Evaluation of Loop Closure
Measurements

Outlier measurements of loop closures usually have a devas-
tating impact on the accuracy of localization. Therefore, before
the optimization, the correctness of all loop closures should
also be verified so as to eliminate wrong data associations.
Motivated by [33], we adopted the Pairwise Consistency
Maximization (PCM) to find a group of correct and consistent
loop closures, and other measurements are considered to be
outliers that should be abandoned.

We represent the loop closure measurement between two
frames Fi and F j as li j . Given a set of raw loop closure
measurements, L, we need to find its largest pairwise internally
consistent subset, LC , and then eliminate other measurements
that not belong to LC . For any two measurements li j , llk ∈ LC ,
they are consistent with respect to the consistency metric C
and the threshold γ if,

C(li j , llk) < γ. (3)

Based on the definition of “consistency”, an undirected graph
can be established, in which each node stands for a loop
closure measurement and two nodes are connected if their
corresponding measurements are consistent. Then, the task of
finding the subset LC can be transformed into an instance
of the maximum clique problem from graph theory. As a
classical problem, dozens of potential solutions have already
been proposed [34], [35], [36], [37]. In our implementations,
Pattabiraman et al.’s scheme [37] is adopted.

Since the maximum clique problem can be solved effec-
tively and efficiently with existing schemes, in this paper,
we mainly focus on the definition of the consistency metric
C . Taking the observability of the VIO into consideration,
different from the most commonly utilized full-DoF metrics,
our metric C is only defined on four DoFs (the yaw angle

and the translation). Given two measurements li j and llk , their
consistency score can be given as,

C(li j , llk) = ∥E(li j , llk)∥6−1
i jlk

, (4)

where ∥ ∗ ∥6 denotes the Mahalanobis distance, 6i jlk is the
covariance matrix of the error state, and the error E(li j , llk)
is defined as,

E(li j , llk) = [e
yaw
i jlk , (et

i jlk)
T
]
T

eyaw
i jlk = θ̂

yaw
i j + θ

yaw
jl + θ̂

yaw
lk + θ

yaw
ki

et
i jlk = [T̂ i j T jl T̂ lk T ki ]t , (5)

where θ̂
yaw
i j and θ̂

yaw
lk are relative yaw angles of measurements

li j and llk , respectively, T̂ i j and T̂ lk are relative pose matrices
of measurements li j and llk , respectively, θ

yaw
jl and θ

yaw
ki are

current relative yaw angles’ estimates from F j to Fl and from
Fk to Fi , respectively, and T̂ jl and T̂ ki are corresponding rel-
ative pose matrices. The symbol (∗)t stands for the translation
vector of the inner pose matrix. Next, we will introduce how
to compute the covariance matrix 6i jlk in detail.

Defining p jl and pki as the corresponding four-DoF pose
vectors of T jl and T ki , respectively. For the covariance matrix
6i jlk , we approximate it linearly as,

6i jlk = J jl6 jl J T
jl + Jki6ki J T

ki , (6)

where 6 jl and 6ki are covariance matrices of p jl and pki ,
respectively, J jl and Jki are Jacobian matrices of E(li j , llk)
to p jl and pki , respectively, which can be given as,

J jl =

 1 01×3
∂ R̂i j R jl R̂lk tki

∂θ
yaw
jl

+
∂ R̂i j R jl t̂lk

∂θ
yaw
jl

R̂i j


Jki =

[
1 01×3

03×1 R̂i j R jl R̂lk

]
. (7)

As for the covariance matrices 6 jl and 6ki , they can be
computed via the state propagation. In our scheme, the motion
equation of the odometry is formulated as,

p j+1 = f ( p j , p̂ j+1 j )

θ
yaw

j+1 = θ
yaw
j + θ̂

yaw

j+1 j

t j+1 = R̂ j+1 j t j + t̂ j+1 j . (8)

Thus, the propagation of the covariance matrix can be given as,

6m+1 j = Gm6mj GT
m + Hm6n HT

m, (9)

where 6n is the error state covariance of the client-end
odometry, and Gm and Hm are Jacobians of p j+1 to p j and
p̂ j+1 j , respectively, which are given as,

Gm =

[
1 01×3

03×1 R̂ j+1 j

]

Hm =

 1 01×3
∂ R̂ j+1 j t j

∂θ
yaw
j+1 j

I3×3

 , (10)

where I3×3 is a 3 × 3 identity matrix. Since the initial
covariance matrix 6 j j can be initialized to a null matrix, both
6 jl and 6ki in Eq. 6 can be easily solved.
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In order to obtain the final form of J jl , Jki , 6 jl and 6ki ,
some reformulations are necessary. Specifically, the rotation
matrix R can be decomposed as,

R = Rz Ry Rx
= Rz Ryx , (11)

where Rx , Ry and Rz stand for the corresponding rotation
of pitch, roll and yaw, respectively. From Eq. 11, the rotation
matrix R jl of the relative pose from frame F j to Fl can be
reformulated as,

R jl = (Ryx
j )T Rz

jl Ryx
l , (12)

where Rz
jl is defined as,

Rz
jl =

cos(θ yaw
jl ) −sin(θ

yaw
jl ) 0

sin(θ
yaw
jl ) cos(θ yaw

jl ) 0
0 0 1

 , (13)

where θ
yaw
jl is the relative yaw angle from F j to Fl . Via the

decomposition, we have,

∂ R p R jl Rn t
∂θ

yaw
jl

=
∂ ARz

jl Bt

∂θ
yaw
jl

=

J1
J2
J3


Jk =

3∑
i=1

−(Ak1 Bi1 + Ak2 Bi2)ti sin(θ
yaw
jl )

+ (Ak2 Bi1 + Ak1 Bi2)ti cos(θ yaw
jl ), (14)

where R p and Rn can be any rotation matrix. By combining
Eq. 6 ∼ 10 and Eq. 14, we can finally deduce the final form
of 6i jlk .

E. Pose Optimization

Once a new keyframe successfully triggers the loop closure,
it will be sent to the back-end thread to activate our two-
stage pose optimization pipeline. The pipeline aims to solve
the problem of the pose graph optimization and before the
establishment of the basic structure of the pose graph, the
corresponding data associations need to be determined. Except
for the aforementioned loop closure associations, each frame
is associated to N previous frames in the same local map
with the relative pose constraints computed from the original
local poses yielded by the corresponding VIO, so as to
copy the short-term data associations from the client. In our
implementations, N is set to 5. The final optimization problem
amounts to,

min
T

∑
(i, j)∈S

||e(T i , T j , T̂ i j )||
2
2

+

∑
(i, j)∈A,R

ρ(||e(T i , T j , T̂ i j )||
2
2), (15)

where S, A and R are the sets of short-term constraints,
intra-agent constraints and inter-agent constraints, respectively,
T i (T j ) stands for the pose of the keyframe Fi (F j ), T̂ i j
is the constraint of the relative pose between Fi and F j ,
ρ(·) is the Huber kernel function, and T represents all poses
to be optimized. Taking the observability of the VIO into
consideration, motivated by [22], the four-DoF (the yaw angle

and the translation) error is adopted and accordingly the error
term e(T i , T j , T̂ i j ) is defined as,

e(T i , T j , T̂ i j ) = [e
yaw
i j , (et

i j )
T
]
T

eyaw
i j = θ

yaw
j − θ

yaw
i − θ̂

yaw
i j

et
i j = Ri (t j − t i )− t̂ i j , (16)

where θ
yaw
i , θ

yaw
j and θ̂

yaw
i j are corresponding yaw angles of

poses T i , T j and T̂ i j , respectively, Ri is the rotation matrix of
T i , and t i , t j and t̂ i j are translation vectors of corresponding
poses.

For better convergence, the problem in Eq. 15 is solved by
a two-stage pipeline. Primarily, an EM-based pose smoothing
is conducted to offer better initial values to the second stage
optimization with an affordable time cost. Then, the objective
function defined by Eq. 15 will be minimized by the LM
(Levenberg-Marquardt) scheme [38] in the second stage. For
the first stage, an important inequality is given as,

||e(T i , T j , T̂ i j )||
2
2

≤
1
2
(||ek

i (T i , T̂ i j )||
2
2 + ||e

k
j (T j , T̂ i j )||

2
2)

ek
i (T i , T̂ i j ) = [θ

yaw
i + θ̂

yaw
i j − E θ̂

yaw
i j , Ri (t i − E t̂ i j )− t̂ i j ]

T

ek
j (T j , T̂ i j ) = [θ

yaw
j − E θ̂

yaw
i j , Ri (t j − E t̂ i j )]

T , (17)

where E θ̂
yaw
i j and E t̂ i j can be any constant. For ease of repre-

sentation, we use ei j to represent e(T i , T j , T̂ i j ), and use ek
i

and ek
j to represent ek

i (T i , T̂ i j ) and ek
j (T j , T̂ i j ), respectively.

According to this inequality, by substituting ei j to the sum
of ek

i and ek
j and ignoring the Huber kernel, an approximated

version of Eq. 15 can be obtained as,

min
T

∑
(i, j)∈D(||ek

i ||
2
2 + ||e

k
j ||

2
2). (18)

where D consists of all data associations and is the union of
S, A and R. It can be easily proved that, ignoring the kernel
function, the optimal solutions of Eq. 15 and Eq. 18 will be
the same when,

E θ̂
yaw
i j = (θ̃

yaw
i + θ̃

yaw
j − θ̂

yaw
i j )/2

E t̂ i j = ( t̃ i + t̃ j − RT
i t̂ i j )/2, (19)

where θ̃
yaw
i , θ̃

yaw
j , t̃ i and t̃ j are all optimal solutions of

Eq. 15. Since the optimal solutions are unavailable, the EM
(Expectation-Maximum) framework [42] is adopted to smooth
all poses iteratively. In the E-step, we utilize the current values
of all frames’ poses to compute E θ̂

yaw
i j and E t̂ i j . Then in the

M-step, since each error term is only related to the pose of one
frame in Eq. 18, we can obtain the analytical optimal solution
and update the poses efficiently. For example, in kth iteration
of the smoothing, the optimal yaw angle kθ

yaw
i and position

k t i are given as,

kθ
yaw
i = Avg(

∑
(i, j)∈D

(E θ̂
yaw
i j − θ̂

yaw
i j )+

∑
(h,i)∈D

E θ̂
yaw
hi )

k t i = Avg(
∑

(i, j)∈D
(E t̂ i j − RT

i t̂ i j )+
∑

(h,i)∈D
E t̂hi ), (20)
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where Avg(∗) stands for the average value of all terms. Once
the new approximated optimal solutions kθ

yaw
i and k t i are

solved, E θ̂
yaw
i j and E t̂ i j can be further updated via Eq. 19

accordingly. By updating the poses of all keyframes and
the approximated optimal solutions alternately, the smoothed
poses will finally converge and they will be taken as the
initial values of the second stage of the pipeline, the non-linear
optimization.

V. DENSE MAPPING MODULE

The dense mapping module of CVIDS mainly consists of
three core sub-components, the motion-stereo pipeline, the
probabilistic depth filter and the global TSDF map. Based on
our motion-stereo scheme, the depth information of the refer-
ence keyframe can be recovered effectively from a single pair
of reference-matching frames. Then, the depth measurements
of a single pixel given by different matching frames will be
fused by our probabilistic filter, so as to eliminate the negative
impact brought by noise and outliers. Finally, “mature” depth
maps will be integrated to the global TSDF map to reconstruct
the 3D structure of the scene incrementally. In this section, the
specific ideas of these three sub-components will be elaborated
on one by one.

A. Motion-Stereo Pipeline

Given a pair of the reference frame Ir and the matching
frame Im , the target output of the motion-stereo pipeline is
the depth map Dr of Ir . Generally, the motion-stereo problem
can be modelled as minimizing an energy function E(Dr ).
Except for the basic template matching loss, motivated by [21]
and [23] the semi-global regularization term is also introduced
to our energy function. Besides, the sparse 3D map points
offered by clients can also provide high-quality supervision
information to the depths of corresponding pixels, so that
another “sparse prior” term is integrated. Finally, our energy
function is defined as,

E(D) = Etemp(D)+ Esemi (D)+ Esparse(D), (21)

where Etemp(D), Esemi (D) and Esparse(D) are the template
matching term, the semi-global regularization term and the
map-point term, respectively. These three terms can be further
represented as,

Etemp(D) =
∑

p
Cost[ p, D p]

Esemi (D) =
∑

p
(P1

∑
q∈N ( p)

T [|D p − Dq | = 1]

+ P2
∑

q∈N ( p)

T [|D p − Dq | > 1])

Esparse(D) = P3
∑
p∈M

∑
q∈C( p)

T [|Dq − Dmp
p | > 0], (22)

where N ( p) is the set consisting of all neighbouring points of
p, M is the set of all sparse map points, and C( p) contains
all points near p which are “connected” to p, or more exactly
share the same depth. For how to determine the connection
region C( p), please refer to Sect. V-B. D p, Dq and Dmp

p are

discretized inverse depths of p, q and the sparse map point
corresponding to p, respectively. Taking D p as an example,
the relationship between D p and p’s depth d p is given as,

d p =
1

D p × DS
, (23)

where DS is the constant of the searching step.
Since minimizing the energy function in Eq. 21 is actually

an NP-hard problem, some approximations are necessary to
prune the searching space. Specifically, according to [23],
similar to the idea of the “scan line optimization”, the depth of
p is assumed to only be related to itself and one neighbouring
pixel in direction r . Then, the problem can be solved by
dynamic programming efficiently,

L r( p, D) = Cost[ p, D] + P3 · T [|D p − Dmp
pn | > 0]

+min(L r( p−r, D−1), L r( p − r, D − 1)+P1,

L r( p − r, D + 1)+P1, min
i

(L r( p − r, i))+P2),

(24)

where p is in pn’s connection region C( pn), Dmp
pn is the depth

of the sparse map point corresponding to pn , r is the direction
vector, L r( p, D) is the aggregated loss. The final loss S(D),
which is the approximated value to E(D), is given as,

S(D) =
∑

p
∑

r L r( p, D p). (25)

The optimal solution of S(D) can be solved efficiently through
multiple times of the dynamic programming. So far, the dense
3D structure of the reference frame Ir has been recovered.

It’s worth mentioning that, we utilized the geometry based
motion-stereo pipeline in CVIDS mainly for engineering con-
siderations, since such a pipeline performs relative well in
both the speed and the generalization ability. It’s also easy
to replace such a pipeline with any other depth estimation
scheme according to the users’ own requirements, such as the
learning-based monocular depth estimation network, and such
replacement won’t change the basic operation mechanism of
CVIDS.

B. Connection Region Determination

The connection region C( p) of point p contains all points
near p which share the same depth with p, or more specif-
ically, which are in the same plane with p. In CVIDS,
to determine the region, we adopted a gradient-based heuristic
policy, which consists of two criteria:

1) The point in C( p) should be in a 10× 10 local window
whose center is p.

2) On the path between any point in C( p) and p, there
should be no pixels with the gradient moduli larger than
the threshold.

To determine the connection regions, we firstly detect those
pixels with large gradient moduli with the Sobel operator.
For ease of representation, we call these pixels as “boundary
pixels”, and for a boundary pixel pb on image Ib, it must
satisfy,

G( pb) > Gmean
b + σb, (26)
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Fig. 3. Illustration of the connection region. The pixels in the 10×10 window
but not belonging to the connection region are marked in blue, while the rest
pixels constitute the connection region.

where G( pb) is the gradient modulus of pb, Gmean
b is the mean

gradient modulus of Ib and σb is the corresponding standard
deviation. Then, for each boundary pixel pb, as Fig. 3
illustrated, we remove some corresponding “sheltered” pixels
from the connection region in the local 10×10 window. After
all boundary pixels’ corresponding removed pixels are culling,
the rest pixels in the local window constitute the connection
region. For any removed pixel pr , it must satisfy,

([ pr − p]x )2 < = [ pb − p]x · [ pr − p]x
([ pr − p]y)2 < = [ pb − p]y · [ pr − p]y, (27)

where [∗]x and [∗]y represent the coordinates in x and y axes
of the inner point, respectively.

C. Probabilistic Depth Filter

As discussed in Sect. V-A, for a pixel p on the reference
frame Ir , its inverse depth estimation dk

p from the matching
frame Ik can be yielded by our motion-stereo pipeline. Based
on the compact representation proposed in [19], the likelihood
distribution of p’s true inverse depth d̃ p can be modeled as a
mixture of a normal distribution (effective measurement) and
a uniform one (outlier measurement), which is represented as,

p(dk
p|d̃ p, ρ p) = ρ pN (dk

p|d̃ p, (τ p
k)2)

+ (1− ρ p)U(dk
p|dmin, dmax ), (28)

where τ p
k is the variance of the observation model, dmin

and dmax stand for the minimum and maximum possible
inverse depth of captured pixels, respectively, and the ratio
ρ p is the probability of getting an effective measurement at
p. Actually, for inlier observations, the measurement dk

p will
be predominantly affected by a white Gaussian noise, and
accordingly, the expectation d̃ p is set to dk

p and the variance
τ p

k is set to 2DS .
Assuming independent observations, given a sequence of

inverse depth estimations dk
p, dk+1

p , . . . , dk+r
p of p from corre-

sponding matching frames, the posteriori of p’s inverse depth
and the inlier probability ρ p is given as,

p(d̃ p, ρ p|dk
p, . . . , dk+r

p ) ∝ p(d̃ p, ρ p)

r∏
n=0

p(dk+n
p |d̃ p, ρ p),

(29)

where p(d̃ p, ρ p) is the prior distribution. For ease of repre-
sentation, the posteriori p(d̃ p, ρ p|dk

p, dk+1
p , . . . , dk+r

p ) is rep-
resented as pk+r (d̃ p, ρ p). Then the recurrence relationship of
the posteriori can be expressed as,

pn(d̃ p, ρ p) ∝ pn−1(d̃ p, ρ p)p(dn
p|d̃, ρ p). (30)

To keep the forms of the distribution before and after the
update uniform, the posteriori in Eq. 30 is further approxi-
mated by the product of a Beta distribution and a normal one,
which is formulated as,

pn(d̃ p, ρ p) ≈ q(d̃ p, ρ p|an
p, bn

p, µ
n
p, σ

n
p) = Betan

pN n
p , (31)

where an
p and bn

p controls the Beta distribution, and µn
p and

σ n
p are the expectation and the variance of N n

p , respectively.
For each time a new observation is received, the parameters
in the posteriori, including an

p, bn
p, µn

p and σ n
p , will alter, but

the form of the distribution remains, which allows to update
the posteriori incrementally.

Once the parallax between the reference frame and the
current frame exceeds the preset threshold, the old reference
frame will be set to be “matured” and its depth information
will be propagated to the current frame. Then, the current
frame becomes the new reference frame. It’s worth mentioning
that, we found the propagation of the “Beta” component
usually diverges the depth distribution, since the relative pose
won’t be absolutely accurate. Thus, the propagation is only
conducted on the “normal” component. For a point pr with
the inverse depth dr on the reference frame Ir , as the inverse
depth distribution of pr is propagated to the corresponding
point pc on the current frame Ic, the prior distribution of
pc’s inverse depth is set to,

p(dc, ρ|dr ) = Betan
p ·N (dc|

∂dc

∂dr
· µr , (

∂dc

∂dr
· σr )

2), (32)

and the derivative of dc to dr is given as,

∂dc

∂dr
= −[T cr ]33 ·

1
d2

r
, (33)

where T cr is the relative pose between Ir and Ic, and [∗]i j
represents the element in the i th row and the j th column of
the inner matrix.

The matured depth maps are then integrated into the global
map. Rather than utilizing all pixels, some outliers need to be
eliminated first. Since a and b control the Beta distribution
Betan

p = Beta(ρ|a, b), the ratio ρ, which reflects how
confident the depth estimation is an inlier, can be given as,

ρ =
a

a + b
. (34)

For a point p on the “matured” frame, only if p’s correspond-
ing ρ is larger than the threshold, which is set to 0.5 in our
implementations, it can be considered to be an inlier and be
fused to the global dense map. Besides, it’s worth mentioning
that rather than directly be fused into the global dense map,
the depth maps of “matured” frames will be temporarily stored
in a queue, since its global pose may still be unstable. Until
the global pose of the frame maintained stable and alters little
in the last two times of the global optimization, the depth map
of such a frame will be integrated into the global TSDF map.
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D. TSDF Fusion

Our implementations in this sub-component mostly follow
the work in [39] while some necessary modifications were
made. For each inlier pixel pc on the “matured” frame Ic,
since its inverse depth and the pose of Ic are known, a ray
emitting from the sensor origin to the scene will be cast and
both the signed distance and the weight of each voxel in
the hit region will be updated. The length of the hit region
τc is determined by the variance σ d

pc
of pc’s depth. Though

the corresponding variance σ pc of pc’s inverse depth dc has
already been deduced, we found it’s usually “over confident”.
Thus, instead of utilizing the result yielded by the depth filter,
σ pc is set to the variance of a single measurement, 2DS , and
then σ d

pc
and τc can be given as,

τc = 2σ d
pc
=

2σ pc

(dc)2 . (35)

For each voxel vc in the hit region of pc, its signed distance
8r (vc) and the weight W (vc) are updated as,

8r (vc) ←
W (vc)8r (vc)+

1
τc

u

W (vc)+
1
τc

W (vc) ← W (vc)+
1
τc

, (36)

where u is the corresponding signed distance of the measure-
ment. The weights and signed distances of all voxels will be
updated incrementally, and finally, through the meshing, the
global dense map can be constructed.

VI. EXPERIMENTAL RESULTS

A. Evaluation Metrics, Benchmark Datasets and
Hardware Architectures

The evaluation of CVIDS mainly focuses on two aspects,
the localization and the mapping. In terms of the localization,
we mainly tested CVIDS and its counterparts on the Euroc
dataset [40], and the RMSE (Root Mean Squared Error) [43]
is adopted as the metric to measure the accuracy, which is
evaluated by the ATE (Absolute Trajectory Error) and can be
given as,

eRM SE = (
1
M

M∑
i=1

||trans(Q−1
i Pi )||

2)
1
2 , Qi , Pi ∈ SE(3), (37)

where {Qi }
M
i=1 and {Pi }

M
i=1 are groundtruth and estimated

poses of all frames, respectively. The trans(.) represents the
translation part of the pose. M is the total number of frames.

For the mapping aspect, on the one hand, we displayed the
final mapping results of CVIDS over multiple sequences of
images and inertial data collected by us in handheld manners
using the Realsense D435i camera suites, so as to qualitatively
corroborate the effectiveness of our scheme. The camera in
each suite is a global shutter RGB camera produced by
Intel and the IMU is the Bosch BMI055 six-axes IMU. The
images captured will be firstly preprocessed by the Intel@

RealSenseT M Vision Processor D4. The resolution, frame rate
and FoV of the camera are 1920×1080, 30 fps and 69.4×42.5,
respectively.

TABLE I
QUALITATIVE COMPARISON WITH RELATED METHODS

On the other hand, the accuracy of the meshed dense
map is difficult to be measured quantitatively, while it is
usually directly related to the recovered depth structure of each
single frame. Thus, we utilized the average depth error of the
recovered depth map as the metric in mapping, and conducted
corresponding quantitative evaluations over the dataset pro-
posed in [41].

For the hardware architecture of the central server, we built
the server on a workstation with an Intel Xeon(R) CPU
E5-2678 V3 processor and a TITAN RTX GPU.

B. Qualitative Experimental Results

1) Traits of Methods: From those three aspects shown in
Table I, we compared all methods discussed in Sect. II and also
our CVIDS to demonstrate their characteristics more clearly.
1) What kind of sensor configurations does the method utilize?
2) Can it be applicable to the multi-agent system? 3) How
dense maps can be constructed by the scheme? It can be seen
that among all compared schemes, our CVIDS is the only one
which can both be applicable to the multi-agent system and
be able to construct the dense map under a configuration of
the monocular suite without the depth sensor, implying that
CVIDS is blessed with stronger environmental adaptability
compared with those RGBD oriented schemes and single-
agent ones.

2) Typical Samples of Recovered Depth Maps: To qual-
itatively demonstrate the superiority of our proposed depth
estimation pipeline in CVIDS, typical samples were selected
from both the “over table” and the “fast motion” sequences
in the dataset proposed in [41], and the yielded depth maps
of CVIDS and its competitors, including ReMode [18] and
VI-MEAN [21], are shown in Fig. 4. From Fig. 4, it can be
seen that ReMode [18] performed relatively unsatisfactorily in
weakly textured regions, such as the printer surfaces and the
computer screen, and in the results of VI-MEAN [21], obvious
outliers existed. By contrast, CVIDS obviously outperformed
its two competitors, which qualitatively reflected its remark-
able performance in mapping.

3) Reconstructed Dense Maps: We collected the data in
three different indoor or outdoor scenes with the Realsense
D435i camera suite in handheld manners, and then fed the
images and the inertial data to CVIDS, so as to justify the
effectiveness of CVIDS on online reconstructions. The final
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Fig. 4. Typical samples of recovered depth maps. Results provided in the upper group are from the “over table” sequence, while the bottom group corresponds
to the “fast motion” sequence. In each group of the results, the recovered depth maps, the original image and the error maps are shown in regions A, B and C,
respectively.

reconstruction results are displayed in Fig. 5, in which from
top to bottom, the results of the indoor single-agent mapping,
the indoor multi-agent mapping and the outdoor multi-agent
mapping are offered, respectively. From the experimental
results, it can be seen that our scheme can yield maps of the
surrounding environment in high density and quality.

C. Quantitative Experimental Results

1) Collaborative Localization Accuracy: To evaluate the
collaborative localization accuracy of CVIDS, we ran it under
the multi-agent configuration on the Euroc machine hall (MH)
dataset [40], and each sequence in the dataset (from MH_01 to
MH_05) was fed to a single agent. Then, the yielded trajecto-
ries of all agents were recorded and the corresponding RMSEs
were computed. Table II shows the quantitative comparison
of RMSEs obtained by CVIDS and its main counterparts,
including OKVIS [28], VINS-Mono [22], VIORB [29] and
CVI-SLAM [30]. From Table II, it can be seen that CVIDS
exhibits the lowest average RMSE of all sequences, confirming
its superiority for localization. It’s worth mentioning that,

TABLE II
RMSES OF COMPARED VISUAL-INERTIAL LOCALIZATION

SCHEMES ON EUROC MH DATASET (cm)

in the experiment, since the odometries we utilized in the
client-end were the non-loop version of VINS-Mono [22],
which performed unsatisfactory on the MH_05 sequence,
the performance of CVIDS on the fifth sequence was also
relatively inferior to that of CVI-SLAM and VIORB. However,
on MH_05, CVIDS performs obviously stronger than VINS-
Mono, which corroborates the significant performance gain
that our framework brings to the single agent.

2) Effectiveness of Loop Closure Detection Strategy:
To evaluate the superiority of our LCD strategy, we ran CVIDS
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Fig. 5. Typical samples of reconstructed dense maps. From (a) to (c),
the results correspond to the single-agent indoor mapping, the multi-agent
indoor mapping and the multi-agent outdoor mapping, respectively. And in
each group, the yielded dense map of CVIDS is shown on the left, while the
snapshot of the real scene is on the right.

under the multi-agent mode on the Euroc MH dataset [40].
For comparison, two other baselines were also tested, which
are 1) VINS-VIDS: The LCD module of VINS-Mono [22] is
utilized to substitute that in CVIDS; 2) ORB-VIDS: The LCD
module of VIORB [29] is adopted. The comparison are mainly
in terms of two aspects: the speed and the accuracy.

On the speed aspect, the time cost of CVIDS to finish
the LCD task for one frame is about 14.22ms, and the costs
of VINS-VIDS and ORB-VIDS are 13.99ms and 16.83ms,
respectively. From the results, it can be seen that the speed
performance of the LCD modules in VINS-VIDS and CVIDS
are almost the same, while both of them are faster than ORB-
VIDS, corroborating the efficiency of our proposed LCD strat-
egy. It’s worth mentioning that since the pairwise consistency
evaluation is running in the backend optimization thread rather
than the main one, it is not considered in the comparison.

On the accuracy aspect, the RMSEs of all compared
schemes are summarized in Table III. Thanks to our proposed
view-frustum based common-view judgement and four-DoF
pairwise consistency evaluation mechanism, CVIDS obviously
outperforms other two competitors. Thus, we can say our LCD
strategy shows excellent performance in both the speed and the
accuracy.

3) Depth Recovery Accuracy: Based on the dataset pre-
sented in [41], we quantitatively evaluated the accuracy of
the dense mapping module of CVIDS by the average depth
errors of the recovered depth maps. As main competitors,
the performance of ReMode [18] and VI-MEAN [21] were

TABLE III
RMSES OF OUR SYSTEMS UTILIZING DIFFERENT LCD

SOLUTIONS ON EUROC MH DATASET (cm)

TABLE IV
AVERAGE DEPTH MAP ERRORS OF COMPARED SCHEMES

ON THE DATASET [41] (cm)

TABLE V
TIME COST ANALYSIS IN THE MAIN THREAD OF CVIDS (ms/ f )

also tested. In the experiment, for each reference frame, its fol-
lowing multiple frames were considered as matching frames to
recover the depth structure. Then, for each compared method,
the average depth errors of all pixels were further computed.
It’s worth mentioning, for both VI-MEAN and CVIDS, five
reference frames were utilized, while thirty frames are utilized
in the evaluation of ReMode for its depth filter to converge.
The experimental results were summarized in Table IV. From
Table IV, it can be seen that CVIDS shows the overwhelming
superiority with respect to depth estimation, implying its
distinguished mapping performance.

4) Time Cost Analysis: The average time cost of each
component in the main thread of CVIDS is offered in Table V.
It can be seen that by means of the acceleration of the GPU,
for a single frame, CVIDS can complete both the localization
and the depth estimation in about 43ms, implying that CVIDS
achieves a frame rate of more than 20 fps and such a speed
performance satisfies the real-time requirements in most cases.

Since the pose graph optimization of CVIDS runs in the
background thread rather than the main thread, the relevant
time costs are not provided in Table V. Instead, we analyzed
its speed performance separately. Our optimization pipeline
consists of two stages, EM-based pose smoothing and the
nonlinear optimization, and the speed performance of both
stages is directly related to the number of frames involved in
the optimization. To evaluate the speed performance of CVIDS
more comprehensively, we recorded the time consumption
of each stage when using different numbers of frames, and
present the results in Fig. 6. From the result, it can be seen
that even if there are up to 3,000 involved frames, the global
optimization can still be completed within 2.5s, implying an
outstanding efficiency of our optimization pipeline.
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Fig. 6. Time costs of the two stages of our optimization pipeline with the
evolvement of the number of involved frames.

TABLE VI
TRACKING TIME COSTS IN THE MAIN THREADS OF

COMPARED SLAM SYSTEMS (ms/ f )

Besides, we also summarized the speed performance of
other collaborative SLAM systems and compared them with
CVIDS, including Forster et al.’s work [24], CoSLAM [25],
CCM-SLAM [27] and CVI-SLAM [30]. Detailed experimental
results are summarized in Table VI. It’s worth mentioning that
since most of the existing collaborative SLAM frameworks
don’t support the monocular dense mapping, we just compare
the time cost of the localization. From Table VI, it can be seen
that the speed performance of CVIDS is the second only to
CoSLAM, which is accelerated by GPU. For the consideration
of the localization accuracy and the support to monocular
dense mapping, we say that CVIDS performs well in the speed
while ensuring accuracy.

D. Ablation Study

1) Ablation Study for the LCD: As aforementioned, the
LCD in CVIDS is mainly conducted in two manners, the
BoW-based LCD and the view-frustum-based one. The BoW-
based LCD guarantees the map alignment and the optimization
can be accomplished on the rails, while the view-frustum-
based one significantly enhances the accuracy of CVIDS by
fully exploiting the advantages of the multi-agent system.
Besides, the pairwise consistent evaluation is also adopted to
cull outlier loop closures. To verify our claims, we try to justify
the effectiveness of these three components, respectively. It’s
worth mentioning that without the BoW-based LCD, different
local maps can’t be aligned, and thus the view-frustum-based
LCD won’t be conducted. Hence, we mainly compared CVIDS
with three baselines, which were 1) DV-VIDS: The view-
frustum-based LCD was deactivated; 2) DL-VIDS: Two types
of LCD were both deactivated; and 3) DP-VIDS: The pairwise
consistent evaluation was deactivated. CVIDS and these three
baselines were evaluated on the five sequences of the Euroc

TABLE VII
RMSES OF OUR SCHEME ON EUROC MH DATASET UNDER

DIFFERENT LCD CONFIGURATIONS (cm)

MH dataset [40], and the obtained quantitative experimental
results are summarized in Table VII. From Table VII, it can
be seen that CVIDS significantly overperforms the other three
baselines in terms of the localization accuracy, corroborating
the effectiveness of our LCD strategy.

It’s worth mentioning that, the reason why CVIDS performs
only slightly better than DP-VIDS is that, in general cases,
our loop closure detection strategy has already guaranteed the
correctness of loop closure measurements on the Euroc MH
dataset even without the pairwise consistent evaluation. Thus,
we also further introduce outlier loop closure measurements
manually in order to evaluate the performance gain brought
by the pairwise consistent evaluation more comprehensively.
For more details, please refer to the next paragraph.

2) Robustness Gain from Pairwise Consistency Evaluation:
Before the pose optimization, the pairwise consistency eval-
uation will be conducted so as to cull those failure mea-
surements of loop closures. Since in general there won’t be
quantities of outlier loop closures, so as to evaluate the per-
formance gain brought by this module more comprehensively,
we test our system on the Euroc machine hall dataset and
manually add disturbance to the relative pose of the loop
closure measurements. For comparison, we took DP-VIDS,
in which the pairwise consistent evaluation was deacti-
vated, as a baseline. Finally, We recorded the corresponding
RMSEs of the compared schemes under different disturbance
settings.

Actually, in reality, there are mainly two types of outlier
loop closure measurements: a) The recovered relative poses are
not accurate due to the influence of illumination, motion and
other relevant factors; b) Frames are incorrectly matched in the
process of the loop closure detection, resulting in loop closure
measurements that should not exist. To simulate these two
cases, two types of experimental settings were adopted. In the
first type of setting, we added different levels of disturbances
to all loop closure measurements to simulate case a). It’s
worth mentioning that, the unit disturbance is equivalent to
two centimeters of translation in three orthogonal directions
and two degrees of rotation corresponding to the yaw angle.
Relevant experimental results are summarized in Table VIII.
In the second type of setting, to simulate case b), we replaced
a certain proportion of loop closure measurements with outlier
observations generated between randomly selected frames, and
evaluated the localization performance of CVIDS and DP-
VIDS under different proportion settings. The experimental
results are summarized in Table IX. From Table VIII and IX,
it can be seen that our pairwise consistency evaluation module
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TABLE VIII
RMSES OF OUR SCHEME ON EUROC MH DATASET UNDER DIFFERENT LOOP CLOSURE DISTURBANCE CONFIGURATIONS (cm)

TABLE IX
RMSES OF OUR SCHEMES ON EUROC MH DATASET SUFFERING DIFFERENT NUMBERS OF OUTLIER LOOP CLOSURE MEASUREMENTS (cm)

can make substantial improvement on the localization accuracy
almost under all disturbance settings, implying its significance
for the robustness of CVIDS.

3) Ablation Study for the Localization: As aforementioned,
CVIDS supports the collaborative localization and mapping
under the multi-agent frameworks. Compared with the single-
agent ones, the perception of the multi-agent systems is
much stronger. To quantitatively corroborate our claims,
we performed detailed ablation analysis. Over the Euroc MH
dataset [40], we ran CVIDS in both the multi-agent and the
single-agent modes, and recorded the corresponding RMSEs
over each sequence of the data, respectively. Besides, the
performance gain in the localization accuracy brought by
the four-DoF based optimization and our pose smoothing
module were also evaluated. We demonstrate how different
components in our framework affect the localization accuracy
by comparing CVIDS with five baselines. Those baselines
were 1) SA-V: CVIDS ran in the single-agent mode; 2) 6D-V:
The six-DoF based optimization is utilized instead of the
four-DoF based one; 3) DS-V: The EM-based smoothing
in the optimization pipeline was deactivated; 4) DN-V: The
second stage of the optimization pipeline was deactivated;
and 5) DO-V: The pose optimization pipeline in the back-
end were thoroughly abandoned. The quantitative experimental
results were given in Table X. From the results, it can be
seen that both the multi-agent configuration and each stage of
our optimization pipeline are indispensable to guarantee the
localization accuracy of CVIDS.

TABLE X
RMSES OF OUR SCHEME ON EUROC MH DATASET UNDER

DIFFERENT LOCALIZATION CONFIGURATIONS (cm)

TABLE XI
AVERAGE DEPTH MAP ERRORS OF OUR SCHEME ON THE DATASET [41]

UNDER DIFFERENT STEREO-MOTION CONFIGURATIONS (cm)

4) Ablation Study for the Depth Estimation: We aim to
evaluate the performance gain brought by different terms of the
energy function E(D) defined in Eq. 21 which we utilized in
our stereo-motion pipeline. Thus, the performance of CVIDS
in terms of depth estimation was compared with other two
baselines on the dataset proposed in [41]. The two compared
baselines were 1) WS-VIDS: Without the semi-global regular-
ization term; and 2) WM-VIDS: Without the map-point term.
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Experimental results are summarized in Table XI. From the
table, it can be seen that the motion-stereo pipeline of CVIDS
under our current energy settings shows obviously superior
performance than the other two baselines, implying the indis-
pensability of each of the aforementioned energy terms.

VII. CONCLUSION

In this paper, we studied a practical problem, collaborative
localization and mapping for the multi-agent systems only by
monocular camera suites, and proposed a novel collaborative
dense SLAM framework, namely CVIDS. It follows a loosely
coupled and centralized architecture, and can be integrated
with any existing visual-inertial odometry to co-localize multi-
agents efficiently via our proposed robust loop closure detec-
tion module and the two-stage pose optimization pipeline.
Furthermore, based on the accurate poses in a unified reference
coordinate system of all keyframes, CVIDS can reconstruct
the scene densely. One eminent feature of CVIDS is that it
does not rely on any depth sensor, but utilizes the motion-
stereo pipeline we proposed to recover the depth structure
of the images collected by monocular cameras, which brings
low hardware costs and a wide scope of applications. The
experimental results corroborate the superior performance of
CVIDS.
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