
IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 25, 2023 3905

D-LIOM: Tightly-Coupled Direct LiDAR-Inertial
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Abstract—Simultaneous localization and mapping via LiDAR-
Inertial fusion is a crucial technology in many automation-related
applications. Recently, a number of approaches based on geometric
features have evolved, yielding impressive results via tightly-
coupled estimation. This sort of feature-based techniques, however,
are inextricably linked to the scanning mechanism of the LiDAR,
relying on stable feature detection, and thus are difficult to adapt
to multi-LiDAR systems. A few “direct” solutions, on the other
hand, register the raw point cloud with the built probability map,
which is more computationally efficient and easy to be extended.
But, the existing direct approaches are all loosely-coupled, lacking
correction of the IMU biases, and thus only work well in 2D
cases. To this end, we present D-LIOM, a tightly-coupled Direct
LiDAR-Inertial Odometry and Mapping framework. In D-LIOM,
a scan is directly registered to a probability submap, and the LiDAR
odometry, the IMU pre-integration, and the gravity constraint
are integrated to build a local factor graph in the submap’s time
window, allowing the system to perform real-time high-precision
pose estimation. Furthermore, to eliminate accumulated errors
in time, we detect loops and adjust the sparse pose graph based
on mutual matching of projected 2D submaps, allowing D-LIOM
to run stably in large-scale scenes. In addition, to improve its
flexibility to varied sensor combinations, D-LIOM supports multi-
LiDAR inputs and facilitates the initialization with a common
6-axis IMU. Extensive experiments demonstrate that D-LIOM
largely outperforms the existing state-of-the-art counterparts in
mapping effect and localization accuracy as well as with high
time efficiency. Lastly, to ensure that our results are entirely
reproducible, all necessary data and codes are made open-source
available. One introduction video can also be found on the online
website.

Index Terms—LiDAR-Inertial odometry, SLAM, loop detection,
data fusion.
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I. INTRODUCTION

S IMULTANEOUS localization and mapping (SLAM) is a
key technology in industrial automation, autonomous driv-

ing, and surveying and mapping [1]. In some GPS-denied sce-
narios, active sensors like LiDAR and IMU are frequently used
to build SLAM systems. LiDAR has been widely adopted for
SLAM system design because of its superior qualities of ex-
tended range, high accuracy, broad viewing angle, and lumi-
nosity insensitivity [2]–[5]. However, motion skewing and the
difficulties of establishing the relationship between sparse point
clouds have a significant adverse impact on the development of
a LiDAR-SLAM system. Taking full advantage of the IMU’s
instantaneous motion measuring capability will, of course, fa-
cilitate the pose estimation as well as boost the mapping perfor-
mance. As a result, various studies have been explored in recent
years to develop LiDAR-Inertial SLAM systems [6]–[11].1

About data fusion: Usually, a SLAM system comprises two
parts, a front-end and a back-end. The former estimates the car-
rier state in real time and the latter is designed to avoid the
drift of the front-end in a lower frequency. In the front-end
of a LiDAR-Inertial SLAM system, a fundamental issue is the
manner of data fusion. Existing methods about this issue may
be classified as loosely-coupled or tightly-coupled depending
on whether the IMU biases are estimated during fusion. The
loosely-coupled ones, for example, generally employ IMU mea-
surements solely for initial value estimates or resort to the widely
used mathematical tool, the Kalman filter, for data fusion [6],
[7], [11]. These techniques are straightforward in concept and
easy to implement, but they do not fully integrate the data from
the two types of sensors. On the other hand, some emerging
tightly-coupled approaches resort to Kalman filter [8], [12], [13]
or joint optimization [9], [10], [14], [15] to estimate the state and
IMU biases concurrently. Compared with the loosely-coupled
ones, the tightly-coupled ones can achieve improved results
thanks to the online estimation of the IMU biases.

About scan registration: Another important theme of the
front-end of a LiDAR-Inertial SLAM system is how to reg-
ister the arriving point cloud to previous scans. According to
the adopted registration strategies, the existing appoaches can
be roughly categorized into two types, feature-based ones and
direct ones. Since Zhang and Singh developed LOAM based
on line and surface feature points in 2014 [6], practically all
state-of-the-art solutions, such as LeGO-LOAM [7], LINS [8],
LIOM [9], and LIO-SAM [10], have been built based on the

1[Online]. Available: https://cslinzhang.github.io/D-LIOM/D-LIOM.html
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stated features in LOAM. The correlation between the feature
points of the previous and current scans is constructed in this
type of feature-based techniques to conduct registration. Al-
though these feature-based methods can directly establish the
connection between points to aid scan-to-scan registration, they
still suffer from several drawbacks. First, due to the sparseness
of the point cloud scanned by LiDAR, the extraction of line
points or surface points in LOAM, in fact, is highly coupled
with the scanning pattern of the sensor. To apply the algorithm
to a new type of sensor, the corresponding feature extraction
module must be redesigned. For instance, Lin et al. extended
LOAM to the Livox LiDAR in “LOAM-livox” [16]. Second,
the feature extraction for each LiDAR must be done separately
because of its coupled mechanism, making it hard to apply to
multi-LiDAR systems. Some approaches, on the other hand, do
not require the extraction of features, in which the registration is
fulfilled in a “direct” way by transforming the original point
cloud to obtain the maximum map probability. Kohlbrecher
et al. [17], Olson et al. [18] and Hess et al. [11], for exam-
ple, adopt a similar scan matching strategy, registering scans
to maps using the Gaussian-Newton method, producing pleas-
ing outcomes in the 2D case. Compared with the feature-based
ones, a significant advantage of the direct schemes is that they
can be adapted to any type of laser sensors and can be easily ex-
tended to multi-LiDAR systems. Moreover, the probability map
constructed by the direct approach can be seamlessly used for
upper-level applications such as path planning. However, in 3D
case, because of the sensitivity of the system to initial values
of poses, the existing loosely-coupled schemes based on direct
registration still can not achieve satisfactory results.

About loop detection: In the back-end of a LiDAR-Inertial
system, an efficient and automated loop detection is highly de-
sired to eliminate the accumulated errors. In recent years, the
rapid proliferation of computer vision technologies has given
rise to a growing number of scan-to-scan loop detection algo-
rithms which are specifically designed for 3D LiDAR SLAM.
Scan context [19] and Iris [20], for example, achieve place recog-
nition across scans by establishing a circular projected image
and extracting location features from it. Or some work attempts
to introduce deep learning technology to learn location features
end-to-end [21]. However, there is a premise assumption in these
algorithms. That is, the horizontal angle between the two scans
where the loop occurs must be close enough. Otherwise, the
success rate of loop detection will be considerably dropped.
Aside from these scan-to-scan loop detection studies, several
techniques aim to reduce accumulated errors at the system level
of SLAM. For instance, Hess et al. establish loop constraints
in [11] via brute-force scan-to-submap matching; the LOAM
series [6], [8], [9] resort to low-frequency scan-to-map registra-
tion to eliminate cumulative errors; and LIO-SAM [10] detects
a loop closure by an empirical distance threshold. However, all
these system-level designs can not effectively detect loop clo-
sures, which will lead to the cumulative error still difficult to
be eliminated in time when the system runs for a long time in
large-scale scenes.

To summarize, for one aspect, the tightly-coupled fusion
can achieve higher accuracy thanks to the estimation of the

IMU biases. Direct approaches, in another aspect, do not rely
on a specific scanning pattern and have superior scalability to
feature-based ones. However, the existing direct approaches are
all loosely-coupled, which severely limits their performance in
the 3D case. Therefore, in this article, we suggest performing
real-time tightly-coupled pose estimation via direct registra-
tion. Furthermore, reliable and fast loop detection is urgently
required in long-term SLAM, whereas establishing signatures
directly from sparse point clouds is extremely challenging. A
natural idea is that establishing location features from a rela-
tively dense map with accumulated multi-frame point clouds
should be feasible. To this end, we propose a loop detection
strategy based on submap-to-submap matching. As a result, a
tightly-coupled Direct LiDAR-Inertial Odometry and Mapping
framework, termed D-LIOM, is yielded.

When developing the front-end of D-LIOM, the difficulty
lies in how to properly combine the tightly-coupled optimiza-
tion with the direct registration. We believe that reasonable es-
timates of the IMU biases will be complemented by an accurate
registration of the point cloud and that the two can be alter-
nated over time to fulfill deep fusion. To achieve this goal, the
spatio-temporal synchronized incoming LiDAR data is first reg-
istered to a 3D probabilistic submap in a direct way instead of
by extracting and matching features. Subsequently, to correct
the IMU biases, we combine the IMU pre-integration and Li-
DAR odometry estimated from the direct registration into a local
factor graph in the time window of the submap. Besides, since
the gravity can be explicitly estimated using the optimized Li-
DAR odometry and IMU pre-integration, to limit the drift in the
roll and pitch directions, we also perform online gravity esti-
mation and take it as a priori factor to the local factor graph.
As a result, by jointly optimizing the factor graph, the opti-
mized states and biases can be obtained to de-screw the incom-
ing scan and predict initial states for the next round of update.
At D-LIOM’s back-end, benefiting from the online gravity esti-
mate, we can precisely project the 3D gravity-aligned submap to
the 2D horizontal plane. Further, resorting to the detection and
matching technology of image feature points, we can efficiently
detect loop closures and establish loop constraints via submap-
to-submap matching. Then, by optimizing the global pose graph,
the accumulated errors can be eliminated in time. Last but not
least, to improve the flexibility to different sensor configura-
tions, our D-LIOM enables initialization with a common 6-axis
IMU both under static and dynamic settings, as well as sup-
ports multi-LiDAR input benefiting from its direct registration
nature.

To learn the performance of the proposed D-LIOM, we car-
ried out extensive experiments on a self-collected dataset using
a handheld device from campus environments, a public indoor
dataset [22] gathered from an unmanned aerial vehicle (UAV),
and a public dataset [23] collected from complex urban environ-
ments with a vehicle-mounted platform. Experimental results
show that when the carrier rotates rapidly or the system works
in large-scale scenes, D-LIOM largely outperforms the existing
state-of-the-art counterparts, achieving more precise mapping
results and higher localization accuracy as well as with high
computing efficiency.
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The characteristics of the proposed D-LIOM and our contri-
butions can be summarized as follows:

1) At the front-end, we propose a tightly-coupled direct
LiDAR-Inertial odometry, which registers scans to prob-
abilistic submaps in a direct manner instead of employ-
ing feature extraction and matching, combines the IMU
pre-integration, the LiDAR odometry, and the estimated
gravity priori into a local factor graph and jointly estimates
the associated states with low drifts in real time.

2) At the back-end, we propose a robust and effective loop
detection approach via submap-to-submap matching. It
greatly reduces the computational cost while having quite
high precision and recall, which allows the back-end to op-
timize the global pose graph with a low delay and ensures
long-term mapping consistency.

3) To support various sensor configurations, D-LIOM en-
ables initialization with a common 6-axis IMU either when
the carrier is static or in motion, which makes the esti-
mated states gravity-aligned and enables D-LIOM to con-
nect with the upper-level applications seamlessly. Besides,
thanks to the inherent advantages of direct registration,
D-LIOM can support multi-LiDAR input and make full
use of data with complementary perspectives without an
observable efficiency loss.

4) To evaluate D-LIOM, a handheld device is developed to
gather data and D-LIOM’s effectiveness is fully demon-
strated via comprehensive experiments. At last, to make
our results fully reproducible and beneficial to the com-
munity, all the relevant codes and data have been made
open-source available online.2

II. RELATED WORK

In this part, we review the work highly related to our D-LIOM
from the perspective of how a point cloud is registered to its
previous scans.

A. Direct Approaches

To date, LiDAR-Inertial SLAM systems based on direct reg-
istration are mostly designed for 2D situations, and they all mine
IMU information via a loosely-coupled way. As a notable exam-
ple, Kohlbrecher et al. proposed a 2D-SLAM system [17], which
relies on high-precision LiDAR to achieve incremental mapping
by directly registering 2D point clouds with the built probability
map. In order to adapt the 2D-SLAM system to platforms mov-
ing in 3D (such as unmanned aerial vehicles), Kohlbrecher et al.
resorted to a 9-axis IMU’s orientation measurement to project
the observed points into the 2D plane. In a similar study [11],
the well-known Cartographer is proposed by Hess et al., which
integrates some typical techniques and skills of direct LiDAR
SLAM and achieves fast and accurate front-end recursion by
continuously constructing submaps and registering scans to the
submaps with a direct manner. On its back-end, Hess et al. con-
struct constraints by registering scans to submaps one by one,
thus forming a sparse pose graph to optimize. By recursing and
estimating IMU observations independently, Cartographer can
predict the approximate pose from a 6-axis IMU. Benefiting

from the fact that the IMU information is fused to some ex-
tent and the sparse pose adjustment introduced in its back-end,
Cartographer is thus far the state-of-the-art 2D LiDAR-SLAM
scheme. However, in the 3D case of Cartographer (abbreviated
as Carto3D), on one hand, the IMU’s loosely-coupled recursion
accuracy is insufficient, causing its front-end registration perfor-
mance to deteriorate. On the other hand, neither its brute-force
matching accuracy at the back-end nor its loop detection rate are
high enough, resulting in a considerable drift in the system over
time.

B. Feature-Based Schemes

Different from the direct way of probabilistic registration be-
tween scans and existing maps, a large corpus of schemes try
to estimate pose by extracting feature points, lines, or surfaces
from laser point clouds. Among these feature-based methods,
a milestone is LOAM proposed by Zhang and Singh [6]. At
LOAM’s front-end, line and plane features are extracted via
assigning thresholds to the curvatures of the LiDAR beams.
With these features, a high-frequency scan-to-scan registration
is conducted by optimizing point-to-line and point-to-plane er-
ror terms. At LOAM’s back-end, the accumulated error is elim-
inated by registering the incoming scan’s feature points to the
built map’s feature points with a lower frequency. To adapt to em-
bedded hardware, Shan et al. optimized the feature point extrac-
tion of LOAM’s front-end, resulting in LeGO-LOAM [7], which
improved the speed of inter-frame matching and enhanced the
robustness of registration. The above-mentioned two schemes,
however, suffer from considerably drop in performance when
the carrier travels with fast motion due to the loosely fusion of
the IMU data.

To fuse IMU information more deeply, recent years have wit-
nessed a growing interest in the research for tightly-coupled
fusion of LOAM features [6] and IMU data. According to the fu-
sion strategies adopted, these tightly-coupled approaches can be
roughly categorized as filter-based ones and optimization-based
ones.

The filter-based schemes usually fuse IMU information by
means of the Kalman filter. For instance, Qin et al. proposed
LINS [8], which is based on the iterative error-state Kalman
filter and makes use of LeGO-LOAM [7] to extract a scan’s
feature. Its front-end recursively predicts the carrier’s pose and
concurrently uses LiDAR observation to update the IMU bi-
ases, thus improving the relative localization accuracy. In line
with the filter-based LINS, several work attempt to fuse Li-
DAR, IMU and camera data in a unified framework [24]–[26].
In [24], Zuo et al. proposed a framework LIC-Fusion similar to
MSCKF [27] (an error-state Kalman filter based visual-inertial
odometry framework), using LiDAR measurements and cam-
era observation to update the carrier state and IMU biases. In
a recent work, LIC-Fusion 2.0 [25], the tracking technology
from point to plane in a sliding window is introduced to ex-
tend LIC-Fusion [24]. Although these filter-based schemes are
computationally efficient, their localization errors will accumu-
late rapidly with time due to the adverse influence of the low
linearization accuracy.
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Another branch of tightly-coupled schemes resort to joint op-
timization to fulfill the goal of effective data fusion. In [9], Ye et
al. proposed LIOM, where the data fusion problem is casted
as a multi-constraint optimization problem incorporating the
inter-frame relative motion term, the IMU pre-integration term,
and the error terms of laser feature points in a local sliding win-
dow, achieving the deep fusion of LiDAR and IMU. To elim-
inate accumulated errors, LIOM also resorts to the back-end
“Mapping” mechanism in LOAM [6]. Despite the fact that the
computation load is restricted in the local window, LIOM is
still constrained by the enormous dimensions of the variables
to be optimized. Moreover, it is still difficult to eliminate the
long-term accumulated errors by only registering scans to lo-
cal maps at its back-end. Recently, based on their previous work
LeGO-LOAM [7], Shan et al. proposed LIO-SAM [10] by using
“Smoothing and Mapping” which provides an efficient solution
to the full SLAM problem by factorizing the sparse smoothing
information matrix [14], [15]. LIO-SAM solves the SLAM prob-
lem by constructing two sub-graphs. At its front-end, LIO-SAM
builds constraints between IMU pre-integration and keyframes
corrected by map registration to optimize states. At its back-end,
LIO-SAM builds a factor graph with the keyframe factor, the
GPS factor, and the loop closure factor to eliminate accumulated
errors. By decomposing the optimization problem, LIO-SAM
corrects the recurrence error of the front-end by registering the
keyframes to maps and triggering loop detection by an empirical
distance threshold, achieving the best result of LiDAR-Inertial
fusion to date. However, LIO-SAM’s success rate of loop detec-
tion is heavily affected by the empirical threshold, which largely
degrades its actual performance in large-scale scenes as our ex-
perimental results reveal.

III. METHODOLOGY

A. Notation

To make the following discussions clearer, some notations
utilized are defined here in advance.

Spatial Frames: We use (·)w to represent the world frame,
(·)b to express the body frame (IMU frame), and (·)l to denote
the LiDAR frame. The z-axis of the world frame is assumed to
be vertical to the horizontal plane. And the initial node’s heading
is taken as the yaw angle reference.

Superscript And Subscript: The lower right corner stands for
the owner or reference time of the state quantity. The upper right
corner denotes the reference coordinate system. The upper left
corner implies some special attributes depending on the specific
context.

States And Transformation: A rotation matrix R or a quater-
nion q is indiscriminately utilized to denote a 3D rotation. p
and v identify the 3D spatial position and velocity of the car-
rier, respectively. g represents the gravity. For compactness of
expression, we use T to denote the compound transformation of
a rotation R and a translation t.

For a specific node nk (with the same timestamp k of a cor-
responding LiDAR scan), its associated state to be estimated is
defined as a tuple, (pw

bk
,vw

bk
, qw

bk
, ab, ωb), where ab and ωb are

the biases of accelerometer and gyroscope measurements which
are driven by random walk.

General Mathematical Symbols: ‖ · ‖ means to take the l2-
norm of the operated variable. Exp denotes the mapping of an el-
ement in so(3)/se(3) to the special orthogonal/Euclidean group
SO(3)/ SE(3), which conforms to,

Exp : so(3) � φ → exp(�φ�×) ∈ SO(3)

se(3) � ξ → exp(�ξ�×) ∈ SE(3).

Given φ = [φx, φy, φz]
T ,ρ ∈ R3×1 and ξ = [φT ,ρT ]T , the

operator �·�× produces the matrices of the associated vectors
as,

�φ�× =

⎡
⎢⎣ 0 −φz φy

φz 0 −φx

−φy φx 0

⎤
⎥⎦ and �ξ�× =

[
�φ�× ρ

0T 0

]
.

B. Framework Overview

The overall framework of our D-LIOM is illustrated in Fig. 1.
To help understand the functionality of the framework clearly,
its key modules are briefly introduced beforehand.

First, all the input data need to be preprocessed before being
allowed to flow into the subsequent steps. The point clouds of
multiple LiDARs are aligned temporally and spatially with the
primary LiDAR. Meanwhile, the IMU pre-integration between
two scans is also obtained. When in initialization, we estimate
the associated states and align the system with the world frame.
After the system is initialized, the preprocessed data is fed into
the front-end, a tightly-coupled direct LiDAR-Inertial odometry.
By combining the factors of laser odometry, IMU pre-integration
and gravity priori, the front-end can perform high-precision real-
time pose estimation. Lastly, the back-end receives the submaps
constructed by the front-end, detects loop closures by submap-
to-submap matching, constructs and optimizes a global pose
graph to eliminate accumulated errors.

C. Measurement Preprocessing

1) IMU Pre-Integration: The raw acceleration and angular
velocity readings of the IMU come from its local coordinate
system b at any given time. The physical measurement model of
an IMU is,

ãb
b = Rw

b
T (aw

b − gw) + ab+ an, (1)

ω̃b
b = ωb

b +
ωb+ ωn, (2)

where ãb
b and ω̃b

b denote the measurements of the accelerometer
and the gyroscope, respectively. ab and ωb are the biases of
acceleration and angular velocity as defined in Sect. III-A, while
an andωn represent the measurement noise of the accelerometer
and the gyroscope respectively.

If the initial state of the carrier in the world system is known,
we can predict the state at time t theoretically according to
the well-known Newton’s law via integrating the IMU read-
ings. However, when we update an estimated historical state,
all associated states must be re-integrated, which is extremely
time-consuming and impractical. To cope with this problem,
we resort to the “IMU pre-integration” [28] technology, which
skillfully establishes the correlation between the relative motion
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Fig. 1. Framework overview of D-LIOM. In “Measurement Preprocessing,” the inputs from multiple LiDARs and an IMU are synchronized to the timestamp
of the primary LiDAR, and the IMU pre-integration is used to predict the initial value of the relative motion between two scans. In “System Initialization,” all the
starting states are roughly estimated and the system is aligned with the world frame. The front-end LiDAR-Inertial odometry receives the result of scan-to-submap
matching, IMU pre-integration, and gravity estimation, constructs a factor graph within the time window of the submap, solves it in real time, estimates states,
and updates the IMU biases. The back-end integrates the result of submap-to-submap loop detection, constructs a global pose graph, jointly adjusts the poses of
submaps and nodes, and eliminates accumulated errors.

and the raw IMU data. According to Forster’s results, the rela-
tionship among the IMU pre-integration, true states and noises
conforms to,

ΔR̃
bi
bj

≈ Rw
bi

TRw
bj

Exp(δφbi
bj
),

Δṽbi
bj

≈ Rw
bi

T (vw
bj
− vw

bi
− gwΔtij) + δvbi

bj
,

Δp̃bi
bj

≈ Rw
bi

T

(
pw
bj
− pw

bi
− vw

bi
Δtij − 1

2
gwΔtij

2

)
+ δpbi

bj
,

(3)

where, δφbj
bi
, δv

bj
bi

and δp
bj
bi

are the Gaussian noises of the pre-
integration measurements.

2) LiDAR Data Synchronization and De-Skewing: Since Li-
DAR data is collected via point-by-point scanning, it is neces-
sary to synchronize each LiDAR point from two dimensions,
temporal and spatial. That is to say, the point clouds of different
LiDARs are first aligned according to a unified time reference.
Then, the point clouds in the local coordinate system of each
LiDAR are transformed to the same reference frame in the spa-
tial dimension. Meanwhile, the de-skewing of each point should
also be considered.

Time synchronization: Let’s assume that we have one pri-
mary LiDAR and several auxiliary LiDARs, and each LiDAR
point has a corresponding timestamp (all modern multi-line Li-
DARs have this attribute). As shown in the “LiDAR Synchro-
nization” module in Fig. 1, we take the timestamps of the current
scan and the previous scan of the primary LiDAR as reference,
extract all the data points whose timestamps fall between the

time interval from each auxiliary LiDAR, and reorder them to-
gether with the arriving scan’s points from the primary LiDAR
according to their timestamps to obtain the fused point cloud.

Spatial synchronization and de-skewing: In the previous
step of time synchronization, we have obtained the point cloud
arranged in time order. At the same time, by pre-integrating
the IMU readings between the time interval of the previous
scan and the current scan, we can obtain the relative motion ap-
proximation from the last scan to the current scan, and perform
de-skewing of the point cloud accordingly. Assume that the rela-
tive motion estimated from the IMU pre-integration and the state
at the last scan is T bi

bt
. By applying the 3D transformation rule,

the conversion from a LiDAR point plt
t ∈ R3×1 with timestamp

of t to frame bi can be written as P bi
t = T bi

bt
T b

l [p
ltT
t , 1]T .

D. System Initialization

Two tasks must to be executed when performing initializa-
tion. One is to roughly estimate the initial states of the carrier
(including the position, the velocity, the rotation and the IMU
biases), and the other is to determine the gravity so as to align
all the states to the world frame.

Considering that the carrier may be static or in motion when
performing the initialization, we will discuss the initialization
solutions for both of these two situations in the following two
subsections.

1) Static Initialization: At still state, the acceleration mea-
sured by IMU should be opposite to the acceleration of the
gravity. Assuming that the modulus of the gravity is known and
constant to be G, the relative pose of IMU relative to the world
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frame, Rw
b0

, can be obtained by aligning the acceleration mean
vector with the reverse vector of the gravity in a short period. Be-
sides, the average value of angular velocity measurements in this
period can be regarded as a reasonable estimate of the gyroscope
bias. Naturally, the position, the velocity, and the accelerometer
bias are all initialized to 0. As a result, the initialization at static
state can be accomplished by,

R̂
w

b0
= Rot(ĝb0 ,−gw),

v̂w
b0

= 0, p̂w
b0

= 0, ab̂b0 = 0,

ωb̂b0 = Avg

(∑
t

ω̃

)
, ĝb0 = Avg

(∑
t

ã

)
, (4)

where Avg(·) calculates the mean of the measurements in the
time window and Rot(·) returns the rotation matrix between two
vectors, which is given by,

c = ĝb0 × (−gw) = gw × ĝb0 ,

Rot(ĝb0 ,−gw) = I + �c�× + �c�2×
1 + (ĝb0 · gw)

‖c‖2 . (5)

2) Dynamic Initialization: Inspired by Mur-Artal&Tardøs’s
approach [29] and Qin et al.’s work [30] designed for Visual-
Inertial SLAM, in this part, we present a method to initialize a
LiDAR-Inertial system when the carrier is moving.

Initialization of gyroscope bias: Ideally, if there is no bi-
ases in IMU data, the pre-integration of angular velocity should
be close to the rotation estimated by LiDAR odometry. Based on
this assumption, we establish a constraint equation to estimate
the initial gyroscope bias.

To achieve the goal above-mentioned, the first step is to re-
trieve the relative transformation between two LiDAR scans. For
scan-to-scan matching, the “Iterative Closest Point” (ICP) [31]
and “Normal Distribution Transform” (NDT) [32] are two com-
monly utilized conventional methods. ICP iteratively establishes
the point-to-point correspondence, while NDT optimizes the
transformation parameters between point clouds by building
probability voxels. Comparatively speaking, ICP is more sensi-
tive to the initial alignment, while NDT is more robust to noise
benefiting from its probability nature. Hence, we resort to NDT
to obtain a reasonable estimate of the relative transformation.
Meanwhile, the IMU pre-integration between two LiDAR scans
can be obtained by Eq. 3. As a result, the optimal step to update
the gyroscope bias, δb∗ω , can be determined via,

δb∗ω = argmin
δbω

∑
k

‖q̂bk
l0

⊗ q̂l0
bk+1

⊗Δq̃
bk+1

bk
‖2, (6)

where Δq̃
bk+1

bk
is the rotation quaternion of the pre-integration

between the k-th scan and the (k + 1)-th scan, q̂bk
l0

and q̂l0
bk+1

are the rotations computed via the NDT registration, and the
operator “⊗” implies the compound rotation of the two operated
quaternions.

When moving with a microscopic rotation, the following
equation holds,

Δq
bk+1

bk
≈ Δq̃

bk+1

bk
⊗
[

1
1
2J

Δq̃
bω

δbω

]
. (7)

The minimum of the rotation difference ( (6)) is a unit quater-
nion,

q̂bk
l0

⊗ q̂l0
bk+1

⊗Δq̃
bk+1

bk
=

[
1

0

]
, (8)

so with (7), the objective function expressed by (6) can be further
transformed into,[

1
1
2J

Δq̃
bω

δbω

]
= Δq̃

bk+1

bk

−1 ⊗ q̂
bk+1

l0
⊗ q̂l0

bk
⊗
[
1

0

]
. (9)

Furthermore, when considering only the imaginary part, we
have,

JΔq̃
bω

δbω = 2(Δq̃
bk+1

bk

−1 ⊗ q̂
bk+1

l0
⊗ q̂l0

bk
)2:4. (10)

According to Forster et al.’s conclusion [28], the Jacobian JΔq̃
bω

has the form,

JΔq̃
bω

=

j−1∑
i=0

(−Δq̃
bj
bi+1

Jr((ω̃i − ωb0)Δt)Δt), (11)

where the subscript i and j indicate the index of IMU readings
between the k-th and the (k + 1)-th LiDAR scan. And the right
Jacobian Jr(φ) can be calculated by,

Jr(φ) = I − 1− cos(‖φ‖)
‖φ‖2 +

‖φ‖ − sin(‖φ‖)
‖φ‖3 �φ�2×. (12)

Consequently, using the results of (11) and (12), a rough es-
timation of the gyroscope bias can be obtained by establishing
over-determined equations of (10) from multiple LIDAR scans
and IMU readings in the window.

Initialization of pose, velocity and gravity: As analysed
above, the transformation of each scan relative to its previous
scan can be obtained by NDT matching [32]. If we take the first
scan in the window as a reference, all scans in the window can
be transformed to the reference frame of the first scan.

Denote the gravity vector in the first scan’s frame by gl0 .
Variables in the window, including the velocity of each node
vk, k ∈ [i, j] and the gravity gl0 , need to be estimated. The
residual is defined as the error between the pre-integration (p̃,
ṽ) and the relative odometries estimated by NDT matching, and
accordingly the following equations should hold,[
δpbk

bk+1

δvbk
bk+1

]

=

[
p̃bk
bk+1

− R̂
bk
l0
(p̂l0

bk+1
− p̂l0

bk
− R̂

l0
bk
vbk
bk
Δtk − 1

2g
l0Δtk

2)

ṽbk
bk+1

− R̂
bk
l0
(R̂

bk+1

l0
v
bk+1

bk+1
− R̂

bk
l0
vbk
bk

− gl0Δtk)

]
.

(13)

In initialization, the relative motion estimated from LiDAR data
and IMU pre-integration can be regarded as the same, i.e.,
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[δpbk
bk+1

, δvbk
bk+1

]T = 0. Thus, (13) can be further transformed
into a linear equation,⎡
⎣−IΔtk 0 − 1

2R̂
bk
l0
Δtk

2

−I R̂
bk
l0
R̂

b
l0
k+1

−R̂
bk
l0
Δtk

⎤
⎦
⎡
⎢⎣

vbk
bk

v
bk+1

bk+1

gl0

⎤
⎥⎦

=

[
Δp̃bk

bk+1
− pb

c + R̂
bk
l0
R̂

l0
bk+1

pb
c − R̂

bk
l0
(p̂l0

bk+1
− p̂l0

bk
)

Δṽbk
bk+1

]
.

(14)

Moreover, for a specific location, the modulus G of the gravity
vector is generally known, so we also append the constraint,
‖gl0‖ = G, to (14).

In this way, the velocity of each node and the gravity with
respect to the first node’s frame can be estimated by establishing
(14) with the observed data from multiple nodes in the window.
Furthermore, the position and rotation of all the nodes can be
transformed to the world frame by calculating the pose of each
node relative to the first node from the estimated gl0 and relative
NDT transformations.

E. Front-End: Direct LiDAR-Inertial Odometry

The goal of the front-end is to simultaneously construct a
high-precision local submap and to accurately perform pose es-
timation in real time, which is a typical SLAM problem. To
achieve this goal, in this part, we will first introduce the model-
ing of the SLAM problem, and then present how to incorporate
the observed data into the model.

1) SLAM Via Quadratic Optimization: First, we briefly re-
view how to cast a SLAM problem from its probability model
to the corresponding quadratic optimization problem. The no-
tations in this part follow the custom of Thrun et al.’s defini-
tion [33].

Assuming that the pose of the carrier at timestamp t is
xt = (pw

t
T ,vw

t
T , qw

t
T )T , the map created is M, and accord-

ingly the states to be estimated for a full SLAM problem
comprise all the involved poses and the map, namely y0:t =
[x0

T ,x1
T , . . . ,xt

T ,MT ]T . For a specific node with times-
tamp t, we denote its combined state with the map by yt =
[xt

T ,MT ]T . According to the Bayesian law, the posterior of
y0:t can be expressed as,

P (y0:t|z1:t,u1:t)

=ηP (y0)
∏
t

[P (xt|xt−1,ut)
∏
i

P (izt|yi,
ict)], (15)

wherez1:t denotes all the measurements, izt is the i-th measure-
ment at timestamp t, ict encodes the correspondence between
izt and the landmarks in M, u1:t is the control input, η is the
normalization coefficient, and P (y0) implies the distribution of
the initial state (x0) of the carrier and the map priori.

Usually, a SLAM process accompanies with control and ob-
servation inputs,

xt = f(ut,xt−1) +
xn, (16)

izt = h(yt,
ict) +

zn, (17)

where f(·) and h(·) are generally nonlinear functions, while xn
and zn are Gaussian noises of the state and the observation with
covariance matrices Λt and Σt, respectively.

Our goal is to estimate all the states which make (15) achieve
its maximum probability. This MAP (Maximum A Posteriori)
problem can be equivalently transformed into a function that
maximizes the log-posterior probability, i.e.,

y∗
0:t = argmax

y0:t

logP (y0:t|z1:t,u1:t)

= argmax
y0:t

logP (x0) +
∑
t

[logP (xt|xt−1,ut)

+
∑
i

logP (izt|yt,
ict)]. (18)

Further using (16) and (17), (18) is equivalent to,

y∗
0:t = argmin

y0:t

xT
0 Λ0x0

+
∑
t

(xt − f(ut,xt−1))
TΛ−1

t (xt − f(ut,xt−1))

+
∑
t

∑
i

(izt − h(yt,
ict))

TΣ−1
t (izt − h(yt,

ict)),

(19)

In practical applications, it is impossible to accurately calculate
f(·) and h(·) in (19). A feasible alternative is to take their Taylor
expansions at the current estimated values. That is,

f(ut,xt−1) ≈ f(ut,μt−1) +Gt(xt−1 − μt−1), (20)

h(yt,
ict) ≈ h(μt,

ict) +
iHt(yt − μt), (21)

where Gt and iHt are Jacobian matrices of f(·) and h(·), while
μt is the current estimate of the state vectoryt. Thus, substituting
(20) and (21) into (19) yields,

y∗
0:t = argmin

y0:t

xT
0 Λ0x0

+
∑
t

xT
t−1:t(−GT

t ,1)
TΛ−1

t (−GT
t ,1)xt−1:t

− 2xT
t−1:t(−GT

t ,1)
TΛ−1

t [f(ut,μt−1)−Gtμt−1]

+
∑
i

yT
t
iHT

t Σ
−1
t

iHtyt

− 2yT
t
iHT

t Σ
−1
t [izt − h(μt,

ict) +
iHtμt], (22)

where xt−1:t concatenates the poses at t− 1 and t into one vec-
tor.

Further, all quadratic terms in (22) can be collected into a
matrix A, and its linear terms can be organized into a vector
b in the same manner. Thus, the full SLAM problem can be
expressed as a standard quadratic optimization problem,

δy∗
0:t = argmin

y0:t

(
yT
0:tAy0:t + 2yT

0:tb
)
. (23)

Eventually, this quadratic optimization problem can be solved
efficiently via numerical optimization approaches, such as the
Gaussian-Newton algorithm or the Levenberg-Marquardt algo-
rithm [34], [35].
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In our case, IMU pre-integration essentially corresponds to the
control input of the SLAM system, which has been introduced in
detail in Section III-C1. Next, we focus on the factor construction
of two measurement inputs, i.e., the LiDAR odometry and the
gravity priori.

2) LiDAR Odometry Factor:
Submap representation: In 2D LiDAR SLAM, the 2D

space is usually expressed as an occupied grid map [18], [33].
In the 3D case, it can be naturally extended to an occupied voxel
map (OVM) [36]. In OVM, each element caches the state (o) of
the voxel, and its stored value, odd(v) = P (o=1)

P (o=0) , is the ratio of
the probability that the voxel is occupied (o = 1) to free (o = 0).

When a new observation z is generated, the ratio will be up-
dated as odd(v|z) = P (o=1|z)

P (o=0|z) . Applying the Bayesian rule, we
have,

P (o = 1|z) = P (z|o = 1)P (o = 1)

P (z)
,

P (o = 0|z) = P (z|o = 0)P (o = 0)

P (z)
, (24)

hence yielding,

odd(v|z) = P (o = 1|z)
P (o = 0|z) =

P (z|o = 1)

P (z|o = 0)
odd(v). (25)

Further taking the logarithm of (25), we have,

log odd(v|z) = log
P (z|o = 1)

P (z|o = 0)
+ log odd(v). (26)

Moreover, the observed value has only states of hitting (1) or
missing (0), namely,

Cmissing = log
P (z = 0|o = 1)

P (z = 0|o = 0)
,

Chitting = log
P (z = 1|o = 1)

P (z = 1|o = 0)
. (27)

Since Cmissing and Chitting are all constant values, as a result,
for the probability update of a voxel, it is only necessary to
perform addition or subtraction as (26) reveals.

In order to save storage and update the map efficiently, we
represent each submap as an octree, maintain a virtual space
partition at the beginning, and allocate the actual memory only
when real data is observed.

Scan-to-submap matching: Thanks to the real-time cor-
rection of the IMU biases, we can infer a reliable initial pose
from the IMU readings. Therefore, the registration of a scan to
a submap is carried out in a local range. Here, we give a 3D
scan-to-submap matching approach.

Given a 3D point pw, its corresponding probability in the
mapM(pw) can be directly queried and its gradient�M(pw) =
[∂M∂x , ∂M

∂y , ∂M
∂z ]|pw can be approximated by its six adjacent vox-

els in the map.
Assume that the associated Lie algebra of the current esti-

mated pose is ξ̂ = [φ̂
T
, ρ̂T ]T ∈ se(3). We regard the probabil-

ity difference between the transformed point and the known map

as the residual term,

Res(ξ̂) =
∑
i

[1−M(T i(ξ̂))]
2, (28)

where Res(·) calculates the residual with respect to the operated
parameter, M(·) returns the probability of the associated voxel,
andT i(ξ̂) stands for transforming a LiDAR pointpl

i with the as-
sociated parameter ξ̂, i.e., T i(ξ̂) = Exp(ξ̂) [pl

i 1]T . Note that
the result of T i(ξ̂) is a homogeneous coordinate which is a vec-
tor in R4×1 and whose last element is 1. When M(·) or �M(·)
acts on it, it will be implicitly converted into a non-homogeneous
coordinate.

When there is an approximate initial value, the optimal δξ can
be determined near the value to minimize Res(ξ̂). That is,

δξ∗ = argmin
δξ

∑
i

[1−M(T i(ξ̂ + δξ))]2. (29)

Carrying out the first-order Taylor expansion of (29) and apply-
ing the chain rule, we have,

δξ∗=argmin
δξ

∑
i

[
1−M(T i(ξ̂))−�M̆(T i(ξ̂))

ˆ∂T i(ξ)

∂ξ
δξ

]2
,

(30)
where (̆·) appends an element 0 to the associated 1× 3 vector

and
ˆ∂T i(ξ)
∂ξ = ∂T i(ξ)

∂ξ |ξ̂ with a little bit abuse of notation. (30)
reaches its minimum when the partial derivative to δξ is 0. Solv-
ing δξ at this time produces the corresponding Gaussian-Newton
minimization equation,

δξ∗=H−1
∑
i=1

[
�M̆(T i(ξ̂))

ˆ∂T i(ξ)

∂ξ

]T
[1−M(T i(ξ̂))],

(31)

where

H =

[
�M̆(T i(ξ̂))

ˆ∂T i(ξ)

∂ξ

]T [
�M̆(T i(ξ̂))

ˆ∂T i(ξ)

∂ξ

]
,

ˆ∂T i(ξ)

∂ξ
=

[
I

∂Exp(φ)pl
i

∂φ |φ̂
0T 0T

]
. (32)

and the derivation of ∂Exp(φ)pl
i

∂φ is given in Section VI.
As a consequence, the optimized LiDAR odometry can be

converted as a unitary factor to the local factor graph. The Jaco-
bian of such a unitary factor with respect to the node’s pose is an
identity matrix, and the associated covariance can be calculated
by Var(ξ̂) = σ2 ·H−1, where H can be calculated via (32) and
σ is related to the accuracy of the LiDAR [37].

3) Gravity Priori Factor: After system initialization, we can
roughly align the states to the world frame. However, the esti-
mated gravity may suffer from a drift over time. To this end, we
consider using the optimized states to dynamically estimate the
gravity and taking it as a constraint to participate in the optimiza-
tion of the subsequent nodes. In this way, the system is expected
to keep low drift of roll and pitch angles under long-term op-
eration. We will corroborate in experiments that this strategy
plays a key role in improving the recall rate of the proposed
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loop detection strategy and accelerating the establishment of
loop constraints.

Similar to the strategy in system initialization (Section III-
D2), we take several optimized nodes in a local window to esti-
mate the gravity online. But different from that, at this time, the
velocity, pose and IMU biases of each node have been reasonably
estimated. Hence, we regard them in (14) as known quantities.
Thus, only the gravity vector is unknown, and the equation to
be solved can be transformed into,[

− 1
2R̂

bk
l0
Δtk

2

−R̂bk
l0
Δtk

] [
gl0

]
≈

[
Δp̃bk

bk+1
−pb

l+R̂bk
l0
R̂l0

bk+1
pb
l−R̂bk

l0
(p̂l0

bk+1
−p̂l0

bk
)+IΔtkv̂

bk
bk

Δṽbk
bk+1

+ Iv̂bk
bk

− R̂bk
l0
R̂l0

bk+1
v̂
bk+1

bk+1

]
,

(33)

wheregl0 is the gravity in the first scan’s frame of the window,pb
l

is the extrinsic translation between the LiDAR and IMU which
is calibrated offline, and the variables with hat (̂·) are computed
from the optimized states in the window.

Assume that the estimated gravity of the k-th node is gbk . The
residual term for node nk is given by,

Res(Rw
bk
, gbk) =

rpRw
bk
gbk

‖rpRw
bk
gbk‖ − gw

‖gw‖ , (34)

where rpRw
bk

represents a rotation matrix that only contains
Rw

bk
’s roll and pitch components, and its corresponding rota-

tion vector is θ. Then, the partial derivative of the residual with
respect to θ can be computed by (see Section A for derivation),

∂Res(Rw
bk
, gbk)

∂θ
= −Exp(θ)�gbk�×Jr(θ). (35)

Eventually, the gravity factor is taken as a unitary factor to
the node. Its Jacobian with respect to the node’s rotation can
be computed by (35), while its covariance can be reasonably
estimated by numerical methods as suggested in [38].

F. Back-End: Submap-to-Submap Loop Detection

To ensure the consistency of long-term mapping, we develop
a pipeline to optimize the global pose graph at the back-end.
Instead of directly brute-force matching scans to all submaps,
in this section, we propose a strategy of fast loop detection and
constraint construction by submap-to-submap matching.

Due to the sparsity of the 3D laser point cloud, it is difficult to
design robust place features. However, by accumulating multi-
ple scans, it is expected to extract stable place signatures easier.
To this end, we consider extracting place features from the es-
tablished submap instead of a single scan, and further using the
feature point detection and matching technology to detect loop
closures and construct geometric constraints.

1) Location Feature Extraction and Matching: Benefiting
from the front-end tightly-coupled optimization, the relative
poses of nodes within the submap are fairly accurate. Besides,
each submap can be aligned with the gravity attributing to the
gravity priori factor. Hence, we consider projecting submaps to

the 2D horizontal plane to find loop closures instead of perform-
ing so directly in the 3D space.

Specifically, according to the estimated gravity, all 3D
submaps are first projected to the horizontal plane to get their
corresponding 2D submap set. Further, with the help of fea-
ture point detection technology, the descriptors corresponding
to the visual features of each 2D submap can be established.
Some detection operators of visual features, such as SIFT [39],
SURF [40] and ORB [41] are widely applied. Among them,
SIFT is a well-designed operator, however it has a high com-
putational complexity, making the loop detection heavily delay.
In recent years, although the ORB operator has been frequently
used in visual SLAM, the generated submaps in our case, how-
ever, have a lot of noisy spots leading to too much false-alarms
by ORB. Eventually, experiments have revealed that only SURF
is capable of providing an acceptable balance of precision and
speed.

After key point detection, the feature descriptor can be com-
puted for each point. Thus, each submap can then be identified
by its associated descriptor set. When performing loop detection,
we resort to the “fast library for approximate nearest neighbors”
(FLANN) [42] to match the descriptor sets of pairwise submaps.
Once the number of well matched pairs exceeds a specific thresh-
old, it is regarded that there is a loop closure between the two
submaps.

2) Fast Loop Constraint Construction: Different from the
qualitative loop detection approaches which only focus on
place recognition [19]–[21], our projected 2D submap has ac-
curate spatial information. That is, a 3-DoF transformation,
(ox

sj
si ,

oy
sj
si , γ), can be obtained according to the matched pairs.

This 3-DoF transformation can provide a reasonable initial
value for more accurate scan-to-submap registration, which will
greatly improve the computational efficiency of loop constraint
construction. Besides, thanks to the online gravity estimation,
the roll and pitch angles also have reasonable approximations
already. Therefore, the only variable lacking approximate esti-
mate is oz

sj
si . So, next, we will first introduce the establishment

of the 3-DoF transformation, and then discuss how to estimate
a reasonable value of oz

sj
si .

Submap-to-submap transformation estimation: If the grav-
ity estimation of the submap is fairly accurate, the 2D submap-
to-submap transform will approximately conform to the 3-DoF
rigid transformation,[

xsj

ysj

]
=

[
cos(γ) − sin(γ)

sin(γ) cos(γ)

][
xsi

ysi

]
+

[
ox

sj
si

oy
sj
si

]
. (36)

There are three unknowns in (36), (oxsj
si ,

oy
sj
si , γ), to be deter-

mined. Theoretically, at least two pairs of successfully matched
points are needed. However, due to the complexity of the actual
environment, the projected submap often has noises, which leads
to outliers in the direct matched pairs. To deal with this problem,
we iteratively estimate the 3-DoF transformation with the help
of RANSAC [43], a commonly used robust random sampling
consistency estimation algorithm.

In Fig. 2, an example is given to illustrate the concept of
2D submap-to-submap transformation. As shown, the feature
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Fig. 2. Projected submap-to-submap matching. 2D projected submaps with
a loop closure are shown in sub-figures (a) and (b). The ends of each colored
line segment are corresponding SURF points, and each colored line segment
represents a pair of matched points. The 3-DoF transformation between these
2D submaps can be estimated using the matched feature pairs. By registering
(a) to (b), we can get the transformed version of (a) as shown in (c).

Fig. 3. Steps of determining the 5-DoF transformation from a node nk in
submap si to submap sj . With the estimated 2D transformation between the 2D
submap i (whose frame is hi) to 2D submap j (whose frame is hj ), we can first
transform nk to hi and then map it to hj . Finally, because the transformation
between hj and sj is known, the 5-DoF transformation of nk in sj can be
obtained (only the vertical shift is left undetermined).

pairs between submap (a) and submap (b) are represented by
line segments in different colors, and the endpoints of those
line segments are the corresponding SURF [40] feature points,
while submap (c) is the result of transforming submap (a) with
the 3-DoF transformation estimated by the matched pairs.

Node-to-submap constraint construction: To establish the
loop constraint, it is necessary to transform the submap-to-
submap constraint obtained above into the node-to-submap con-
straint, so that a refined matching can be performed with the
approximate 3D initial value.

Assume that the 3-DoF transformation T
hj

hi
from the i-th

2D submap to the j-th 2D submap has been obtained as pre-
sented above. Denote the transformation from a submap’s co-
ordinate system to its horizontal projection coordinate system
by T h

s , which has been determined during the submap con-
struction. Thus, the transformation T

sj
nk , between a sampling

node nk in the submap i and the submap j can be obtained by,
T

sj
nk = T

sj
hj
T

hj

hi
T hi

si
T si

nk
. As an instance, Fig. 3 illustrates the

steps of this transformation.
In this way, the approximate constraint from the node nk to

the submap sj can be established based on the constraint be-
tween the projected 2D submaps. At this time, only oz

sj
si is left

without any information of initial value. The search for oz
sj
si

needs to be carried out in a large range. Similar to Hess et al.
’s approach [11], we resort to the branch-and-bound algorithm
to achieve fast searching of oz

sj
si . In contrast, their case has

4-DoF (ox
sj
si ,

oy
sj
si ,

oz
sj
si , γ) to be determined. Thanks to the

initial value of the estimated 5-DoF transformation via submap
matching, our computation can be greatly speeded up. Conse-
quently, a 6-DoF initial transformation T̂

sj
nk can be obtained.

Finally, making use of the approach described in Section III-
E2, the scan at the node nk can be precisely registered to the
submap sj after determining the 6-DoF T̂

sj
nk . Further, the poses

of all nodes and submaps can be easily adjusted thanks to the
joint optimization of the global sparse pose graph. As a result,
the system’s accumulated errors can be eliminated in time, thus
allowing it to run more stably for a long time.

IV. EXPERIMENT

In this part, we are going to answer three questions via exten-
sive experiments, namely,
� How is the mapping and localization performance of D-

LIOM?
� Can D-LIOM’s front-end run in real time? And can its

back-end eliminate accumulated errors with a low delay?
� Why the introduced loop detection strategy and gravity

priori factor are important for D-LIOM?
To this end, on several datasets collected from various plat-

forms in diverse-scale scenes, we first explore the performance
of D-LIOM in localization and mapping from both qualitative
and quantitative perspectives, then quantitatively analyze the
time efficiency of the framework, and finally perform ablation
studies on the specially designed modules.

A. Experimental Protocols

1) Implementation: All modules in D-LIOM were imple-
mented in C++. At the front-end, D-LIOM resorted to the fac-
tor graph optimization toolbox GTSAM to build and optimize
the local factor graph. At the back-end, D-LIOM extracted and
matched the feature points of 2D submaps using OpenCV, and
optimized the global pose graph with Ceres-Solver. We made use
of the communication mechanism of the popular robot operation
system (ROS) to transmit messages among processes. Experi-
ments were conducted on a workstation with two 2.4 GHz Intel
Xeon E5-2620V3 CPUs and 32 GB RAM.

2) Datasets: The experimental datasets were collected from
diverse scenes, namely, small-scale indoor buildings, medium-
scale campus areas, and large-scale complex urban environ-
ments. Additionally, the test cases involved three typically en-
countered application platforms, i.e., handheld devices, un-
manned aerial drones, and ground running vehicles. We believe
that these datasets are quite challenging and qualified to examine
the proposed framework’s robustness, versatility, and flexibility.
The following parts will go over them one by one.

Self-collected dataset: As shown in Fig. 4(a), our self-
developed device for data acquisition is composed of a 16-
line ROBOSENSE LiDAR with a frame rate of 10 Hz and a
consumer-grade IMU which can report linear acceleration and
angular readings at 400 Hz. We resorted to the method sug-
gested in [44] to calibrate the extrinsics between the LiDAR
and the IMU. The intrinsics of the IMU, its noise statistics, was
provided by Woodman’s approach [45].

With the handheld gadget, we collected several data sequences
in the structured spaces along with unstructured areas in Tongji
campus and thereafter the established dataset was referred to as
“TONGJI dataset”. All the specific characteristics of the data
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Fig. 4. (a) Our self-developed handheld device is composed of a 16-line RO-
BOSENSE LiDAR with a frame rate of 10 Hz and a built-in consumer-grade
IMU with a frame rate of 400 Hz. (b) The UAV-mounted platform of the VI-
RAL dataset [22]. (c) The vehicle-mounted platform of the Complex Urban
Dataset [23].

TABLE I
DETAILS OF THE TONGJI DATASET. “TRAJ. LEN.,” “LIN. VEL.,” AND “ANG.

VEL.” ARE ABBREVIATIONS OF TRAJECTORY LENGTH, LINEAR VELOCITY, AND

ANGULAR VELOCITY, RESPECTIVELY

sequences are listed in Table I. Among them, sequences TJ-
1, TJ-2, TJ-3, and TJ-4 were gathered during cycling, while
TJ-5, a relatively smaller one, was collected during walking.
With maximum angular velocities of 223◦/s and 232◦/s, the
acquisitions of TJ-6 and TJ-7 were accompanied by a series of
intensive rotational maneuvers. The collected TONGJI dataset
now can be publicly accessed online.2

Public datasets: Apart from the self-collected dataset, we
also carried out experiments on two public datasets with refer-
ence values for experimental verification, which are the Complex
Urban Dataset [23] and VIRAL [22].

The Complex Urban Dataset [23] was collected by a vehicle-
mounted platform (Fig. 4(c)), the main sensors of which were
composed of two 16-line Velodyne LiDARs, an AHRS IMU, a
GPS and several cameras. We examined our framework on the
representative sequences of “Urban-09” and “Urban-10” since
they contain high-rise buildings, multi-lane roads, abundant dy-
namic targets as well as sporadic GPS data.

The acquisition platform of VIRAL [22] was a DJI M600
UAV (Fig. 4(b)), which was equipped with two Ouster OS1-
16-gen-1 LiDARs and a VectorNav-VN100 IMU. Although the
spatial physical range covered by VIRAL is relatively small, VI-
RAL [22] is still a reasonable choice to some extent for verifying
the performance of a multi-LiDAR system due to its complimen-
tary perspectives of dual LiDARs.

TABLE II
TRAITS OF D-LIOM AND ITS COMPETITORS

B. Qualitative Analysis

1) Traits Comparison With Counterparts: At first, we qual-
itatively compare the characteristics of D-LIOM and the ex-
isting state-of-the-art frameworks (Carto3D [11], LOAM [6],
LIOM [9] and LIO-SAM [10]) from four aspects:
� whether to estimate the IMU biases?
� whether to enable the dynamic initialization with a 6-axis

IMU?
� whether to support multi-LiDAR input?
� whether to have automatic loop detection?
As Table II shows, among the evaluated frameworks, only

our proposed D-LIOM has all four shining merits. On one hand,
supporting automatic initialization of a 6-axis IMU and enabling
multi-LiDAR input allow D-LIOM to have a strong adaptabil-
ity to different sensor configurations. On the other hand, the
online estimation of IMU biases and autonomous loop detec-
tion can also boost the localization and mapping performance
of D-LIOM.

2) Reconstruction With Fast Rotation: By fusing IMU in-
formation, our D-LIOM can de-skew the incoming scan in
real time. Meanwhile, the recursive value of initial pose makes
the scan registration more accurate, improving mapping perfor-
mance with fast motion. To check this point, we gathered sev-
eral sequences with a series of aggressive rotation maneuvers
(the maximum angular velocity encountered in these sequences
was over 223◦/s) by the self-developed handheld equipment
(Fig. 4(a)), and recovered the corresponding 3D structures by
LIO-SAM [10] and the proposed D-LIOM. As shown in the top
row of Fig. 5, the fast motion trajectories at the two locations
were drawn in blue curves. The 3D structures shown in the mid-
dle row were restored by the state-of-the-art scheme LIO-SAM,
while the ones presented in the last row were established by our
D-LIOM. As demonstrated, when in rapid rotation, D-LIOM has
improved the clarity of the outlines, as well as the fineness of
structural details such as windows and pillars. As for LIO-SAM,
although it can roughly restore the spatial structure, its result
looks fuzzier, implying that LIO-SAM’s mapping accuracy is
actually poorer.

Additionally, we also attempted to evaluate Carto3D [11],
LOAM [6], and LIOM [9] on these complicated datasets, but
unfortunately, none of them can output reasonable results, so
they are not depicted here.

3) Mapping in Structured and Unstructured Areas: Direct
registration allows D-LIOM to have a strong adaptability to var-
ious environments. Meanwhile, the timely and accurate loop de-
tection also enables D-LIOM to establish a consistent map. To
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Fig. 5. Reconstruction with fast rotation. The acquisition trajectories of TJ-6
and TJ-7 are depicted in the top row. The reconstruction results of LIO-SAM [10]
on the experimented data sequences are shown in the middle row, while our
results are shown in the last row. By comparison, it can be found that when the
carrier moves with rapid rotation, the restored structure by D-LIOM exhibits
much sharper outlines and finer details.

verify these two claims, the mapping performance of D-LIOM
in structured and unstructured areas is to be investigated in this
part.

Several challenging sequences, TJ-1 to TJ-4, of the TONGJI
dataset were utilized to build maps with D-LIOM. As illustrated
in Fig. 6, the maps created by D-LIOM can well restore the
real spatial structures. Both structured and unstructured scenes
can be accurately reconstructed from macroscopic structures
(such as road, bridge, building outline, etc.) or microscopic lo-
cal details (such as road lamp, ladder, trunk, etc.). Besides, the
submap-to-submap loop detection enables D-LIOM to eliminate
accumulated errors efficiently and achieve long-term mapping
consistency. As shown in the partially-enlarged picture “G” in
Fig. 6, it can be found that the building reconstructed after the
loop was detected has a sharp outline, demonstrating that the re-
sults before and after the loop closure were in good agreement.
As we have verified that D-LIOM can achieve pleasing map-
ping results on the four complex sequences (TJ-1, TJ-2, TJ-3,
and TJ-4), those associated trajectories can be taken as approxi-
mate references for qualitative comparisons. Therefore, we eval-
uated the state-of-the-art competitors (Carto3D [11], LOAM [6],
LIOM [9], and LIO-SAM [10]) on these sequences, aligned
their estimated trajectories with those estimated by D-LIOM,
and drew their results in Fig. 7. Note that LIOM [9] only ran
successfully on TJ-3 and LOAM [6]’s positioning errors on TJ-2
and TJ-4 were too large, therefore the corresponding trajectories
were not drawn in the corresponding subfigures.

From Fig. 7, it can be found that the long-term localization
results of Carto3D (a framework based on direct registration) or

feature-based LOAM, LIOM and LIO-SAM are usually quite
poor. The possible reasons are as follows:
� Although LOAM and LIOM alleviate the adverse effects

of accumulated errors by registering the features of the
incoming scan to past multi-frame features, when working
in large-scale scenes, they inevitably suffer from drifts.

� Due to the reduction in detection rate of keypoints and in-
stability of feature extraction, feature-based solutions do
not perform well in unstructured scenes. In such a case,
the probabilistic direct registration is more robust compar-
atively.

� The underlying cause of Carto3D’s unsatisfactory out-
comes is the failure to detect loop closures correctly. Al-
though Carto3D’s back-end performs a brute-force match-
ing from scans to submaps, without a suitable initial value
of the relative pose, its detection rate of loop closures is
still very low.

4) Localization in Large-Scale Complex Urban Scenes: In
this subsection, to learn the performance of our framework in
pretty large-scale scenes, we examined D-LIOM on two chal-
lenging sequences, “Urban-09” and “Urban-10” of the Complex
Urban Dataset [23], which were collected by a car equipped with
two inclined LiDARs and an IMU. Each of these two sequences
took about 1 h to collect and covered nearly 2 square kilometers.

Due to the occlusion of high-rise buildings in cities, GPS mea-
surements in “Urban-09” and “Urban-10” were unstable and
had unexpected errors, so we only take them as approximate
references here. After trajectory alignment using the approach
proposed by Umeyama [46], we drew the positioning results of
D-LIOM in Fig. 8. As shown, although there are a few large de-
viations between located positions and GPS measurements, the
trajectories of most positions are basically consistent with GPS,
which implies that D-LIOM can still achieve high positioning
accuracy comparable to GPS even though only active sensors
are configured.

It is worth pointing out that we also attempted to examine
Carto3D [11], LOAM [6], LIOM [9] and LIO-SAM [10] on
these two challenging sequences, but all of them failed to pro-
duce meaningful results. The possible reason is that the tilt
angles of the LiDARs installed on this vehicle platform were
relatively large, while the carrier mainly moved in the horizon-
tal direction, resulting in the lack of stable feature points, which
had a fatal impact on these feature-based systems. By contrast,
D-LIOM based on direct probabilistic matching is not limited
by this restriction.

C. Quantitative Analysis

To dive into deep quantitative analysis on D-LIOM, next, we
first explore its positioning accuracy on the indoor dataset VI-
RAL [22] and the self-collected dataset (Table I), and then eval-
uate its time efficiency.

1) Absolute Positioning Error: Although the VIRAL [22]
dataset collected from an airborne platform has a few limita-
tions, such as small spatial physical range and slow movement
speed, it also has several special traits worthy of being taken as
a benchmark to analyze a LiDAR-Inertial SLAM system. One is
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Fig. 6. Mapping in structured and unstructured areas by D-LIOM. Left: mapping around man-made structures (top) and along a natural river (bottom). Middle:
A ∼ F are partially enlarged drawings of the left, with clearly restored buildings, bridges, gardens, flagpoles, and bushes. Right: mapping for a hybrid scene with a
combination of structured and unstructured areas. In G, it can be found that the building reconstructed after the loop was detected has a sharp outline, demonstrating
that the results before and after the loop closure were in good agreement.

Fig. 7. Trajectories estimated by D-LIOM and its counterparts in four medium-
sized areas. Evidently, only our D-LIOM has shown good localization results on
all test sequences. Other methods either fail or can’t eliminate the accumulated
errors in the long-term SLAM.

Fig. 8. Localization results of D-LIOM in complex urban environments. De-
spite the fact that GPS is not very reliable under the shelter of towering structures,
the trajectories aligned with GPS show that our D-LIOM can nevertheless pro-
duce globally consistent localization results when running for a long time in
large-scale scenes.

that VIRAL contains two LiDARs with complementary perspec-
tives installed horizontally and vertically, and the other is that
it has centimeter-level positioning ground truth. Therefore, we
compared our D-LIOM with two state-of-the-art competitors,
LIOM [9] and LIO-SAM [10], on VIRAL in terms of absolute
positioning errors.

As LIOM and LIO-SAM only enable single LiDAR input,
the horizontal LiDAR data of VIRAL was utilized to investigate

TABLE III
ABSOLUTE POSITIONING ERRORS (M). “OURS (H)” AND “OURS (HV)” MEAN

D-LIOM WITH THE HORIZONTAL LIDAR INPUT OR BOTH THE HORIZONTAL

AND VERTICAL LIDARS. OVER EACH TEST SEQUENCE, THE RESULT WITH THE

SMALLEST ERROR IS IN BOLD. “W-AVG” MEANS THE WEIGHTED AVERAGE

ERROR OF THE RELEVANT SEQUENCES

the performance of LIOM and LIO-SAM, as well as our D-
LIOM. Besides, since D-LIOM has a strong support for multi-
LiDAR input, so we also examined it using both the horizontal
and the vertical LiDAR data of VIRAL. For the convenience of
description, D-LIOM explored with only the horizontal LiDAR
is denoted by “Ours (H),” while D-LIOM experimented with
dual-LiDAR data is denoted by “Ours (HV)”. The results are
summarized in Table III.

As Table III shows, the positioning accuracy of D-LIOM
on VIRAL [22] is one order of magnitude higher than that of
feature-based LIOM [9]. While compared with the feature-based
LIO-SAM [10], when only a horizontal LiDAR is used, the po-
sitioning accuracy of D-LIOM is slightly lower. The possible
reason behind this phenomenon is that the accuracy of D-LIOM
is related to the resolution of the probability submap. When the
mapping range is relatively small and the carrier motion speed
is slow (VIRAL is an indoor dataset which is collected from
a slow-moving UAV), feature-based approaches which directly
optimize the point-to-line and point-to-plane error terms are pos-
sible to obtain slightly finer matching results. When the system
input is multi-LiDAR data with complementary perspectives,
our D-LIOM improves the weighted positioning accuracy by
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TABLE IV
REVISITING ERRORS (M) OF COMPETING LiDAR-INERTIAL SLAM

FRAMEWORKS ON SELF-COLLECTED TONGJI DATASET

5 cm over LIO-SAM [10]. Not surprisingly, such a complemen-
tary perspective is critical for a LiDAR-Inertial SLAM system
while running on unmanned aerial vehicles. When the carrier
is close to the ground, a single LiDAR can provide sufficient
observations in both horizontal and vertical directions, and thus
this restriction will no longer exist.

2) Revisiting Error: Aside from exploring the absolute po-
sitioning accuracy on VIRAL [22], we demonstrated the supe-
rior performance of D-LIOM in more complicated environments
on our TONGJI Dataset by comparing D-LIOM with the ex-
isting state-of-the-art schemes in terms of revisiting errors. To
automatically generate the ground truth, we registered the point
clouds around the revisited location by NDT matching [32] and
took the relative pose of the successfully registered pair as the
reference. After that, the difference between the relative pose
of these two nodes estimated by each LiDAR-Inertial SLAM
approach and the ground truth was taken as the revisiting error.
Some counterparts, the Carto3D [11], LOAM [6], LIOM [9], and
LIO-SAM [10] were evaluated for the purpose of comparison.
The obtained results are presented in Table IV.

As Table IV presents, it can be seen that our D-LIOM achieves
outstanding results on all the experimented sequences. First,
compared with the loosely-coupled solutions [6], [11], our D-
LIOM largely outperforms them. Second, compared with the
tightly-coupled LIO-SAM [10] and LIOM [9], our D-LIOM
is obviously lower in terms of the revisiting error. The under-
lying reason is that our loop detection can effectively elimi-
nate accumulated errors in long-term mapping. In comparison,
the loop detection of LIO-SAM relying on empirical distance
threshold is vulnerable to failure at this time. Last, compared
with Carto3D [11] based on direct registration, our D-LIOM is
mainly improved in two aspects. One is that the IMU biases
are corrected by real-time optimization. The other is that the
submap-matching-based loop detection not only improves the
detection rate of loop closures but also provides a more reason-
able initial value of the relative pose, which further facilitates
the following loop constraint establishment.

3) Time Cost: Time cost, as with localization and mapping
accuracy, is a crucial metric for evaluating a SLAM system’s per-
formance. To quantitatively analyse the processing speed of the
proposed D-LIOM, the time costs of the modules “Odometry”
and “Mapping” spent by LOAM [6], LIOM [9], LIO-SAM [10]
and our D-LIOM in processing one scan of 16-line LiDAR and
64-line LiDAR were measured, respectively. It should be noted
that our framework actually completes part of the mapping work
(submap construction) at its front-end, while in the global pose
graph adjustment phase of its back-end, only loop detection and
global optimization are performed at intervals. Therefore, in the
statistics of “Mapping” of D-LIOM, we summed all the back-end
processing time and averaged it to each frame.

TABLE V
COMPARISON OF TIME COSTS (MS)

TABLE VI
REVISITING ERRORS (M) OF D-LIOM, D-LIOMWoG (D-LIOM WITHOUT THE

GRAVITY FACTOR), AND D-LIOMWoL (D-LIOM WITHOUT THE

SUBMAP-TO-SUBMAP LOOP DETECTION)

According to Table V, in front-end “Odometry,” our D-LIOM
spends much less time compared with LOAM and LIOM, and
achieves comparable processing efficiency with LIO-SAM. At
the back-end, thanks to our loop detection strategy, D-LIOM
achieves close efficiency to its front-end, which is important for
long-term mapping in large-scale scenes.

Moreover, when using multiple LiDARs, our D-LIOM can
also work efficiently by downsampling conveniently. By con-
trast, the feature-based schemes, LOAM [6], LIOM [9], and
LIO-SAM [10], must extract the features of each LiDAR’s scan
separately and then perform downsampling. Since the main ef-
ficiency bottlenecks of this kind of schemes in “Odometry” are
feature extraction and matching, they will inevitably suffer from
efficiency decline.

At last, another point worthy of mention is that our D-LIOM
and Carto3D [11] are both based on direct registration, and thus
have comparable efficiency at the front-end. However, at the
back-end, by contrast, our submap-matching-based loop detec-
tion can reduce much unnecessary processing on the one hand.
On the other hand, the by-product of the submap matching (the
initial value of the relative pose) can further improve the effi-
ciency of the loop registration from a scan to a 3D submap.

D. Ablation Study

Here, we verify the necessity of the introduced gravity priori
factor and the proposed loop detection strategy for D-LIOM.

1) Gravity Priori Factor: To verify the usefulness of the
gravity priori factor to D-LIOM, we compared the revisiting
errors of D-LIOM with D-LIOM WoG (when the gravity fac-
tor is disabled in D-LIOM) on the four sequences TJ-1∼ TJ-4,
while keeping the rest settings fixed.

As Table VI presents, when the gravity factor is disabled, the
localization performances of D-LIOMWoG on TJ-1 and TJ-4 are
obviously deteriorated. It can be inferred that the introduction
of the gravity priori factor allows our D-LIOM to have a low
drift in the direction of the gravity, thus ensuring the geometric
accuracy of 2D submap projection, which ultimately guarantees
the correct detection of loop closures and the improvement of
the overall performance.
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TABLE VII
PRECISION AND RECALL OF OUR LOOP DETECTION

Fig. 9. Typical failure cases of the submap-to-submap loop detection.

2) Loop Detection Module: We demonstrate how our
submap-to-submap loop detection (termed S2SLD) in our
framework affects the results by comparing D-LIOM with D-
LIOM WoL which disables S2SLD at D-LIOM’s back-end. The
revisiting errors of D-LIOMWoL and D-LIOM on TJ-1∼ TJ-4
are listed in the second row and the third row of Table VI, respec-
tively. It can be seen that D-LIOM’s performance is improved a
lot with S2SLD, verifying S2SLD’s effectiveness.

In addition, to have a deeper understanding of S2SLD, we
analyse two commonly used metrics to evaluate its performance,
Precision and Recall. Suppose that the correctly detected loop
closures are denoted by true-positive (TP), the incorrectly iden-
tified loop closures are denoted by false-positive (FP), and the
missed loop closures are denoted by false-negative (FN). Thus,
the Precision and Recall are defined as follows,

Precision =
TP

TP + FP
, (37)

Recall =
TP

TP + FN
. (38)

On TJ-1∼TJ-4, we match all submaps to detect loop clo-
sures according to the approach presented in Section III-F. The
numbers of relevant samples and the two metrics are listed in
Table VII. As shown, the proposed S2SLD achieves a very high
Precision and Recall of 90.94% and 95.45% respectively, which
ensures the long-term mapping consistency of D-LIOM.

E. Failure Case Study

Although the loop detection of D-LIOM (S2SLD) has
achieved quite high Recall and Precision, there is still a certain
possibility of false detection or missed detection. Fig. 9 shows
typical examples of false-negative and false-positive misjudged
loop closures. It can be seen that the misjudgments mainly come
from the mismatchings of feature points. In the false-negative
example, the mismatching results in too large deviation of the
estimated similarity transformation. In the false-positive one,
the structures of high similarity between submaps lead to the
misjudgment of S2SLD. Indeed, such cases are ineluctable only
using low-level features. By extracting high-level information

(such as semantic objects), S2SLD’s performance is expected to
be improved. Nevertheless, it should also be noted that the false-
positive actually has relatively less adverse impact on D-LIOM
than the false-negative. When a wrong loop closure is detected,
it will be further filtered out during the precise scan-to-submap
registration when establishing the loop constraint.

F. Discussions on Potential Improvement

The potential improvement of D-LIOM lies in two aspects.
Currently, the front-end ignores the time difference between the
IMU and the LiDAR. The accuracy of LiDAR-Inertial odome-
try may be improved by explicitly estimating their time offset.
Additionally, as analysed above, the submap-to-submap loop de-
tection is deteriorated sometimes by mismatchings. By finding
more robust features, such a negative impact is expected to be
alleviated to some extent.

V. CONCLUSION

In this article, we combine the benefits of direct registra-
tion with tightly-coupled joint optimization, yielding D-LIOM,
a versatile, resilient, and accurate LiDAR-Inertial SLAM frame-
work. The gravity factor, IMU pre-integration factor, and LiDAR
odometry factor from direct registration are optimized together
at the framework’s front-end to estimate the carrier’s states and
correct the IMU biases in real time. In D-LIOM’s back-end,
by projecting the gravity-aligned submaps to the 2D horizon-
tal plane, loop closures are detected and loop constraints are
built efficiently via submap-to-submap matching, allowing the
system drift to be promptly eliminated. Besides, to improve
the adaptability of the framework to diverse sensor configu-
rations, we also propose an initialization approach that sup-
ports a LiDAR-Inertial SLAM system composed of multiple
LiDARs and a common 6-axis IMU. Compared with the exist-
ing state-of-the-art competitors, D-LIOM achieves outstanding
results, with more precise mapping structures as well as higher
localization accuracy when the carrier moves with fast motion
and works in large-scale environments.

APPENDIX

Assuming that a vector a ∈ R3×1 is left multiplied by a ro-
tation matrix R ∈ SO(3) (its corresponding rotation vector is
α ∈ so(3)), the Jacobian of Ra with respect to α can be ob-
tained as follows:

∂Exp(α)a

∂α
= lim

δα→0

Exp(α+ δα)a− Exp(α)a

δα

= lim
δα→0

(Exp(α)Exp(Jr(α)δα)− Exp(α))a

δα

= lim
δα→0

(Exp(α)(I+�Jr(α)δα�×)−Exp(α))a

δα

= lim
δα→0

Exp(α)�Jr(α)δα�×a
δα

= lim
δα→0

−Exp(α)�a�×Jr(α)δα

δα

= −Exp(α)�a�×Jr(α),

where Jr(α) is the right Jacobian which is given by (12).
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