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Skeleton-aware Graph-based Adversarial Networks for
Human Pose Estimation from Sparse IMUs
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Engineering, Tongji University, China
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Recently, sparse-inertial human pose estimation (SI-HPE) with only a few IMUs has shown great potential in
various fields. The most advanced work in this area achieved fairish results using only six IMUs. However,
there are still two major issues that remain to be addressed. First, existing methods typically treat SI-HPE
as a temporal sequential learning problem and often ignore the important spatial prior of skeletal topology.
Second, there are far more synthetic data in their training data than real data, and the data distribution
of synthetic data and real data is quite different, which makes it difficult for the model to be applied to
more diverse real data. To address these issues, we propose “Graph-based Adversarial Inertial Poser (GAIP)”,
which tracks body movements using sparse data from six IMUs. To make full use of the spatial prior, we
design a multi-stage pose regressor with graph convolution to explicitly learn the skeletal topology. A joint
position loss is also introduced to implicitly mine spatial information. To enhance the generalization ability,
we propose supervising the pose regression with an adversarial loss from a discriminator, bringing the ability
of adversarial networks to learn implicit constraints into full play. Additionally, we construct a real dataset
that includes hip support movements and a synthetic dataset containing various motion categories to enrich
the diversity of inertial data for SI-HPE. Extensive experiments demonstrate that GAIP produces results with
more precise limb movement amplitudes and relative joint positions, accompanied by smaller joint angle and
position errors compared to state-of-the-art counterparts. The datasets and codes are publicly available at
https://cslinzhang.github.io/GAIP/.
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1 INTRODUCTION
3D human pose estimation (HPE) has been a fundamental and active research area due to its great
potential in various fields, such as autonomous driving [10, 18], video surveillance [44], motion
recognition or localization [12, 22], and even sign language translation [13, 14, 38]. Most existing
methods for 3D HPE are built from vision data. However, those vision-based approaches require
expensive infrastructure and invasive devices, hindering their application and promotion. Moreover,
they are easily subject to environmental factors such as poor lighting conditions and occlusions,
making it difficult to stably capture human movements. They are also prone to flickering artifacts
or motion blur and distortion in the captured pictures or videos due to the photon noise introduced
by photographic devices [37]. These introduced factors further constraining vision-based methods’
efficacy. Compared with optical cameras, inertial measurement units (IMUs) as active sensors can
capture high-frequency carrier motion states (orientations and accelerations) and are gradually
becoming promising sensors for HPE. As a result, recent years have witnessed a growing effort to
explore HPE using only a few IMUs [16, 43], opening a new field, sparse-inertial HPE (SI-HPE),
with great potential and challenges.

As a recently emerging research field, to our knowledge, the studies on SI-HPE are still quite
sporadic. The concept of SI-HPE can be traced back to SIP [35], which shows that it is feasible to
learn and estimate human pose with only 6 IMUs’ measurements of the five leaf joints (the left/right
lower legs, the left/right forearms, and the head) and the root joint (the pelvis). Subsequently,
Huang et al. proposed DIP [16], which employs a bidirectional RNN to learn the mapping from
acceleration and orientation readings to joint rotations. As a pioneer, DIP achieves fair results
by data-driven learning of the temporal prior of motion sequences. Based on DIP, recent works
[17, 43] optimize its network structure and loss function to improve the accuracy of pose estimation
while focusing on improving real-time performance. However, both DIP and its variants, such as
Transpose [43], still have the following two common problems remaining to be solved.

Firstly, there is a lack of topological modeling for the skeleton in SI-HPE. Due to the sparseness of
the inputs, accurate pose estimation relies heavily on prior information. Previous methods focus on
temporal priors of human motions, treating HPE as a sequence-to-sequence learning problem and
simply forming feature vectors with joint coordinates and joint rotations at each time step. However,
using only temporal priors for pose estimation is undoubtedly limited, as it does not explicitly mine
the topological relationships among joints in the human kinematic tree (HKT), the effectiveness of
which has been demonstrated in many vision-based methods. Since the low-level inputs of SI-HPE
are very sparse and has less effective information than the vision-based approaches, we believe that
this topological prior can be beneficial for understanding human behavior. Unfortunately, none of
the existing SI-HPE methods have explored the incorporation of spatial priors of the joint topology.

Secondly, existing methods are difficult to generalize to other datasets. Both Transpose and DIP
follow the same training procedure of first pre-training on a simulated dataset and subsequently
fine-tuning on a small-scale real dataset. Their results indicate two common characteristics: 1) the
outputs of the pre-trained model on the simulated dataset are significantly better than those on real
datasets, and 2) the performance of the fine-tuned model on different test sets is different. These
phenomena indicate that the data distribution between the synthetic dataset used for pre-training
and the real dataset used for fine-tuning is quite different, and the generalization ability of the
model relies on fine-tuning on small datasets. Once the model needs to process more diverse human
poses, it becomes difficult to perform good estimations.
Based on the above analysis, we propose a Graph-Based Adversarial Inertial Poser, GAIP

for short, which takes the following two measures to compensate for the previously identified
deficiencies to some extent.
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Fig. 1. Inertial data collection equipment and examples. Left: the wearable Mocap IMUs. Right: 3
groups of inertial data recording examples. In each group, from top to bottom are the participants’ poses,
the measured poses in Noitom Axis software, and the poses displayed with the SMPL model in Unity3D,
respectively.

To make full use of skeleton topology priors, we design a graph convolutional network (GCN)-
based regressor to explicitly learn the spatial information of human kinematic trees (HKT). Specif-
ically, our regressor is mainly composed of three structurally alike sub-networks, the inputs of
which mainly consist of two types of data: inertial measurements and joint positions. Both types
of data are related to joint connectivity and contain important spatial priors. To model human
skeletal sequences on a large-scale dataset and explicitly learn the topological information of HKT,
spatial graph convolution (s-GC) modules are embedded into each sub-network. Furthermore, we
introduce a joint position cost term to the regressor’s loss function, which distinguishes our method
from similar ones that only regard rotations as feature vectors. This cost term involves forward
kinematics of the body and can implicitly learn the spatial information of human joints.
Regarding the enhancement and evaluation of generalization ability, we conduct studies that

encompass training strategies and dataset diversity. For one aspect, given that generative adversarial
networks (GAN) have the ability to explore the implicit features of input data [8], we attempt to
improve the network framework by incorporating the adversarial loss to learn implicit constraints
of human poses and suppress the model’s tendency to overfit to specific data. Specifically, in GAIP,
we construct a discriminator to judge the difference between the regressed poses and the ground
truth. During training, the discriminator receives the predicted and real pose sequences and outputs
an adversarial loss, which is input into the aforementioned regressor to further constrain the
estimated results. With this strategy, the discriminator achieves synchronized training with the
regressor and encourages it to learn the implicit features of the human poses.
For another aspect, we construct new datasets to comprehensively evaluate the generalization

ability. At present, the widely used real inertial dataset for SI-HPE is DIP-IMU [16]. Although DIP-
IMU contains multiple subjects’ inertial measurements, it mainly includes basic standing motions
and interactions. Therefore, we propose two additional datasets including more diverse motion
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sequences for SI-HPE. One is SingleOne-IMU, which contains about 60 minutes of real inertial
data. Unlike DIP-IMU, which regards the pose parameters estimated by SIP [35] as ground truth,
ours instead obtains joint rotations using Noitom’s1 commercial solution of inertial motion capture
(MoCap) as shown in Fig. 1. Along with common foot support actions, we also include a series of
hip support actions to provide more diverse motion categories. Another self-collected dataset is a
synthesized dataset created from Mixamo2, named Mixamo-IMU. It includes various dances, climbs,
and diverse poses, and can serve as another benchmark for evaluating the generalization abilities
of SI-HPE approaches.

We evaluate GAIP on TotalCapture [32], DIP-IMU, as well as our self-collected SingleOne-IMU
and Mixamo-IMU. In qualitative evaluation, GAIP yields results with more precise limb movement
amplitudes and relative joint positions. In quantitative experiments, the poses estimated by GAIP
are of smaller joint angle and position errors compared with the state-of-the-art competitors.

In summary, our contributions are threefold:
• To address the issue of the lack of spatial prior in SI-HPE, we propose an SI-HPE framework
that explicitly integrates human skeleton topology. Our framework has an s-GC module to
learn the spatial prior of joint connectivity and contains a joint position loss to implicitly
learn spatial information with forward kinematics. This approach attains state-of-the-art
results on mainstream 3D pose estimation benchmarks.

• To enhance the generalization ability of SI-HPE methods, we propose an adversarial training
strategy to learn implicit features. By synchronously training the discriminator and the
regressor, an adversarial loss is introduced to further guide the regression in GAIP. Such a
strategy encourages the regressor to produce more realistic and accurate movements.

• To expand the diversity of the inertial datasets, we construct both a real dataset and a synthetic
dataset. The real dataset includes rare hip support actions, while the synthetic dataset includes
complex and diverse full-body movements. These datasets enrich the current inertial data
and can be used for additional fine-tuning and evaluation for SI-HPE.

To ensure the full reproducibility of our results, all our data and codes are made online available
at https://cslinzhang.github.io/GAIP/.

2 RELATEDWORK
In this section, we review the studies on 3D HPE involving IMUs, including visual-inertial and
sparse-inertial ones. The graph convolution and adversarial learning on HPE are also discussed.

2.1 Inertial HPE Approaches
Visual-Inertial HPE. In general, an IMU consists of three main components: an accelerometer, a
gyroscope, and a magnetometer. These components allow sensor fusion algorithms to extract useful
inertial information from the measured raw signals [1, 2]. There are many multi-modal approaches
that employ IMU signals as additional constraints to improve the motions predicted from vision.
For example, Von Marcard et al. [34] developed a seminal approach to combine multi-view video
and inertial data for pose estimation. They used silhouettes from multi-view images extracted
with background subtraction and limb orientation from inertial data to minimize a hybrid energy
term. Their results demonstrated that information from videos and IMUs can complement each
other for HPE. Later, Trumble et al. [32] proposed the first large-scale motion capture dataset that
consists of inertial measurements and fused multi-view data for 3D HPE. Going beyond multi-view
inputs, Von Marcard et al. attempted to estimate human pose using inertial and monocular data

1https://www.noitom.com/
2https://www.mixamo.com/

J. ACM, Vol. XX, No. XX, Article XX. Publication date: X 2023.

https://cslinzhang.github.io/GAIP/
https://www.noitom.com/
https://www.mixamo.com/


Skeleton-aware Graph-based Adversarial Networks for Human Pose Estimation from Sparse IMUs XX:5

[33]. They paired each 2D skeleton with a 3D pose and shape via graph optimization together
with a 2D multi-person pose estimation algorithm [4] and an SMPL fitting module [24]. In [15],
to reduce reliance on feature engineering, Huang et al. even developed an end-to-end trainable
3D convolutional network containing a refinement module using visual-inertial data. Moreover,
those prospective results obtained by the aforementioned visual-inertial works also encouraged
researchers to fuse IMU with some other sensors, such as RGBD cameras [11, 31], lidars [9], etc.
Sparse-Inertial HPE.With the price reduction and the improved accuracy of IMU, it is now

possible to use IMUs alone for HPE. Such a rapid development also catches the attention of industry
and academia. Today, there are already mature commercial solutions that can independently
perform high-quality real-time dense-inertial HPE using 17 IMUs on the whole body. However,
dense-inertial HPE suffers from high invasiveness and low portability. Therefore, sparse-inertial
HPE with just a few IMUs becomes highly desired. To achieve this goal, Von Marcard et al. [35]
proposed SIP to estimate the 3D human pose offline using only 6 IMUs. They represented the
human pose by finding SMPL pose parameters that best matches the inertial measurements. In
an end-to-end manner, Huang et al. learned a deep neural network model called DIP [16] from a
large amount of MoCap data to map IMU signals directly to the pose parameters in real-time. They
constructed a bidirectional LSTM network that took the data from IMUs at the five leaf joints as
input, normalized it by the root joint’s inertial data, and eventually mapped it to the target pose
parameters of the SMPL model. Based on DIP, Nagaraj et al. [28] resorted to a bidirectional RNN
ensemble to further optimize the network structure. Instead of using deep networks as [28], Frank
et al. [39] explored the performance of sparse-inertial HPE using shallow networks. Unlike the
aforementioned sparse-inertial HPE approaches that focus on reconstructing the local human pose,
Yi et al. proposed a neural model called TransPose [43], which can estimate global translations by
merging the velocities of the support foot and the root joint while regressing the pose parameters
through multiple sub-networks. Their follow-up work, PIP [42], further optimized the estimation
of pose and translation with physical constraints. Additionally, the most recent work TIP [17]
achieves a comparable optimization effect by introducing the Transformer structure. However,
none of the aforementioned works included topology information of the human skeleton, which
means they did not learn all of the prior information, leaving room for improvement.

2.2 Graph-based Approaches
It is widely known that Graph Convolutional Networks (GCN) are well-suited for modeling non-
Euclidean spatial data. To date, in human pose related fields, GCN is mainly used for vision-based
tasks. For example, Yan et al. [41] took the joints and bones of HKT’s topology in each frame
as a spatial graph, connected the same joint among different frames as a temporal graph, and
performed convolution on spatial-temporal graphs to detect human pose. They also proposed
three methods to construct the adjacency matrix of human skeleton spatial graphs according to
different standards. Without including all joints in the spatial graph, Ci et al. [7] proposed the Local
Connection Network (LCN) with higher generalization ability according to the different distances
of human joints. Compared with Yan et al.’s approach and LCN, apart from the modifications on
modeling formulas, Li et al. [23] further adopted an adaptive adjacency matrix and proposed a
graph-based GRU unit for human motion prediction.

As a natural undirected graph, HKT’s topology is a type of non-Euclidean spatial data that can
be efficiently learned by GCN. Inspired by the aforementioned studies, we believe that GCN has
the potential to significantly contribute to the field of HPE.

J. ACM, Vol. XX, No. XX, Article XX. Publication date: X 2023.



XX:6 Kaixin Chen, Lin Zhang, Zhong Wang, Shengjie Zhao and Yicong Zhou

tim
e

𝑹𝒍

tim
e

tim
e

𝑹𝒑

IMU Data
orientation & acceleration

Leaf Pos
relative positions of leaf nodes

All Pos
relative positions of all nodes

Pose
parameter 𝜃 of  SMPL

!"!

𝑫𝒑	

!!	Pose (GT)
parameter 𝜃 of SMPL

FakeReal

𝑳𝒂𝒅𝒗	

𝑹𝒂

Sub-network of 
Regressor

s-GC 
Module

biGRU
Module

Linear 
Regression 
Module

Discriminator GRU 
Module

Self-Attention
Module

Concatenation

Adversarial 
Loss

Leaf Pos
Regressor

All Pos
Regressor

Pose
Regressor

Discriminator

Fig. 2. Overview of GAIP. GAIP consists of two parts: a regressor and a discriminator. The regressor is
composed of three sub-networks: 1) leaf joint position regressor R𝑙 , which estimates the relative position of
the left and right lower leg joints, the left and right forearm joints, and the head joints to the pelvis root joint
from inertial data; 2) full joint position regressor R𝑎 , which estimates the relative position of all joints and the
leaf joint position; and 3) human pose regressor R𝑝 , which regresses joint rotations from inertial data and
all joint positions. The discriminator D𝑝 takes predicted and ground truth sequences as inputs, calculates
adversarial loss, and inputs it to constrain predicted results in R𝑝 .

2.3 Adversarial Networks Related Approaches
Generative adversarial networks (GANs) are widely used in generative image modeling, as well as
in recurrent architectures for simulating sequence-to-sequence data [21, 27]. Interestingly, HPE can
be viewed as a similar sequence-to-sequence task. Research on motion modeling has also verified
that adversarial training can facilitate HPE [5, 6, 30] or the human pose prediction [3] with previous
motion sequences. Following this finding, many works [29, 36, 40] introduced adversarial training
to optimize the results of HPE, especially in the vision-based ones. As a typical example, VIBE [20]
is one of the most influential video inference methods for human pose and shape estimation. In
[20], Kocabas et al. conducted adversarial training on SMPL pose parameters estimated by image
sequences and the large-scale dataset AMASS [26] to improve the authenticity and accuracy of
pose estimation. Motivated by this idea of adversarial training, we hope to learn some implicit
priors to improve the accuracy of HPE results and our model’s generalization ability.

3 METHODOLOGY
3.1 Framework Overview
The overall framework of our GAIP is shown in Fig. 2 which consists of two parts: a regressor
and a discriminator. The regressor, which is composed of three tandem sub-networks (R𝑙 , R𝑎 , and
R𝑝 ), learns the relative positions (R𝑙 ,R𝑎) and pose parameters (R𝑝 ) of the joints in different stages
from the orientation and acceleration measurements of sparse IMUs. When measurements arrive,
an s-GC module is firstly used to fuse the topological prior of the human skeleton. Subsequently,
the fused output is passed to a biGRU module, where the latent variables containing information
incorporated from the past and future frames are encoded. Finally, a linear regression module takes
over to estimate the resulting human pose. In the discriminator (D𝑝 ), a GRU is utilized to extract
temporal features, and a learned attention mechanism is designed to amplify the contribution of
key frames. Eventually, GAIP is jointly supervised by an adversarial loss and a regression loss to
minimize the error between the predicted results and the ground truth.
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Fig. 3. Human Kinematic Trees (HKT). (a) The complete 24-joint HKT of the SMPL model, with the root
(pelvis) joint marked in red. (b) The 16-joint HKT of the main trunk involved in rotation estimation, with
the five leaf joints (the left/right lower legs, the left/right forearms, and the head) marked in red. (c) The
simplified 6-joint HKT.

3.2 Background: SMPL
The full name of the SMPL model is “Skinned Multi-Person Linear Model”. It uses Θ to represent
the pose and shape of the body and returns a 3D mesh with 𝑁 = 6890 vertices via a differentiable
function 𝑀 (Θ). Θ consists of pose parameters 𝜽 ∈ R72 and shape parameters 𝜷 ∈ R10. The pose
parameters 𝜽 includes the global rotation of the root joint and the relative rotations of 23 joints in
axis-angle format (the tree structure of 24 joints and their parent-child relationships are shown
in Fig. 3(a)). 𝜷 is is a vector consisting of 10 scalar values. Each value represents the expansion or
shrinkage amount of a human subject along a specific direction.

In the setting of sparse-inertial HPE, the IMUs are only attached to the five leaf joints, meaning that
they cannot describe the movement of more terminal joints like hands or feet. It is therefore almost
impossible to accurately estimate the motion of these joints based solely on inertial measurements.
To address this issue, we adopt a skeleton topology with only 16 joints, consistent with previous
work as shown in Fig. 3(b). As a result, our estimated results only include the rotations of 15 joints,
as the global rotation of the root joint is directly measured.

3.3 Spatial Graph Convolution
In SMPL models, skeletons are often represented as tree-structured undirected graphs, known
as the human kinematic tree (HKT). This makes it natural to use graph convolution modules for
processing the topology of HKT. In this case, the connectivity of the joints can be represented
by an adjacency matrix A representing the connectivity between joints and an identity matrix
I representing the self-connectivity. The corresponding graph convolution can be implemented
using a formula similar to the one suggested in [19],

X𝑜𝑢𝑡 (𝑡) = D− 1
2 (A + I)D− 1

2 X𝑖𝑛 (𝑡)W, (1)

where D represents the diagonal matrix used for normalization, with diagonal elements D(𝑖,𝑖 ) =∑
𝑗 (A(𝑖, 𝑗 )+I(𝑖, 𝑗 ) );W is a weight matrix formed by concatenating weight vectors of multiple channels;

and X𝑖𝑛 (𝑡) and X𝑜𝑢𝑡 (𝑡) are the module’s input and output data of the 𝑡 th frame, respectively. Both
X𝑖𝑛 (𝑡) and X𝑜𝑢𝑡 (𝑡) have a size of 𝑣 × 𝑐 , where 𝑣 is the number of nodes (also known as joints in
HKT) corresponding to the adjacency matrix, and 𝑐 represents the feature dimension.
Such a convolution, however, does not fully exploit the spatial relationship of the HKT in the

time domain. The main reason is that the range of motion for various joints is not uniform. In other
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words, for any joint in the HKT’s topology, the joints that are farther from the root joint often have
a larger range of motion. Therefore, unlike the traditional adjacency matrix, in graph convolution
for HKT, different adjacent joints should have varying weights within a single frame. Consequently,
inspired by [41], when constructing the adjacency matrix of the HKT’s topology, we divide the
neighbor set of each joint node into three subsets: 1) the node itself; 2) a centripetal group closer to
the skeleton’s center of gravity, where we approximate the center of gravity with the root node;
and 3) a centrifugal group otherwise. We construct the adjacency matrix respectively for each of
the above three subsets using the following formula,

A(𝑖, 𝑗 )
𝑘

= 1, 𝑘 =


0, 𝑟 𝑗 = 𝑟𝑖

1, 𝑟 𝑗 < 𝑟𝑖

2, 𝑟 𝑗 > 𝑟𝑖

, (2)

where A(𝑖, 𝑗 )
𝑘

represents the element in the 𝑖th row and 𝑗 th column of the 𝑘 th adjacency matrix, and
𝑟𝑖 /𝑟 𝑗 represents the topological distance of the 𝑖th/ 𝑗 th node from the root node, which corresponds
to the root joint.

We set up graph convolution layers in the s-GC module, and use the above method to extract the
spatial features of HKT-related data. Specifically, when the data is input into a graph convolution
layer of the s-GC module, we construct the adjacency matrices A0, A1, and A2, as the initial values
of convolution kernels based on corresponding HKT, and perform the graph convolution operation
via,

X𝑜𝑢𝑡 (𝑡) =
∑︁
𝑘

D− 1
2

𝑘
(Â(𝑣)

𝑘
)D− 1

2
𝑘

X𝑖𝑛 (𝑡), (3)

Â(𝑣)
𝑘

= W(𝑣)
𝑘

A(𝑣)
𝑘

+ b(𝑣)
𝑘
, 𝑘 = 0, 1, 2, (4)

where 𝑣 represents the number of joints in the HKT of input data, and for each adjacency matrix
A(𝑣)
𝑘

∈ R𝑣×𝑣 , we accompany it with a learnable weight matrix W(𝑣)
𝑘

and a learnable offsets matrix
b(𝑣)
𝑘

to update the convolution kernel.

3.4 Regressor
Our regressor consists of three main sub-networks: the leaf joint position regressor R𝑙 , the full
position regressor R𝑎 , and the human pose regressor R𝑝 . As shown in Fig. 2, the three connected
sub-networks are similar in structure and are all composed of a s-GC module, a biGRU module, and
a linear regression module.

3.4.1 Leaf Joint Position Regressors. Firstly, in the leaf joint position regressors R𝑙 , we estimate
the relative positions of the five leaf joints to the root joint. The detailed structure and data flow of
R𝑙 is shown in Fig. 4.
Specifically, before entering R𝑙 , the acceleration and orientation measurements are normalized

with respect to the root joint. Assuming that the inertial data measured at 𝑡 th frame are a(𝑡)𝑟𝑎𝑤 ∈
R𝑐×3, denoting the three-dimensional acceleration, and R(𝑡)𝑟𝑎𝑤 ∈ R𝑐×3×3, representing the rotation
matrices of the skeletal orientations, where 𝑐 = 6 refers to the number of IMUs.

Similar to DIP [16], we normalize the orientation and acceleration measured by each IMU via,

R(𝑡)𝑖 = R−1
𝑟𝑜𝑜𝑡 (𝑡) · R(𝑡)𝑟𝑎𝑤,𝑖 , 𝑖 = 1, ..., 𝑐, (5)

a(𝑡)𝑖 = R−1
𝑟𝑜𝑜𝑡 (𝑡) · (a(𝑡)𝑟𝑎𝑤,𝑖 − a(𝑡)𝑟𝑜𝑜𝑡 ), 𝑖 = 1, ..., 𝑐, (6)
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Fig. 4. Structure of the joint position regressors 𝑅𝑙 and 𝑅𝑎 . The joint position regressor contains three
modules, a s-GC module, a biGRU module and a linear regression module. Specifically, the s-GC module
includes two linear layers, a graph convolution layer, and an activation function layer; the biGRU module
consists of a linear layer and two layers of bidirectional GRU; the linear regression module is composed of
linear layers. When the 2-𝑑 data is input, it will be flattened into a 1-𝑑 vector before entering the biGRU
module, and finally reshaped back to a 2-𝑑 matrix after the linear regression module as the output data.

where a𝑟𝑜𝑜𝑡 (𝑡) and R𝑟𝑜𝑜𝑡 (𝑡) represent the acceleration and orientation of the root joint at 𝑡 th frame,
and (·)−1 denotes the inverse of the involved matrix. As a result, the measurements are normalized
to R(𝑡) ∈ R𝑐×3 and a(𝑡) ∈ R𝑐×3×3. We then flatten the rotation matrices R(𝑡) into r(𝑡) ∈ R𝑣1×9
and concatenate it with a(𝑡) to obtain the input inertial data X𝑙 (𝑡) = [a(𝑡), r(𝑡)] ∈ R𝑣1×12, where
𝑣1 = 𝑐 = 6 represents the number of joints whose inertial data is measured directly by IMUs, that is,
the five leaf joints and the root joint.
In R𝑙 , firstly, we input X𝑙 (𝑡) into the s-GC module. In the s-GC module, the data is fed into a

linear layer and a spatial graph convolution layer, where the convolution kernel is Â(𝑣1 )
𝑘

∈ R𝑣1×𝑣1
representing the simplified 6-joint topology shown in Fig. 3(c), since the five leaf joints are relatively
scattered. The output result of the spatial graph convolution layer is then added by the input data,
and afterwards fed into a linear layer and a activation function layer to obtain the latent features
X̂𝑙 (𝑡) ∈ R𝑣1×12 that incorporates the topology prior.
Secondly, we flatten the data X̂𝑙 (𝑡) into 1-𝑑 vectors and feed it into the biGRU module, which

contains two layers of bidirectional GRU and a linear layer, to learn temporal features. After that,
the output of the biGRU module is added with X̂𝑙 (𝑡) and input into the regression module, which
is constructed by a linear layer, to estimate a 1-𝑑 vector P𝑙 (𝑡) ∈ R( (𝑣1−1)×3)representing the root-
relative positions of the five leaf joints. We finally reshape it to a 2-𝑑 matrix P̂𝑙 (𝑡) ∈ R(𝑣1−1)×3 as
the output of the leaf joint position regressor R𝑙 . The network is trained with a 𝑙-2 loss defined as,

𝐿𝑙 =
∑︁
𝑡

| |P̂𝑙 (𝑡) − P𝐺𝑇
𝑙

(𝑡) | |22, (7)

where P𝐺𝑇
𝑙

(𝑡) represents the ground-truth value.

3.4.2 Full Joint Position Regressors. The full joint position regressors R𝑎 is similar to R𝑙 in terms of
structure as shown in Fig. 4, but with different data sizes. The input data for R𝑎 is the concatenation
of two parts: 1) the normalized inertial measurement data, a(𝑡) and r(𝑡), and 2) the root-relative
positions of six joints P̂′

𝑙
(𝑡) = [P̂𝑙 (𝑡), 0] ∈ R𝑣1×3, which is formed by concatenating the R𝑙 ’s output

with the root joint’s position initialized with zeros. As a result, the R𝑎’s input is formally denoted
by X𝑎 (𝑡) = [a(𝑡), r(𝑡), P̂′

𝑙
(𝑡)] ∈ R𝑣1×15.

In R𝑎 , X𝑎 (𝑡) undergoes the same processing as X𝑙 (𝑡) in R𝑙 . Firstly, it is fed into the s-GC module
to obtain the latent features X̂𝑎 (𝑡) ∈ R𝑣1×15. Secondly, X̂𝑎 (𝑡) is flattened into a 1-𝑑 vector and
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Fig. 5. Structure of the human pose regressors 𝑅𝑝 . 𝑅𝑝 contains three modules, a s-GC module, a biGRU
module and a linear regression module. Among them, the biGRU module and the linear regression module
have the same structure as the joint position regressors. Instead, the difference is that the s-GC module of
𝑅𝑝 includes two parts with similar structures, which perform graph convolution operations with different
convolution kernel sizes on the inertial data and the joint position data, respectively. The convolution results
of these two parts will be concatenated and flattened into a 1-𝑑 vector before being fed into the biGRU
module.

input into the biGRU module. Thirdly, the biGRU module’s output is added with X̂𝑎 (𝑡) and fed
into the regression module to obtain a 1-𝑑 vector P𝑎 (𝑡) ∈ R( (𝑣2−1)×3) denoting all non-root joints’
root-relative positions. Finally, the 1-𝑑 vector is reshaped to a 2-𝑑 matrix P̂𝑎 (𝑡) ∈ R(𝑣2−1)×3, where
𝑣2 = 24.

In addition, R𝑎 also uses a 𝑙-2 loss for training, which is defined by,

𝐿𝑎 =
∑︁
𝑡

| |P̂𝑎 (𝑡) − P𝐺𝑇𝑎 (𝑡) | |22, (8)

where P𝐺𝑇𝑎 (𝑡) represents the ground-truth value.

3.4.3 Human Pose Regressor. In pose regressor R𝑝 , we estimate global joint rotations, that is,
root-relative joint rotations, from joint positions. Specifically, R𝑝 receives two parts of data as
input, which are the inertial measurements X𝑝 (𝑡) and the joint coordinates P̂′

𝑎 (𝑡). The former
X𝑝 (𝑡) = [a(𝑡)′, r(𝑡)′] ∈ R𝑣3×12 is constructed based on X𝑙 (𝑡), where 𝑣3 = 16 refers to the number
of joints of the main trunk of the body as shown in Fig. 3(b). In X𝑝 (𝑡), the joints containing no
inertial measurements are initialized with zeros. The latter P̂′

𝑎 (𝑡) = [P̂𝑎 (𝑡), 0] ∈ R𝑣2×3 is formed by
initializing the root joint’s position with zeros on the basis of P̂𝑎 (𝑡).
After being input to R𝑝 , whose structure is shown in Fig. 5, X𝑝 (𝑡) and P̂𝑎 (𝑡) will be sent to

different s-GC modules firstly, since the inertial data X𝑝 (𝑡) and the joint positions P̂′
𝑎 (𝑡) do not

correspond to the same topology. Specifically, the the convolution kernels of the two s-GC modules
are Â(𝑣3 )

𝑘
∈ R𝑣3×𝑣3 and Â(𝑣2 )

𝑘
∈ R𝑣2×𝑣2 , representing the the 16-joints topology as shown in Fig. 3(b)

and 24-joints topology as shown in Fig. 3(a), respectively. As a result, we get X̂𝑝𝑖 (𝑡) ∈ R𝑣3×12 and
X̂𝑝𝑝 (𝑡) ∈ R𝑣2×3. Then, we flatten the above two results into X̂′

𝑝𝑖 (𝑡) ∈ R(𝑣3×12) and X̂′
𝑝𝑝 (𝑡) ∈ R(𝑣2×3) ,

and then concatenate them to get a 1-𝑑 vector X̂𝑝 (𝑡) = [X̂′
𝑝𝑖 (𝑡), X̂′

𝑝𝑝 (𝑡)] ∈ R(𝑣3×12+𝑣2×3) . Afterwards,
X̂𝑝 (𝑡) is fed into the biGRU module to obtain the latent features with temporal priors.
Eventually, the latent features are input into the regression module to estimate a 1-𝑑 vector

𝜽 6𝐷
𝑝 (𝑡) ∈ R( (𝑣3−1)×6) in the 6D representation [45], representing the root-relative rotations of 15

non-root joints as shown in Fig. 3(b). We reshape it to a 2-𝑑 matrix 𝜽 6𝐷
𝑝 (𝑡) ∈ R(𝑣3−1)×6. Given that
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Fig. 6. Structure of the discriminator 𝐷𝑝 . The discriminator consists of two layers of GRU, a self-attention
layer and a linear layer. 𝐷𝑝 receives a pose sequence, captures sequence features with GRU and self-attention
layers, and finally outputs a score representing the authenticity of the pose sequence by a linear layer.

the rotation of the root joint R𝑟𝑜𝑜𝑡 (𝑡) can be directly measured, we combine all these rotations and
convert them to the rotation matrices and obtain body’s pose as 𝜽𝑝 (𝑡) ∈ R𝑣3×9.

The overall loss (𝐿𝑝 ) of the pose regressor R𝑝 is composed of three parts, the joint rotation loss
(𝐿𝑟𝑜𝑡 ), the joint position loss (𝐿𝑝𝑜𝑠 ), and the adversarial loss (𝐿𝑎𝑑𝑣), i.e.,

𝐿𝑝 = 𝐿𝑟𝑜𝑡 + 𝐿𝑝𝑜𝑠 + 𝐿𝑎𝑑𝑣 . (9)
We leave the adversarial loss being introduced in Sec. 3.5.
Here, 𝐿𝑟𝑜𝑡 is a 𝑙-2 rotation loss aiming to make the estimated rotation numerically close to the

ground truth, which is formally defined by,

𝐿𝑟𝑜𝑡 =
∑︁
𝑡

| |𝜽 6𝐷
𝑝 (𝑡) − 𝜽 6𝐷,𝐺𝑇

𝑝 (𝑡) | |22, (10)

where 𝜽 6𝐷,𝐺𝑇
𝑝 (𝑡) represents the ground truth.

𝐿𝑝𝑜𝑠 is a 𝑙-2 position loss of the joint positions calculated by forward kinematics, which gives the
loss function a certain physical meaning, rather than simply comparing numbers. To obtain 𝐿𝑝𝑜𝑠 ,
we need to calculate the joint positions by 𝜽𝑝 (𝑡). This requires knowledge of the bones’ length
in HKT. However, some of the current inertial datasets do not include SMPL shape parameters,
which means that we cannot determine the length of bones. Without this information, calculating
the position of joints via forward kinematics is impossible. Therefore, for data that provides SMPL
shape parameters 𝜷 , we use these parameters to calculate the bones’ lengths and then derive the
joint positions with forward kinematics. For data without SMPL shape parameters, we directly use
the default male model for calculation. The joint position loss 𝐿𝑝𝑜𝑠 is accordingly given by,

𝐿𝑝𝑜𝑠 =
∑︁
𝑡

| |𝐹𝐾 (𝜽𝑝 (𝑡), 𝜷) − 𝐹𝐾 (𝜽𝐺𝑇𝑝 (𝑡), 𝜷) | |22, (11)

where 𝐹𝐾 represents the forward kinematics function, which takes joint rotations and SMPL shape
parameters as input and returns the relative positions of all joints to the root joint; 𝜽𝑝 (𝑡) indicates
the estimated body posture; and 𝜽𝐺𝑇𝑝 (𝑡) is the ground-truth value.

3.5 Pose Discriminator
Simply using 𝑙-2 losses is not sufficient to constrain the sequence of human poses. Since only the
inertial data of some joints is available, inaccurate and ambiguous poses may be recognized as valid.
To address this issue, we use a pose discriminator 𝐷𝑝 to determine whether the generated pose
sequence corresponds to the ground truth sequences. As shown in Fig. 6, 𝐷𝑝 includes two GRU
layers, a self-attention layer and a linear layer.
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Given a inertial measurements sequence of length 𝑇 , we firstly take the output pose sequence
𝜽𝑝 = (𝜽𝑝 (1), 𝜽𝑝 (2), ..., 𝜽𝑝 (𝑇 )) of the regressor as input. Then, we feed the sequence into GRU layers,
where the latent codes is estimated. Subsequently, the latent codes aggregated by the self-attention
layer.
Finally, the linear layer outputs a prediction 𝐷𝑝 (𝜽𝑝 ) ∈ [0, 1], representing the probability

that 𝜽𝑝 belongs to the plausible human motion manifold. In summary, the adversarial loss term
backpropagated to R𝑝 is,

𝐿𝑎𝑑𝑣 = E[| |𝐷𝑝 (𝜽𝑝 ) − 1| |22], (12)

where E represents the mean value.
Accordingly, the objective function of the discriminator 𝐷𝑝 is,

𝐿𝐷𝑝
= E[| |𝐷𝑝 (𝜽𝐺𝑇𝑝 ) − 1| |22] + E[| |𝐷𝑝 (𝜽𝑝 ) | |22], (13)

where 𝜽𝐺𝑇𝑝 represents the actual pose sequences, while 𝜽𝑝 refers to our estimated values.
During training, the discriminator is trained synchronously with the regressor with the loss func-

tions described above. In each training step, firstly, the regressor and the discriminator propagate
forward and calculate their respective results according to the loss functions. After that, for the
regressor, we freeze the discriminator’s backpropagation by set its gradient to 0, and then perform
the backpropagation process of the regressor to update the network. For the discriminator, we
unfreeze the backpropagation of the discriminator and update it individually.
However, due to the simpler task of the discriminator, its training speed is usually faster than

that of the regressor, which can easily lead to the collapse of the adversarial training. To alleviate
this problem, we set a step interval 𝑘 for the backpropagation of the discriminator. In each step of
training, we will only perform the backpropagation of the discriminator to update its parameters
when the current training step is a multiple of 𝑘 . Here, 𝑘 is a hyperparameter, which we set it to 4
empirically. In this way, we balance the training speed of the regressor and the discriminator so
that the network can train better results.

3.6 Self-collected Datasets
3.6.1 Real dataset. To enrich the diversity of real data for SI-HPE, we constructed a real IMU
dataset called SingleOne-IMU. In SingleOne-IMU, we recorded data from 5 persons wearing 17
Noitom IMUs. The participants included 4 males and 1 female. They were required to repeat two
types of movements, foot support movements and hip support movements, each of which included
controlled limb movements and natural whole body movements (as shown in Table 1). We collected
about 60 minutes long of data (about 12 minutes per person) using Noitom Perception Neuron 3,
a commercial MoCap solution. The Noitom Axis software was used to post-process the recorded
data so as to obtain the ground truth of the pose parameters.
In SingleOne-IMU dataset, we decided to make the joint length constant. The reason of this

decision was that we found that in the SMPL model, pose parameters and shape parameters do
not interfere with each other. In other words, SMPL model assumes that joints’ orientation exists
independently of bones’ length. We followed this idea and ignored the influence of body template
on joint orientation when recording the inertial data.

3.6.2 Synthetic dataset. Additionally, we constructed a synthetic dataset called Mixamo-IMU to
accommodate more challenging poses. We collected 949 pose sequences from four categories
(Combat, Adventure, Sport, and Dancing) from Mixamo and generated their SMPL pose parameters.
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The corresponding orientation and acceleration data of the default SMPL model were calculated
from those pose parameters.

The Mixamo-IMU dataset includes a total of 238,468 frames of motions, with the longest motion
sequence being 2,801 frames and the shortest being only 60 frames. Compared to existing synthetic
datasets, most sequences in Mixamo-IMU are generally shorter. However, there are more unique
and diverse types of motions in it. As a result, we use Mixamo-IMU as a test set to evaluate the
model’s generalization ability.

4 EXPERIMENT
4.1 Setup
4.1.1 Datasets. Our training set consisted of AMASS, the train split of DIP-IMU, and the train split
of SingleOne-IMU, with an overall data ratio of nearly 93:4:3. All models involved in the experiments
were retrained using this training set. The pre-processing for training data was consistent with
Transpose [43].

Table 1. Capture protocol used to record the SingleOne-IMU dataset.

Categories Detailed Categories Motions (Repetitions) Frames Minutes

Foot support
movements

Limb
Arm raises (5), legs raises (5),
body stretches (5), squats (5), leg
stretches (3).

67,802 18.83

Locomotion

Walks (3), goose steps (3), runs (3),
basket shoots, cross steps (3),
jumps (3), high jumps (3), drags,
carries.

80,604 22.39

Freestyle
The subject can perform two sets
of free activities while keep
standing.

45,437 12.62

Hip support
movements

Limb Leg raises (5), leg curls (5), belly
crunches (5), legs crosses (5). 17,777 4.94

Locomotion Sit-downs and stand-ups (5),
circles (3). 13,269 3.68

Freestyle
The subject can perform two sets
of free activities while keep
sitting.

17,132 4.76

Table 2. Comparison of different datasets.

Dataset Name Sources of Inertial Data Sources of Human Pose Length Real Data
DIP-IMU Measurements of 17 Xsens IMUs Calculated offline by SIP [35] About 90 mins T

TC-IMU Calculated on the measurements
of 13 IMUs by OpenDR [25]

Marker-based motion
capture system About 50 mins T

SingleOne-IMU Measurements of 17 Noitom IMUs Noitom’s Axis software About 60 mins T

Mixamo-IMU Export from
the Mixamo website

Export from
the Mixamo website About 60 mins F

J. ACM, Vol. XX, No. XX, Article XX. Publication date: X 2023.



XX:14 Kaixin Chen, Lin Zhang, Zhong Wang, Shengjie Zhao and Yicong Zhou

Regarding the evaluation datasets, aside from the two publicly available real datasets, DIP-IMU
[16] and TC-IMU [32], used in previous studies, we also performed experiments on self-collected
datasets, SingleOne-IMU and Mixamo-IMU. The specific information about these four datasets used
for evaluations is shown in Table 2. In addition, the usage of these four datasets is as follows:

• DIP-IMU: Eight out of its ten sets were utilized for training, while the remaining two were
designated for testing.

• TC-IMU: All its data was used for testing. Note that, similar to the previous methods, as
part of the AMASS dataset, TotalCapture’s pose parameters and simulated inertial data were
employed for training, whereas for testing, the IMU measurements were sourced from the
real data within the TotalCapture dataset [32].

• SingleOne-IMU: Four out of its five sets were used for training, with one set reserved for
testing.

• Mixamo-IMU: Its data was only used for testing.

4.1.2 Evaluation Settings and Metrics. We compared our GAIP with the state-of-the-art methods
Transpose [43] and DIP [16]. We adopted both offline and online settings. In offline setting, the full
sequence was available at the test time. In the online (real-time) setting, GAIP and competitors’
models accessed 20 past frames, 1 current frame, and 5 future frames in a window sliding manner.

Regardless of whether the evaluation was conducted in an offline manner or an online manner,
the quality of pose estimation was assessed using the following metrics:

• SIP error (SIP Err): measures the average global angle difference between the reconstructed
and ground-truth poses over 4 joints (the up arms and the up legs), represented in axis-angle,
in degrees.

• Angle error (Ang Err): measures the average global angle difference between the reconstructed
and ground-truth poses over all 16 joints shown in Fig. 3(b), represented in axis-angle, in
degrees.

• Position error (Pos Err): measures the average Euclidean distance error between the recon-
structed and ground-truth poses of all estimated joints, in centimeters, aligned with the root
joint.

• Mesh error (Mesh Err): measures the average vertex distance error between the reconstructed
and ground-truth meshes, in centimeters, aligned with the root position and orientation.

4.1.3 Implementation Details. Our model was implemented using PyTorch 1.10.2 and CUDA 11.4.
All training and evaluation processes were conducted on a computer equipped with an Intel®
Core™ i9-10920X CPU and an NVIDIA GeForce RTX 3060 Ti/PCIe/SSE2 graphics card.
During training, we first train three sub-networks 𝑅𝑙 , 𝑅𝑎 , and 𝑅𝑝 respectively with the afore-

mentioned 𝐿𝑙 , 𝐿𝑎 , and 𝐿𝑟𝑜𝑡 on the AMASS dataset, so as to reduce the difficulty of the subsequent
unified training. Afterwards, as described in Section 3.5, we use 𝐿𝑝 and 𝐿𝐷𝑝

to train the regressor
and the discriminator of GAIP simultaneously on the training sets, including the AMASS dataset,
the DIP-IMU dataset and the SingleOne-IMU dataset. During testing, only the regressor of GAIP is
used to obtain the estimation results.

4.2 Quantitative Results
Quantitative results of offline and online settings are shown in Table 3 and Table 4, respectively. We
present the mean and standard deviations of each metric compared with PIP, Transpose and DIP.
As shown in the tables, it is clear that our GAIP achieves smaller joint rotation and position

errors across all datasets, whether in offline or online evaluations, demonstrating that our model is
able to utilize the spatial prior and the implicit distribution of the data for more accurate estimation.
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Table 3. Results of offline evaluations.

PIP [42] Transpose [43] DIP [16] GAIP (Ours)

DIP-IMU

SIP Err 15.02 (± 7.90) 15.17 (± 7.99) 16.61 (± 8.63) 14.60 (± 6.99)
Ang Err 8.13 (± 4.21) 8.22 (± 4.18) 13.83 (± 7.19) 7.76 (± 3.97)
Pos Err 5.19 (± 2.95) 5.26 (± 2.91) 6.72 (± 3.67) 5.01 (± 2.81)
Mesh Err 6.91 (± 3.81) 7.10 (± 4.31) 7.65 (± 4.45) 5.99 (± 3.28)

TC-IMU

SIP Err 13.63 (± 8.18) 14.00 (± 8.79) 16.92 (± 8.71) 12.59 (± 6.86)
Ang Err 12.23 (± 6.03) 12.39 (± 6.08) 15.82 (± 8.00) 12.02 (± 5.71)
Pos Err 5.91 (± 3.63) 6.11 (± 3.79) 8.87 (± 4.81) 5.56 (± 3.16)
Mesh Err 6.69 (± 4.06) 6.89 (± 4.15) 9.23 (± 5.23) 6.44 (± 3.60)

SingleOne-IMU

SIP Err 20.78 (± 9.37) 22.36 (± 9.67) 24.94 (± 11.34) 18.32 (± 8.67)
Ang Err 9.42 (± 4.64) 9.86 (± 4.42) 17.27 (± 8.58) 8.73 (± 3.92)
Pos Err 6.51 (± 3.47) 6.92 (± 3.63) 9.18 (± 4.31) 6.15 (± 3.14)
Mesh Err 7.18 (± 3.84) 7.78 (± 3.98) 9.88 (± 5.07) 6.84 (± 3.37)

Mixamo-IMU

SIP Err 26.72 (± 9.15) 26.02 (± 8.26) 27.91 (± 8.95) 24.78 (± 7.24)
Ang Err 12.90 (± 4.77) 11.51 (± 4.54) 19.88 (± 5.61) 10.89 (± 3.62)
Pos Err 9.72 (± 3.83) 9.33 (± 3.42) 12.06 (± 5.75) 8.77 (± 2.88)
Mesh Err 11.10 (± 4.25) 10.55 (± 3.71) 12.97 (± 4.17) 9.92 (± 3.19)

Table 4. Results of online evaluations.

PIP [42] Transpose [43] DIP [16] GAIP (Ours)

DIP-IMU

SIP Err 20.21 (± 9.43) 20.88 (± 9.97) 22.78 (± 11.60) 19.80 (± 9.36)
Ang Err 9.41 (± 5.43) 9.67 (± 5.37) 15.18 (± 7.05) 9.08 (± 4.69)
Pos Err 6.16 (± 4.15) 6.30 (± 3.92) 7.79 (± 4.61) 5.97 (± 3.65)
Mesh Err 7.42 (± 4.77) 7.82 (± 4.62) 8.82 (± 4.72) 7.11 (± 4.22)

TC-IMU

SIP Err 14.62 (± 8.47) 14.74 (± 8.69) 18.86 (± 9.01) 13.87 (± 8.27)
Ang Err 12.28 (± 6.23) 12.35 (± 7.21) 15.01 (± 8.03) 12.05 (± 5.93)
Pos Err 6.31 (± 4.15) 6.80 (± 3.87) 8.82 (± 4.57) 5.93 (± 3.62)
Mesh Err 7.51 (± 4.54) 7.81 (± 4.87) 9.76 (± 5.10) 6.70 (± 4.00)

SingleOne-IMU

SIP Err 26.83 (± 12.27) 27.11 (± 13.35) 28.56 (± 14.21) 23.54 (± 11.82)
Ang Err 10.96 (± 4.82) 11.34 (± 5.97) 19.21 (± 9.88) 9.84 (± 4.70)
Pos Err 8.45 (± 4.55) 8.72 (± 4.98) 13.38 (± 7.36) 7.91 (± 4.49)
Mesh Err 9.23 (± 4.88) 9.77 (± 5.49) 14.36 (± 7.95) 8.89 (± 4.95)

Mixamo-IMU

SIP Err 27.69 (± 8.99) 26.32 (± 7.82) 28.22 (± 9.38) 25.21 (± 7.67)
Ang Err 12.79 (± 4.73) 12.22 (± 4.31) 15.91 (± 4.94) 10.82 (± 3.72)
Pos Err 9.63 (± 3.79) 9.43 (± 3.42) 10.46 (± 4.13) 9.17 (± 3.36)
Mesh Err 10.79 (± 3.86) 10.45 (± 3.72) 12.17 (± 4.66) 10.38 (± 3.72)

In addition, in Table 3 and 4, we can find that compared with the DIP-IMU dataset, our method has a
more prominent optimization effect on the SingleOne-IMU dataset. This implies that GAIP can more
accurately estimate the rotation of the thigh joint to identify ambiguous motions and determine
sitting poses, which should be attributed to the learning of joint connectivity by s-GC modules.
We believe that the spatial prior of joint connectivity has the ability to enhance the advantages of
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incorporating joint positions in joint rotation estimation, particularly when a multi-stage regressor
has already computed joint positions as intermediate results.

In addition, we can find from the tables that GAIP achieves the best estimation on the Mixamo-
IMU dataset, which is not involved in training. This exhibits that our model can be applied to more
diverse human pose data and is with stronger generalization ability, which can be attributed to
the adversarial training strategy allows GAIP to learn the implicit features of the data, thereby
establishing a more comprehensive mapping relationship between inertial data and the pose
parameters, and further improves the model’s expression capability and generalization abilities.

4.3 Qualitative Performance
To conduct qualitative evaluations, we resorted to the SMPL model to visualize poses in Unity3D.
Since we only estimated pose parameters, during qualitative evaluation, we fixed the position of
the root joint and set all nodes except for the 16 joints shown in Fig. 3(b) to identity. As a result,
Fig. 7 presents the estimated results of our GAIP and Transpose on selected frames from various
datasets. More comparison results can be found in our supplementary video on the project’s website
https://cslinzhang.github.io/GAIP/.
From the examples shown in the first row of Fig. 7 selected from the DIP-IMU dataset, we can

see that our method has the ability to estimate the human poses more accurately, especially the
parts circled in yellow. We believe that this improvement can be mainly attributed to GAIP’s more
accurate estimation of the upper arms compared to Transpose’s and PIP’s. Including the upper arm,
such limb joints without direct inertial measurements play an important role in the representation
of human poses. With better estimations of these joints, the ambiguities (e.g., there are similar
measurements of arm lift when sitting and standing) in estimation can be effectively reduced.
In addition, in the second row selected from the SingleOne-IMU dataset, our GAIP performs

better in estimating the pose of the legs in a sitting pose sequence. In the results of the Mixamo-IMU
dataset presented in the last row, our method produces more satisfactory estimations of challenging
poses. This superiority can be attributed to the sufficient utilization of spatial priors with the help of
s-GC modules and the joint position loss, as well as the implicit constraints learned with adversarial
training.

4.4 Ablation Study
4.4.1 s-GC Module, Joint Position Loss, and Adversarial Loss. Here we show the effectiveness of
the key components of our GAIP. We evaluated the following three variants of GAIP: 1) GAIP-V1:
without the s-GC module; 2) GAIP-V2: without the adversarial loss (𝐿𝑎𝑑𝑣); 3) GAIP-V3: without the
joint position loss (𝐿𝑝𝑜𝑠 ). We compared these three variants for offline pose estimations with GAIP
on the datasets used for quantitative experiments.
Firstly, we assess the role of the s-GC module in GAIP by comparing the results of GAIP and

GAIP-V1. From Table 5, it can be seen that without the s-GC module, the model GAIP-V1 has
significantly higher joint rotation errors and joint position errors than the results of GAIP in each
dataset. These phenomena indicate that the s-GC module has the ability to improve the accuracy
of HPE and plays the most important optimization role in our GAIP. We attribute this optimization
to the efficient introduction of spatial priors.he efficient introduction of spatial priors.

Secondly, we analyze the contribution of the adversarial loss by comparing the results of GAIP
and GAIP-V2. From Table 5, we can find that without the adversarial loss, the results of GAIP-V2
deteriorate on all datasets, but to a lesser extent on the DIP-IMU dataset and the SingleOne-IMU
datasets, while to a greater extent on the TC-IMU dataset. We believe that adversarial training
encourages the model to learn the implicit distribution of the data, allowing the model to achieve
better performance on the TC-IMU dataset, which has a similar distribution to the AMASS dataset.
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Fig. 7. Qualitative results. From top to bottom are the online evaluation results on DIP-IMU, SingleOne-IMU,
and Mixamo-IMU, respectively. The parts with large differences are circled in yellow.

Therefore, after discarding the adversarial loss, the performance of GAIP-V2 deteriorates the most
on the TC-IMU dataset. The above analysis indicates that in addition to improving the accuracy
of HPE, the adversarial loss can also balance the performance of the model on different datasets,
prevent possible overfitting, and enable the model to use more diverse data sets for training.

Thirdly, we evaluate the role of the position loss by comparing the results of GAIP-V3 and GAIP.
From Table 5, it can be seen that without the position loss, the performances of GAIP-V3 on the
DIP-IMU dataset, the TC-IMU dataset, and the SingleOne-IMU dataset are slightly deteriorated.
However, on the Mixamo-IMU dataset, the estimation of GAIP-V3 exhibits the largest joint position
error and mesh error. Therefore, we believe that in addition to moderately improving the accuracy
of HPE, the position loss can also explicitly constrain joint positions to reduce joint position errors.

4.4.2 Hyperparameter𝑘 . The effect of hyperparameter𝑘 was also evaluated.We conducted training
under 𝑘=2, 4, 6, and 8 respectively while ensuring the same training datasets, framework and
learning rate. The loss changes of the regressor and the discriminator during the training process
are shown in Fig. 8, and the results of different models on all datasets are shown in Table 6.

From Fig. 8, we can find that when 𝑘 < 4 (𝑘 = 2 as example), due to the different difficulty levels
of the training tasks, the discriminator network will converge too quickly, causing the adversarial
network training to collapse. When 𝑘 ≥ 4, the network training can maintain stability for a long
time. Besides, from Table 6, it can be seen that when 𝑘 = 4, the model has the best results on each
dataset. Therefore, we believe that 𝑘 = 4 is a suitable choice.

4.4.3 Convolutional Kernel Schemes in s-GC Modules. In graph convolution, the initialization
scheme of the convolution kernel is not unique. Considering that the range of motion of different
joints varies greatly, in s-GC modules of GAIP, we do not simply use the adjacency matrix to
initialize the convolution kernel. Instead, in order to fully utilize the spatial priors, we split the
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Table 5. Results of the offline ablation study of the s-GC module, the joint position loss, and the adversarial
loss.

GAIP-V1 (w/o s-GC) GAIP-V2 (w/o 𝐿𝑎𝑑𝑣) GAIP-V3 (w/o 𝐿𝑝𝑜𝑠 ) GAIP

DIP-IMU

SIP Err 15.26 (± 7.69) 14.79 (± 6.75) 14.79 (± 7.03) 14.60 (± 6.99)
Ang Err 8.22 (± 4.45) 8.14 (± 4.05) 7.85 (± 3.98) 7.76 (± 3.97)
Pos Err 5.09 (± 3.01) 5.04 (± 2.66) 5.09 (± 2.82) 5.01 (± 2.81)
Mesh Err 6.15 (± 3.76) 6.07 (± 3.26) 6.11 (± 3.31) 5.99 (± 3.28)

TC-IMU

SIP Err 13.43 (±7.17) 13.15 (± 6.91) 12.64 (± 6.80) 12.59 (± 6.86)
Ang Err 12.47 (± 5.73) 12.21 (± 5.72) 12.04 (± 5.70) 12.02 (± 5.71)
Pos Err 5.90 (± 3.19) 5.79 (± 3.17) 5.62 (± 3.16) 5.56 (± 3.16)
Mesh Err 6.83 (± 3.74) 6.72 (± 3.63) 6.53 (± 3.60) 6.44 (± 3.60)

SingleOne-IMU

SIP Err 21.12 (± 10.26) 19.56 (± 10.33) 18.49 (± 8.79) 18.32 (± 8.67)
Ang Err 9.93 (± 4.74) 9.16 (± 4.30) 8.83 (± 4.04) 8.73 (± 3.92)
Pos Err 7.35 (± 3.79) 6.51 (± 3.66) 6.28 (± 3.34) 6.15 (± 3.14)
Mesh Err 8.33 (± 4.14) 7.11 (± 3.76) 6.97 (± 3.57) 6.84 (± 3.37)

Mixamo-IMU

SIP Err 25.70 (± 7.72) 25.46 (± 7.16) 24.93 (± 7.20) 24.78 (± 7.24)
Ang Err 11.76 (± 4.18) 11.36 (± 3.66) 10.88 (± 3.59) 10.89 (± 3.62)
Pos Err 8.82 (± 3.06) 8.89 (± 2.82) 8.91 (± 2.92) 8.77 (± 2.88)
Mesh Err 10.04 (± 3.15) 10.06 (± 3.16) 10.11 (± 3.19) 9.92 (± 3.19)

𝐿!"# 𝐿$%

𝐿 !
"#

𝐿 $
%

Fig. 8. Loss terms in ablation experiments of the hyperparameter 𝑘 . The left subfigure represents 𝐿𝑎𝑑𝑣
of Regressors during the training process, while the right one represents 𝐿𝐷𝑝

of Discriminator during the
training process. During adversarial training, unstable 𝐿𝑎𝑑𝑣 and 𝐿𝐷𝑝

will cause training to collapse. It can be
seen that training collapse occurs when 𝑘 = 2.

adjacency matrix and construct three matrices representing the centripetal set, the node itself, and
the centrifugal set, respectively, to initialize three convolution kernels.
Here, we attempt to demonstrate the effectiveness of this strategy by comparing GAIP with a

variant GAIP-uni. In GAIP-uni, the adjacency matrix is used to initialize the convolution kernel
in the s-GC modules. GAIP and GAIP-uni were evaluated offline on DIP-IMU [16], TC-IMU (real
data from TotalCapture Dataset [32]), SingleOne-IMU and Mixamo-IMU with the same metrics
mentioned in the main body. The relevant quantitative experimental results are summarized in
Table 7.

From Table 7, it can be seen that GAIP basically achieves smaller joint rotation loss and joint
position loss. This phenomenon confirms the effectiveness of the convolution kernel initialization
strategy in our s-GC modules.
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Table 6. Results of the offline ablation study of the hyperparameter 𝑘 .

𝑘 = 2 𝑘 = 4 𝑘 = 6 𝑘 = 8

DIP-IMU

SIP Err 18.11 (± 8.37) 14.60 (± 6.99) 15.10 (± 6.74) 15.16 (± 7.00)
Ang Err 9.64 (± 4.86) 7.76 (± 3.97) 8.08 (± 3.95) 8.11 (± 4.00)
Pos Err 5.89 (± 3.26) 5.01 (± 2.81) 5.05 (± 2.67) 5.12 (± 2.73)
Mesh Err 6.88 (± 3.26) 5.99 (± 3.28) 6.06 (± 3.35) 6.08 (± 3.40)

TC-IMU

SIP Err 13.63 (± 8.18) 12.59 (± 6.86) 12.77 (± 6.65) 13.01 (± 6.76)
Ang Err 12.20 (± 5.84) 12.02 (± 5.71) 12.25 (± 5.66) 12.32 (± 5.70)
Pos Err 5.91 (± 3.63) 5.56 (± 3.16) 5.78 (± 3.08) 5.84 (± 3.14)
Mesh Err 6.84 (± 3.71) 6.44 (± 3.60) 6.69 (± 4.06) 6.89 (± 4.15)

SingleOne-IMU

SIP Err 20.51 (± 9.19) 18.32 (± 8.67) 19.61 (± 10.42) 19.67 (± 10.20)
Ang Err 8.99 (± 4.11) 8.73 (± 3.92) 9.15 (± 4.32) 9.28 (± 4.37)
Pos Err 6.86 (± 3.44) 6.15 (± 3.14) 6.54 (± 3.68) 6.56 (± 3.64)
Mesh Err 7.63 (± 3.51) 6.84 (± 3.37) 7.18 (± 3.54) 7.38 (± 3.98)

Mixamo-IMU

SIP Err 27.72 (± 9.15) 24.78 (± 7.24) 24.80 (± 7.16) 24.85 (± 7.17)
Ang Err 12.90 (± 4.77) 10.89 (± 3.62) 10.92 (± 3.63) 11.01 (± 3.67)
Pos Err 9.72 (± 3.83) 8.77 (± 2.88) 8.78 (± 2.79) 8.81 (± 2.80)
Mesh Err 10.68 (± 4.26) 9.92 (± 3.19) 10.13 (± 3.25) 10.07 (± 3.26)

Table 7. Results of the offline ablation study of the convolutional kernel schemes in s-GC modules.

GAIP-uni GAIP

DIP-IMU

SIP Err 14.80 (± 7.09) 14.60 (± 6.99)
Ang Err 8.02 (± 4.04) 7.76 (± 3.97)
Pos Err 5.06 (± 2.87) 5.01 (± 2.81)
Mesh Err 6.13 (± 3.36) 5.99 (± 3.28)

TC-IMU

SIP Err 13.17 (± 6.96) 12.59 (± 6.86)
Ang Err 12.30 (± 5.76) 12.38 (± 5.75)
Pos Err 5.82 (± 3.20) 5.56 (± 3.16)
Mesh Err 6.54 (± 3.75) 6.44 (± 3.60)

SingleOne-IMU

SIP Err 19.52 (± 9.98) 18.32 (± 8.67)
Ang Err 9.31 (± 4.27) 8.73 (± 3.92)
Pos Err 6.54 (± 3.56) 6.15 (± 3.14)
Mesh Err 7.16 (± 3.52) 6.84 (± 3.37)

Mixamo-IMU

SIP Err 24.94 (± 7.15) 24.78 (± 7.24)
Ang Err 11.01 (± 3.65) 10.89 (± 3.62)
Pos Err 8.83 (± 2.91) 8.77 (± 2.88)
Mesh Err 10.01 (± 3.37) 9.92 (± 3.19)

4.4.4 Training Strategies. In the comparative experiments of training strategies, we tested two
training strategies. 1) “pre-training + fine-tuning”: this strategy performs pre-training on the
AMASS dataset, and then fine-tunes on the training set merged from the DIP-IMU dataset and the
SingleOne-IMU dataset. 2) “unified training”: this strategy performs training on the unified data
that combines the training sets of the AMASS dataset, the DIP-IMU dataset and the SingleOne-IMU
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dataset. The results of models with different training strategies on different datasets are provided
in Table 8.
From Table 8, it can be seen that the performance difference between the model obtained by

“pre-training + fine-tuning” and the model obtained by “unified training” on datasets is limited.
The model trained by “pre-training + fine-tuning” performs slightly better on the SingleOne-IMU
dataset, while the model trained by “unified training” performs better on other datasets. From these
results, it can be concluded that the model achieved by unified training that performs better on
more test datasets has a stronger generalization ability. However, given that fine-tuning strategies
are very diverse and have different effects, a more appropriate fine-tuning strategy may further
optimize the performance of the model.

Table 8. Results of the ablation study of the training strategies.

GAIP (pre-train + finetune) GAIP (unified train)

DIP-IMU

SIP Err 15.44 (± 6.49) 14.60 (± 6.99)
Ang Err 8.04 (± 3.93) 7.76 (± 3.97)
Pos Err 5.23 (± 2.53) 5.01 (± 2.81)
Mesh Err 6.12 (± 3.25) 5.99 (± 3.28)

TC-IMU

SIP Err 14.93 (± 6.32) 12.59 (± 6.86)
Ang Err 12.48 (± 5.56) 12.02 (± 5.71)
Pos Err 5.61 (± 2.95) 5.56 (± 3.16)
Mesh Err 6.57 (± 3.55) 6.44 (± 3.60)

SingleOne-IMU

SIP Err 18.29 (± 8.75) 18.32 (± 8.67)
Ang Err 8.78 (± 3.95) 8.73 (± 3.92)
Pos Err 6.14 (± 3.14) 6.15 (± 3.14)
Mesh Err 6.84 (± 3.37) 6.84 (± 3.37)

Mixamo-IMU

SIP Err 24.80 (± 7.23) 24.78 (± 7.24)
Ang Err 10.91 (± 3.63) 10.89 (± 3.62)
Pos Err 8.83 (± 2.89) 8.77 (± 2.88)
Mesh Err 10.00 (± 3.20) 9.92 (± 3.19)

5 CONCLUSION
In this paper, we propose GAIP, a framework for reconstructing complete human pose using six
inertial sensors. GAIP designs a multi-stage regressor comprising s-GC modules to fuse topological
information from HKT and a joint position loss to implicitly learn spatial information with for-
ward kinematics. GAIP also conducts adversarial learning to optimize the regressor’s parameters.
Extensive comparative and ablation experiments demonstrate that our GAIP achieves higher pose
estimation accuracy than the state-of-the-art counterparts. Additionally, we release a real dataset
SingleOne-IMU, including hip-supported and foot-supported movements, and a synthetic dataset
Mixmo-IMU, with diverse movements for SI-HPE training and evaluation. However, our estimated
limb poses are still not accurate enough for poses with wide range motions, and thus we will con-
tinue to devote efforts in this area. In addition, the sparse IMU HPE method is extremely dependent
on a powerful human body model such as the SMPL model, and how to get rid of this dependence
is also a direction worth studying in the future.
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