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Figure 1: Our proposed GS3LAM utilizes the 3D semantic Gaussian representation and the differentiable splatting rasterization
pipeline, and jointly optimizes camera poses and field for appearance, geometry and semantics, achieving robust tracking,
real-time high-quality rendering, and precise 3D semantic reconstruction.

Abstract
Recently, the multi-modal fusion of RGB, depth, and semantics has
shown great potential in the domain of dense Simultaneous Local-
ization and Mapping (SLAM), as known as dense semantic SLAM.
Yet a prerequisite for generating consistent and continuous seman-
tic maps is the availability of dense, efficient, and scalable scene
representations. To date, existing semantic SLAM systems based on
explicit scene representations (points/meshes/surfels) are limited
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by their resolutions and inabilities to predict unknown areas, thus
failing to generate dense maps. Contrarily, a few implicit scene rep-
resentations (Neural Radiance Fields) to deal with these problems
rely on time-consuming ray tracing-based volume rendering tech-
nique, which cannot meet the real-time rendering requirements of
SLAM. Fortunately, the Gaussian Splatting scene representation has
recently emerged, which inherits the efficiency and scalability of
point/surfel representations while smoothly represents geometric
structures in a continuous manner, showing promise in addressing
the aforementioned challenges. To this end, we propose GS3LAM,
a Gaussian Semantic Splatting SLAM framework, which takes mul-
timodal data as input and can render consistent, continuous dense
semantic maps in real-time. To fuse multimodal data, GS3LAM
models the scene as a Semantic Gaussian Field (SG-Field), and
jointly optimizes camera poses and the field by establishing error
constraints between observed and predicted data. Furthermore, a
Depth-adaptive Scale Regularization (DSR) scheme is proposed to
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tackle the problem of misalignment between scale-invariant Gaus-
sians and geometric surfaces within the SG-Field. To mitigate the
forgetting phenomenon, we propose an effective Random Sampling-
based Keyframe Mapping (RSKM) strategy, which exhibits notable
superiority over local covisibility optimization strategies commonly
utilized in 3DGS-based SLAM systems. Extensive experiments con-
ducted on the benchmark datasets reveal that compared with state-
of-the-art competitors, GS3LAM demonstrates increased tracking
robustness, superior real-time rendering quality, and enhanced se-
mantic reconstruction precision. To make the results reproducible,
the source code is available at https://github.com/lif314/GS3LAM.
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• Computing methodologies→ Reconstruction.
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1 Introduction
By integrating semantic understanding into map, semantic Simul-
taneous Localization and Mapping (SLAM) achieves simultaneous
estimation of camera poses while constructing maps that main-
tain consistency across geometry, appearance, and semantics. In
comparison to conventional SLAM techniques, it excels in the iden-
tification, classification, and correlation of entities within scenes.
Nowdays, semantic SLAM systems have been applied in various
domains, such as robotics [1, 13] and autonomous driving [1, 10, 20].

To date, existing semantic SLAM systems based on explicit scene
representations often resort to points/surfels [15, 23, 26, 28], grids
[16], or voxels [8, 11, 17] to construct maps. Although these repre-
sentations offer advantages in geometry, storage, computational
efficiency, and scalability, they face challenges in predicting un-
known regions and are constrained by limited resolutions, thus
being unable to generate dense semantic maps. Contrarily, recent
emerging neural rendering techniques based on implicit scene repre-
sentations, such as Neural Radiance Fields (NeRF) [14], have shown
potentials to deal with these challenges. NeRF portrays scenes as
continuous implicit volume functions, enabling realistic novel view
synthesis with minimal storage requirements. Based on it, several
studies [3, 32] incorporate additional MLP channels to encode and
decode semantic labels, while jointly optimizing camera poses and
semantic scenes. However, due to the computationally expensive
ray tracing-based volume rendering technique of NeRF, these meth-
ods fail to meet the real-time demands of SLAM.

Fortunately, we observe the emergence of 3D Gaussian Splat-
ting (3DGS) [7], which demonstrates exceptional capabilities in
dense 3D reconstruction. This method represents the scene as dense
Gaussian clouds and achieves efficient rendering through tile-based
rasterization. We show that 3DGS has great potential in addressing
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Figure 2: Illustration of optimization bias on Replica “Office 3”.

the aforementioned challenges. As a semantic SLAM scene repre-
sentation, it inherits the efficiency, locality, and modifiability of
point/surfel representations while smoothly and differentiably rep-
resenting the geometric structure in a continuous manner, enabling
the reconstruction of rich and complex details in dense maps. To
further improve the capabilities of semantic SLAM in tracking, ren-
dering, and semantic reconstruction, it is a natural idea to extend
3DGS as a semantic scene representation, but surprisingly such
a simple idea has seldom been explored in existing literature. In
this work, based on the above-mentioned findings, we propose a
dense semantic SLAM framework, GS3LAM (Gaussian Semantic
Splatting SLAM), to fully leverage the advantages of 3DGS.

However, the effective embedding and real-time optimization of
high-dimensional semantic categories pose profound challenges for
GS3LAM. To deal with these issues, GS3LAM models the scene as a
Semantic Gaussian Field (SG-Field), wherein semantic categories
are represented as low-dimensional implicit features. By means
of a simple decoder, GS3LAM efficiently transforms these features
into semantic categories, facilitating the conversion between 3D
implicit features and 2D semantic labels.

Furthermore, within the SG-Field, irregular Gaussian scales hin-
der the accurate representation of geometric surfaces, making it
unacceptable for pixel-level semantic reconstruction. To address
this issue, we propose a Depth-adaptive Scale Regularization (DSR)
strategy. This strategy constrains scales within a depth-dependent
range, indirectly aligning Gaussians with geometric surfaces, thus
can effectively reduce blurring on object surfaces and enhance both
tracking robustness and semantic reconstruction accuracy.

Finally, to address the forgetting phenomenon in GS3LAM, we
propose a Random Sampling-based Keyframe Mapping (RSKM)
strategy, which proves to be more effective than the Local Covisi-
bility Keyframe Mapping (LCKM) strategy commonly adopted in
3DGS-based SLAM systems. Our observation suggests that the lat-
ter method introduces a considerable bias during the optimization
of the Gaussian field, thereby leading to poor global map consis-
tency. In particular, as depicted in Fig. 2(a), frames with dense
co-observations (dense camera trajectories) and increased optimiza-
tion iterations (large point radii) exhibit lower PSNR values (darker
color), suggesting challenges in achieving convergence of the Gauss-
ian field under the LCKM strategy. Conversely, as shown in Fig.
2(b), our proposed RSKM strategy not only enhances the rendering
quality of the global map (higher mean PSNR, 𝜇𝑃𝑆𝑁𝑅 ) but also
ensures high consistency among all perspectives (smaller PSNR
variance, 𝜎𝑃𝑆𝑁𝑅 ), effectively reducing the optimization bias.

Our contributions are summarized as follows:
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(1) As depicted in Fig. 1,GS3LAM is aGaussian Splatting Semantic
SLAM framework, which models the scene as a Semantic
Gaussian Field (SG-Field) to efficiently facilitate the conver-
sion between 3D semantic features and 2D labels. By the joint
optimization of camera poses and field for appearance, ge-
ometry, and semantics, it achieves robust tracking, real-time
high-quality rendering, and precise semantic reconstruction.

(2) A Depth-adaptive Scale Regularization (DSR) scheme is pro-
posed to reduce the blurring of geometric surfaces induced by
irregular Gaussian scales within the SG-Field. By constrain-
ing Gaussian scales within a reasonable range determined
by depth, it alleviates the ambiguity of geometric surfaces,
thereby enhancing accuracy in semantic reconstruction.

(3) To address the forgetting phenomenon in GS3LAM, we pro-
pose an efficacious Random Sampling-based Keyframe Map-
ping (RSKM) strategy, which exhibits notable superiority
over prevalent local covisibility optimization strategies com-
monly employed in 3DGS-based SLAM systems. As shown
in Fig. 2, our method significantly enhances both the recon-
struction accuracy and rendering quality while maintaining
the global consistency of the semantic map.

(4) Extensive experiments conducted on Replica [21] and Scan-
Net [2] datasets demonstrate that our GS3LAM outperforms
its counterparts in terms of tracking accuracy, rendering
quality and speed, and semantic reconstruction.

2 Related Work
2.1 Scene Representation for Semantic SLAM
Semantic SLAM systems typically utilize various scene represen-
tations such as points/surfels [15, 23, 26, 28], grids [16], or voxels
[8, 11, 17] to facilitate the creation of semantic maps. For instance,
the mesh-based SLAM++ [18] models the world as a graph, with
each node capturing an estimated 𝑆𝐸 (3) pose, and represents each
3D object as a mesh. Another notable system, Kimera [1], annotates
semantic labels onto the faces of meshes, enabling the real-time
construction of metric-semantic 3D mesh environment models.
The surfel-based SemanticFusion [13], on the other hand, builds
upon real-time ElasticFusion [28] and utilizes CNN predictions of
pixel categories and Bayesian update schemes to track the cate-
gory probability distribution of each surfel, thereby establishing a
globally consistent semantic map. Despite the benefits that these
representation techniques present in terms of geometry, storage,
computational efficiency, and scalability, they encounter difficul-
ties in predicting unexplored areas and are restricted by limited
resolutions, thereby incapable of producing dense semantic maps.

2.2 NeRF-based and 3DGS-based SLAM
In recent years, neural rendering techniques based on continuous
scene representations, such as Neural Radiance Fields (NeRF) [14]
and 3D Gaussian Splatting (3DGS) [7], have emerged, showing
significant potential in photorealistic rendering and dense recon-
struction. NeRF represents scenes as continuous implicit volume
functions, enabling realistic novel view synthesis with modest stor-
age requirements. For NeRF-based SLAM, existing methods can be
categorized into two main types, implicit (MLP-based) representa-
tion methods and hybrid representation methods. The MLP-based

iMAP [24] is the first to employ neural radiance for tracking and
mapping tasks, offering memory-efficient dense map representa-
tions but failing to scale to large scenes. On the other hand, hybrid
representation methods combine the scalability of explicit represen-
tations with the low memory consumption of implicit representa-
tions, significantly improving scene scalability and accuracy. For in-
stance, NICE-SLAM [34] proposes hierarchical multi-feature grids,
Co-SLAM [25] adopts multi-resolution hash grids, and Vox-Fusion
[30] utilizes octrees for dynamic map expansion. ESLAM [5] and
Point-SLAM [19], in addition, employ tri-planes and neural point
clouds respectively for volume rendering, significantly enhancing
mapping capabilities. Furthermore, some methods [9, 32] incorpo-
rate additional MLP channels to encode and decode semantic labels,
while optimizing camera poses and semantic scenes simultaneously.
However, due to the computational expense of NeRF’s ray-tracing-
based volume rendering, these methods fail to meet the real-time
requirements of SLAM.

In contrast to NeRF, 3DGS achieves remarkable capabilities by
representing scenes as dense Gaussian clouds and a tile-based raster-
ization, thereby accomplishing high-quality and efficient rendering.
Recently, several SLAM methods [4, 6, 12, 29] based on 3DGS have
been developed. They represent scenes as 3D Gaussians and directly
backpropagate to optimize camera poses and the Gaussian fields.

3 Methodology
3.1 Framework Overview
As illustrated in Fig. 3, our GS3LAM framework is designed to
process RGB-D data with unknown camera poses and correspond-
ing 2D semantic labels. It models the scene as a SG-Field, wherein
each 3D Gaussian is characterized by its position µ, rotation ma-
trix R, scaling matrix S, opacity 𝑜 , color c, and semantic feature
f . To facilitate progressive reconstruction of semantic maps with
geometric-semantic consistency, we employ an adaptive 3D Gauss-
ian expansion technique and propose the RSKM strategy to alleviate
the forgetting phenomenon. Finally, GS3LAM optimizes camera
poses and the SG-Field using appearance, geometry, and semantics,
along with the proposed DSR scheme which ensures the alignment
between geometry and semantics within the field.

3.2 Semantic Gaussian Field
Our goal is to establish a scene representation that efficiently cap-
tures the geometry, appearance, and semantics of the scene, thereby
facilitating the production of realistic dense map and precise se-
mantic reconstruction. To accomplish this objective, we model the
scene as a SG-Field G containing 𝑁 semantic Gaussians,

G := {(µ𝑖 , 𝚺𝑖 , 𝑜𝑖 , c𝑖 , f𝑖 ) |𝑖 = 1, 2, . . . , 𝑁 }, (1)

where the 𝑖-th 3D semantic Gaussian is defined by its position
µ𝑖 ∈ R3, covariance matrix 𝚺𝑖 ∈ R3×3, opacity 𝑜𝑖 ∈ R, RGB color
c𝑖 ∈ R3, and semantic feature f𝑖 ∈ R𝑁𝑠𝑒𝑚 (𝑁𝑠𝑒𝑚 denotes the number
of objects in the field). To optimize the parameters of the SG-Field
using gradient descent, the covariance matrix Σ𝑖 can be represented
equivalently as [7],

Σ𝑖 = R𝑖S𝑖S𝑇𝑖 R𝑇𝑖 , (2)
where S𝑖 ∈ R3×3 represents a diagonal scaling matrix, and R𝑖 ∈
R3×3 denotes a rotation matrix.
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Figure 3: The framework overview of GS3LAM. GS3LAMmodels the scene as a Semantic Gaussian Field (SG-Field). For geometric-
semantic consistent keyframemapping, an adaptive 3D Gaussian expansion technique and a Random Sampling-based Keyframe
Mapping (RSKM) strategy are employed. GS3LAM optimizes camera poses and SG-Field using appearance, geometry, and
semantics, along with a Depth-adaptive Scale Regularization (DSR) scheme.

3.2.1 Color and Depth Splatting-Rendering. When provided
with an optimized SG-Field G, along with a world-to-camera view-
ing transformation (also known as the camera pose) T𝐶𝑊 ∈ R4×4,
the 𝑖-th 3D semantic Gaussian can be projected onto the 2D image
plane for rendering with a 2 × 2 covariance matrix Σ2𝐷

𝑖
[35],

Σ2𝐷
𝑖 = J𝑖R𝐶𝑊 Σ𝑖R𝑇𝐶𝑊 J𝑇𝑖 , (3)

where J𝑖 ∈ R2×3 is the Jacobian of the 𝑖-th Gaussian centroid
projected onto the 2D image plane with respect to its position
in the camera coordinate system, and R𝐶𝑊 ∈ R3×3 denotes the
rotation matrix of the camera pose T𝐶𝑊 . Upon the projection of
3D Gaussians onto the image plane, the color of a single pixel ĉ𝑝𝑖𝑥
is rendered by sorting the Gaussians in depth order and performing
front-to-back 𝛼-blending rendering as,

ĉ𝑝𝑖𝑥 =

𝑀∑︁
𝑖

c𝑖𝛼𝑖
𝑖−1∏
𝑗

(
1 − 𝛼 𝑗

)
, (4)

where𝑀 is the number of sorted Gaussians overlapping with the
given pixel. The density 𝛼𝑖 is computed from the 2D covariance
matrix Σ2𝐷

𝑖
and the opacity 𝑜𝑖 of the 𝑖-th 3D Gaussian as,

𝛼𝑖 = 𝑜𝑖 · exp(−
1
2
σ𝑇
𝑖 (Σ

2𝐷
𝑖 )−1σ𝑖 ), (5)

where σ𝑖 ∈ R2 is the offset between the pixel center and the 𝑖-th
projected 2D Gaussian center. Likewise, the depth 𝑑𝑝𝑖𝑥 of a single
pixel is rendered by,

𝑑𝑝𝑖𝑥 =

𝑀∑︁
𝑖

𝑑𝑖𝛼𝑖

𝑖−1∏
𝑗

(
1 − 𝛼 𝑗

)
, (6)

where 𝑑𝑖 is the depth of the 𝑖-th Gaussian centroid with respect to
the camera coordinate system.

3.2.2 Semantic Feature Splatting-Rendering and Decoding.
To develop a versatile pipeline for embedding semantic features, it
is imperative that our approach possesses the capability to generate
semantic feature maps of varying sizes and dimensions. To fulfill
this requirement, we employ a rendering pipeline based on differ-
entiable 3DGS framework similar to color and depth. Specifically,
the 2D semantic feature of a single pixel f̂𝑝𝑖𝑥 can be rendered as,

f̂𝑝𝑖𝑥 =

𝑀∑︁
𝑖

f𝑖𝛼𝑖
𝑖−1∏
𝑗

(
1 − 𝛼 𝑗

)
, (7)

where f𝑖 denotes the 𝑁𝑠𝑒𝑚-dimensional semantic feature vector
of the 𝑖-th 3D Gaussian. To decode discrete semantic labels from
continuous 2D semantic features, we initially utilize a CNN decoder
F𝑐𝑛𝑛 to restore the low-dimensional feature to 𝐾𝑠𝑒𝑚 dimensions
(𝐾𝑠𝑒𝑚 represents the semantic label categories). Then, a softmax
classification is employed on the high-dimensional feature to obtain
the semantic label 𝑠𝑝𝑖𝑥 of a single pixel,

𝑠𝑝𝑖𝑥 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (F𝑐𝑛𝑛 (f̂𝑝𝑖𝑥 )) . (8)

Due to 𝑁𝑠𝑒𝑚 ≪ 𝐾𝑠𝑒𝑚 , GS3LAM can efficiently achieve the conver-
sion between 3D semantic features and 2D semantic labels, seam-
lessly embedding semantic features into 3DGS-based SLAM while
maintaining the optimization efficiency.

3.2.3 Decoupled Optimization. In our GS3LAM system, the
parameters to be optimized include 𝑃 camera poses T and the
SG-Field G,

𝚯T := { (q𝑖 , t𝑖 ) }𝑃𝑖=1, 𝚯G := {{ (µ𝑖 ,Σ𝑖 , 𝑜𝑖 , c𝑖 , f𝑖 ) }𝑁𝑖=1, F𝑐𝑛𝑛 ( ·) }, (9)

where q𝑖 = [𝑞𝑤
𝑖
, 𝑞𝑥

𝑖
, 𝑞

𝑦

𝑖
, 𝑞𝑧

𝑖
]𝑇 represents the rotation quaternion,

t𝑖 = [𝑡𝑥
𝑖
, 𝑡
𝑦

𝑖
, 𝑡𝑧
𝑖
]𝑇 denotes the translation vector, and the parameters

of the SG-Field G are defined in Eq. (1) and Eq. (8). Simultaneously
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optimizing both the camera pose parameters 𝚯T and the seman-
tic Gaussian parameters of SG-Field 𝚯G is time-consuming and
challenging. Therefore, a strategy of decoupling the optimization
of camera poses and field parameters is adopted. In the tracking
stage (Sec. 3.4), GS3LAM optimizes the camera pose of the current
frame T𝑡 with reference to a pre-trained SG-Field G𝑡−1. During the
mapping phase (Sec. 3.3), it optimizes the current SG-Field G𝑡 based
on accurately estimated camera poses T0,T1, . . . ,T𝑡 .

3.3 Geometric-Semantic Consistent Mapping
3.3.1 Adaptive 3D Gaussian Expansion. To accommodate to
the paradigm of incremental reconstruction in SLAM, an adaptive
3D Gaussian expansion strategy is employed during the mapping
process. Following the tracking of a frame, we re-render the current
frame and compute the cumulative opacity 𝑜𝑝𝑖𝑥 for each pixel.
This process can be seamlessly integrated into the differentiable
rasterization pipeline of 3DGS [7],

𝑜𝑝𝑖𝑥 =

𝑀∑︁
𝑖

𝛼𝑖

𝑖−1∏
𝑗

(
1 − 𝛼 𝑗

)
. (10)

Inspired by [6, 29], cumulative opacity and depth are employed to
construct a mask for the unobservable regions of the SG-Field G𝑡−1
under the viewpoint T𝑡 in the current frame,

𝑀𝑢𝑛𝑜𝑏𝑠 = I(𝑜𝑝𝑖𝑥 < 𝜏𝑢𝑛𝑜𝑏𝑠 ) ∨ I(𝑑𝑝𝑖𝑥 > 𝑑𝑔𝑡 ∧ 𝐿1 (𝑑𝑔𝑡 , 𝑑𝑝𝑖𝑥 ) > 50�̃�1 (𝑑𝑔𝑡 , 𝑑𝑝𝑖𝑥 ) ),
(11)

where I denotes the indicator function, 𝜏𝑢𝑛𝑜𝑏𝑠 represents cumula-
tive opacity threshold for unobservable regions, and �̃�1 (𝑑𝑔𝑡 , 𝑑𝑝𝑖𝑥 )
refers to the median of the 𝑙1-norm error between the observed
depth 𝑑𝑔𝑡 and the rendered depth 𝑑𝑝𝑖𝑥 . This mask indicates regions
characterized by inadequate map density (𝑜𝑝𝑖𝑥 < 𝜏𝑢𝑛𝑜𝑏𝑠 ), or where
additional geometry is anticipated to exist ahead of the presently
estimated geometry (𝐿1 (𝑑𝑔𝑡 , 𝑑𝑝𝑖𝑥 ) > 50�̃�1 (𝑑𝑔𝑡 , 𝑑𝑝𝑖𝑥 )). Relying on
this mask, we can dynamically and adaptively integrate newly ob-

served regions into the SG-Field (G𝑡−1
𝑀unobs−−−−−→ G𝑡 ). Concurrently,

this mask serves to prevent the addition of new Gaussians to areas
where the current Gaussian adequately represents the scene geom-
etry, thereby effectively managing the number of Gaussians within
G𝑡 , leading to decreased memory usage and optimization time.

3.3.2 Depth-adaptive Scale Regularizationn (DSR). Based on
the mask𝑀𝑢𝑛𝑜𝑏𝑠 of the current frame, all unobservable pixels are
used to expand new semantic Gaussians. Specifically, for each pixel,
we add a new semantic Gaussian with the color of that pixel, the se-
mantic feature represented by random 𝑁𝑠𝑒𝑚-dimensional Spherical
Harmonics coefficients, the centroid at the location of the unprojec-
tion of that pixel depth 𝑑𝑔𝑡 , an opacity of 0.5, and scales initialized
to 𝑑𝑔𝑡/𝑓 , where 𝑓 denotes the camera focal length. Although this
scaling initialization strategy shows higher efficiency compared to
the KNN method in 3DGS [7], the variations in depth range across
different frames result in significant variance in the 3D Gaussian
scales corresponding to these frames. Such variance is not con-
ducive to the SG-Field optimization. Furthermore, this strategy fails
to adaptively represent high- and low-frequency informationwithin
the field, i.e., using smaller scales in high-frequency regions and
larger scales in low-frequency regions. To address these challenges,

Camera BCamera A

Co-visible Gaussians

Gaussians in 
Camera A

Gaussians in 
Camera B

Figure 4: The forgetting problem in SG-Field. During the incremen-
tal optimization process, Gaussians G𝐴 in camera 𝐴 are initially
optimized. However, when optimizing the Gaussians G𝐵 in camera
𝐵 , the co-visible Gaussians G𝐶 = G𝐴 ∩ G𝐵 tend to be excessively
fitted to the latest frame of camera 𝐵, resulting in a decrease in the
reconstruction quality of the previous frame captured by camera 𝐴.

we propose a depth-adaptive scale regularization term,

L𝑏𝑖𝑔 =

∑
𝑖 𝑠𝑖 I

(
𝑠𝑖 > 𝑠𝑏𝑖𝑔

)∑
𝑖 I

(
𝑠𝑖 > 𝑠𝑏𝑖𝑔

) , L𝑠𝑚𝑎𝑙𝑙 =

∑
𝑖 − log(𝑠𝑖 )I (𝑠𝑖 < 𝑠𝑠𝑚𝑎𝑙𝑙 )∑

𝑖 I (𝑠𝑖 < 𝑠𝑠𝑚𝑎𝑙𝑙 )
,

(12)
where 𝑠𝑖 denotes the scale of the 𝑖-th Gaussian, 𝑠𝑏𝑖𝑔 and 𝑠𝑠𝑚𝑎𝑙𝑙

adhere the 2𝜎 rule, i.e., 𝑠𝑏𝑖𝑔 = 𝜇𝑠 + 2𝜎𝑠 and 𝑠𝑠𝑚𝑎𝑙𝑙 = 𝜇𝑠 − 2𝜎𝑠 . These
terms constrain the global Gaussian scales within a reasonable
range (𝜇𝑠−2𝜎𝑠 < 𝑠 < 𝜇𝑠 +2𝜎𝑠 ), thereby preventing excessively large
or small Gaussians. Moreover, they indirectly align the Gaussians
with geometric surfaces, reducing the blurriness of object edges,
and achieving spatial alignment between geometry and semantics.

3.3.3 Random Sampling-based Keyframe Mapping (RSKM).
As illustrated in Fig. 4, due to the optimization properties of 3DGS
[7], 3DGS-based SLAM systems inherently demonstrate a propen-
sity for forgetting during the incremental reconstruction procedure.
In order to alleviate this issue, SplaTAM [6] and MonoGS [12]
adopt a strategy of Local Co-visible Keyframe Mapping (LCKM),
wherein, during the optimization of the current frame, the remain-
ing keyframes co-visible with the current frame are selected to
participate in optimization together. However, as shown in Fig. 2,
we observe that this approach leads to under-optimized regions
with sparse co-visibility, while areas with numerous co-visibility
frames exhibit a tendency towards convergence difficulties, result-
ing in significantly biased semantic maps. To address this problem,
we propose the RSKM strategy, which effectively reduces the opti-
mization bias and enhances the global consistency of the SG-Field.

In the process of mapping the current frame 𝑓𝑐𝑢𝑟 , during each
iteration, RSKM selects a frame 𝑓 in the keyframe set K with prob-
ability 𝑝 (𝑓 ) to participate in the optimization,

𝑝 (𝑓 ) = 1
|K | +

(
1 − 1

|K |

)
· 𝛿𝑓 ,𝑓𝑐𝑢𝑟 · 𝛿mod(𝑘𝑚,𝑡𝑜𝑝𝑡 ),0, (13)

where |K | denotes the size of the keyframe set K , 𝑘𝑚 represents
the number of iterations for mapping, 𝛿𝑖, 𝑗 is the Kronecker delta
function, which equals 1 if 𝑖 = 𝑗 and 0 otherwise, and the optimiza-
tion target interval 𝑡𝑜𝑝𝑡 is used to balance optimization between the
current frame and keyframes. It is noteworthy that RSKM does not
involve time-consuming keyframe selection operations as done in
SplaTAM [6] and Point-SLAM [19], yet still achieves a high level of
effectiveness in ensuring the global consistency of semantic maps.
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3.3.4 Objective Functions. Based on the aforementioned sam-
pling strategy, the optimization objective of SG-Field G𝑡 can be
defined as,

G∗
𝑡 = argmin

ΘG

𝑘𝑚∑︁
𝑖

L𝑚𝑎𝑝𝑝𝑖𝑛𝑔 (R(T𝑖 ⊙ G𝑡 ),O𝑖 ) , (14)

where𝑘𝑚 represents the number of iterations formapping,L𝑚𝑎𝑝𝑝𝑖𝑛𝑔

refers to the mapping loss, T𝑖 and O𝑖 represent the camera pose
and the ground truth data (RGB image, depth map and semantic
labels) of the associated frame respectively, R denotes rasterization
rendering, and ⊙ represents the transformation of G𝑡 with T𝑖 .

To ensure the consistency of multimodality within G𝑡 ,L𝑚𝑎𝑝𝑝𝑖𝑛𝑔

encompasses constraints related to appearance, semantics, geome-
try, and geometric-semantic spatial alignment. The color lossL𝑚

𝑐𝑜𝑙𝑜𝑟
is an 𝑙1 loss combined with a D-SSIM [27] term,

L𝑚
𝑐𝑜𝑙𝑜𝑟

= (1 − 𝜆)
ĉ𝑝𝑖𝑥 − c𝑔𝑡


1 + 𝜆

(
1 − D-SSIM(ĉ𝑝𝑖𝑥 , c𝑔𝑡 )

)
, (15)

where ĉ𝑝𝑖𝑥 and c𝑔𝑡 denote the rendered and observed color, and
we use 𝜆 = 0.2 in all our tests. A binary cross entropy (BCE) loss is
applied as the semantic loss,

L𝑠𝑒𝑚 = −
(
𝑠𝑔𝑡 · log(𝑠𝑝𝑖𝑥 ) + (1 − 𝑠𝑔𝑡 ) · log(1 − 𝑠𝑝𝑖𝑥 )

)
, (16)

where 𝑠𝑝𝑖𝑥 is the decoded semantic label from the semantic feature,
and 𝑠𝑔𝑡 is the input semantic label provided by the dataset or gen-
erated using state-of-the-art semantic segmentation models. An 𝑙1
depth loss is utilized to guide geometry,

L𝑑𝑒𝑝𝑡ℎ =

𝑑𝑝𝑖𝑥 − 𝑑𝑔𝑡


1
, (17)

where 𝑑𝑝𝑖𝑥 and 𝑑𝑔𝑡 are rendered depth and ground truth depth.
Finally, the inclusion of the regularization terms for the Gaussian
scales from Eq. (12) constitutes the complete mapping loss,

L𝑚𝑎𝑝𝑝𝑖𝑛𝑔 = 𝜆𝑚𝑐 L𝑚
𝑐𝑜𝑙𝑜𝑟

+ 𝜆𝑚
𝑑
L
𝑑𝑒𝑝𝑡ℎ

+ 𝜆𝑚𝑠 L𝑠𝑒𝑚

+𝜆𝑚
𝑏𝑖𝑔

Lbig + 𝜆𝑚𝑠𝑚𝑎𝑙𝑙
Lsmall,

(18)

where 𝜆𝑚𝑐 , 𝜆𝑚
𝑑
, 𝜆𝑚𝑠 , 𝜆𝑚

𝑏𝑖𝑔
, and 𝜆𝑚

𝑠𝑚𝑎𝑙𝑙
control the weight of each term.

3.4 Frame-to-Model Tracking
Given an optimized SG-Field G𝑡−1, GS3LAM employs the frame-
to-model strategy to optimize the world-to-camera poses T . In
particular, for the first frame, the camera pose T0 is initialized as the
identity matrix. Then, adhering to the methodology outlined in Sec.
3.3, all pixels are initialized as Gaussians, and the mapping process
is executed for 𝑘𝑖𝑛𝑖𝑡 iterations to yield the initially optimized G0.
When a new frame arrives, GS3LAM initializes the camera pose T𝑡
using the constant velocity assumption as [25],

T𝑡 = T𝑡−1T−1
𝑡−2T𝑡−1 . (19)

Then, the SG-Field G𝑡−1 is transformed into the camera coordinate
system via T𝑡 , which is optimized by minimizing the tracking loss
L𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔 between the rendered R(·) and the ground truth data O,

T∗
𝑡 = argmin

ΘT
L𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔 (R (T𝑡 ⊙ G𝑡−1) ,O) . (20)

It is noteworthy that during the aforementioned optimization pro-
cess, all attributes of the SG-Field G𝑡−1 are frozen, separating the
camera movement from the deformation, densification, pruning,
and self-rotation of the 3D Gaussian points.

It is apparent that the SG-Field G𝑡−1 inadequately observes all
regions within the current frame. To improve the robustness and
stability of tracking,L𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔 is designed to be aware of observable
and geometrically normal regions, jointly minimizing photometric,
geometric, and semantic errors,

L𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔 = 𝑀𝑜𝑏𝑠

(
𝜆𝑡𝑐L𝑡

𝑐𝑜𝑙𝑜𝑟
+ 𝜆𝑡

𝑑
L𝑑𝑒𝑝𝑡ℎ + 𝜆𝑡𝑠L𝑠𝑒𝑚

)
,

𝑀𝑜𝑏𝑠 = I(𝑜𝑝𝑖𝑥 > 𝜏𝑜𝑏𝑠 ) ∧ I
(
𝐿1 (𝑑𝑔𝑡 , 𝑑𝑝𝑖𝑥 ) < 10�̃�1 (𝑑𝑔𝑡 , 𝑑𝑝𝑖𝑥 )

)
,

(21)

where𝑀𝑜𝑏𝑠 denotes the mask of well-optimized depth in observ-
able regions (𝑜𝑝𝑖𝑥 > 𝜏𝑜𝑏𝑠 ) of the SG-Field G𝑡−1 under the view-
point T𝑡 , which holds significant importance for tracking. L𝑡

𝑐𝑜𝑙𝑜𝑟
= ˆc𝑝𝑖𝑥 − c𝑔𝑡


1 solely employs the 𝑙1 loss, and 𝜆𝑡𝑐 , 𝜆𝑡𝑑 , 𝜆

𝑡
𝑠 modulate

the weight of each term.

4 Experiment
4.1 Setup
4.1.1 ImplementationDetails. GS3LAMwas implemented in Python
using the PyTorch framework, and trained on a workstation with
an AMD EPYC 7302 16-Core Processor and an NVIDIA GeForce
RTX 3090 GPU. More details can be found in the source code.

4.1.2 Datasets and Evaluation Metrics. Following [6, 19, 30, 33, 34],
we used 8 scenes from the virtual Replica [21] and 5 subsets of real-
world ScanNet [2] for tracking and rendering quality comparison.
Rendering quality was assessed utilizing objective metrics includ-
ing Peak Signal-to-Noise Ratio (PSNR), SSIM [27], and LPIPS [31].
Tracking accuracy was quantified by the ATE RMSE [22]. Semantic
segmentation performance was gauged using the mean Intersection
over Union (mIoU). In all of our tables, best results are highlighted
as first and second .

4.1.3 Baseline Methods. We conducted a comparative analysis
between our proposed GS3LAM and several state-of-the-art dense
neural RGBD SLAM methodologies, including NICE-SLAM [34],
Vox-Fusion [30], ESLAM [5], Co-SLAM [25] and Point-SLAM [19].
Additionally, we expanded our comparison to encompass leading
3DGS-based SLAM techniques, specifically SplaTAM [6] and GS-
SLAM [29]. For semantic reconstruction, our method underwent
evaluation against NeRF-based NIDS SLAM [3], DNS SLAM [9] and
SNI-SLAM [32].

4.2 Rendering Evaluation
Tables 1 and 2 present the comparative rendering results of GS3LAM
with state-of-the-art NeRF-based and 3DGS-based SLAM systems
on the ScanNet [2] and Replica [21] datasets, respectively. The
results demonstrate that GS3LAM achieves the best performance
across commonly usedmetrics. On the Replica dataset, our approach
outperforms the runner-up methods Point-SLAM [19] and GS-
SLAM [29] by 1.09 dB, 0.014, and 0.039 in terms of PSNR, SSIM and
LPIPS, respectively. Moreover, on the real-world ScanNet dataset,
our superiority is more pronounced, with our method surpassing
Point-SLAM [19] by 3.04 dB in PSNR, 0.117 in SSIM, and 0.292 in
LPIPS. Compared to the 3DGS-based SplaTAM [6] and GS-SLAM
[29], the semantic embedding and DSR scheme in GS3LAM en-
able the Gaussian model to focus more on the details of object
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Figure 5: Qualitative comparison with SOTA methods on virtual Replica [21] and real-world ScanNet [2] datasets.

Table 1: Rendering performance on ScanNet [2].
Method Metric 0000 0059 0106 0169 0181 0207 Avg.

NICE-SLAM [34]
PSNR ↑ 18.71 16.55 17.29 18.75 15.56 18.38 17.54
SSIM ↑ 0.641 0.605 0.646 0.629 0.562 0.646 0.621
LPIPS ↓ 0.561 0.534 0.510 0.534 0.602 0.552 0.548

Vox-Fusion [30]
PSNR ↑ 19.06 16.38 18.46 18.69 16.75 19.66 18.17
SSIM ↑ 0.662 0.615 0.753 0.650 0.666 0.696 0.673
LPIPS ↓ 0.515 0.528 0.439 0.513 0.532 0.500 0.504

ESLAM [5]
PSNR ↑ 15.70 14.48 15.44 14.56 14.22 17.32 15.29
SSIM ↑ 0.687 0.632 0.628 0.656 0.696 0.653 0.658
LPIPS ↓ 0.449 0.450 0.529 0.486 0.482 0.534 0.488

Point-SLAM [19]
PSNR ↑ 21.30 19.48 16.80 18.53 22.27 20.56 19.82
SSIM ↑ 0.806 0.765 0.676 0.686 0.823 0.750 0.751
LPIPS ↓ 0.485 0.499 0.544 0.542 0.471 0.544 0.514

SplaTAM [6]
PSNR ↑ 19.33 19.27 17.73 21.97 16.76 19.80 19.14
SSIM ↑ 0.660 0.792 0.690 0.776 0.683 0.696 0.716
LPIPS ↓ 0.438 0.289 0.376 0.281 0.420 0.341 0.358

GS3LAM
(Ours)

PSNR ↑ 23.02 20.96 22.37 25.85 20.58 24.39 22.86
SSIM ↑ 0.852 0.858 0.872 0.890 0.855 0.878 0.868
LPIPS ↓ 0.277 0.213 0.205 0.189 0.252 0.195 0.222

edges and eliminate surface blurring. Additionally, our proposed
RSKM strategy effectively addresses the challenge of convergence
in regions with abundant covisibility, as well as the issue of sub-
optimal optimization in regions with sparse covisibility, achieving
a balance between local and global optimization. This approach
effectively alleviates the forgetting phenomenon inherent in 3DGS-
based SLAM, thereby facilitating globally consistent and realistic
rendering performance. Qualitatively, the visualization results in
Fig. 5 demonstrate that NeRF-based Co-SLAM [25] and Point-SLAM
[19] exhibit inaccurate scene representations and are susceptible to
lighting effects, leading to significant artifacts. SplaTAM [6] tends
to get trapped in local optima, making convergence difficult or
suboptimal, resulting in noticeable holes and blurring. In contrast,
GS3LAM produces higher-quality and more realistic images with
more structure details in both global and edge regions compared to
other methods. It is noteworthy that, owing to the efficient semantic

Table 2: Rendering performance on Replica [21].
Method Metrics R0 R1 R2 O0 O1 O2 O3 O4 Avg.

NICE-
SLAM [34]

PSNR ↑ 22.12 22.47 24.52 29.07 30.34 19.66 22.23 24.94 24.42
SSIM ↑ 0.689 0.757 0.874 0.874 0.886 0.797 0.801 0.856 0.809
LPIPS ↓ 0.330 0.271 0.208 0.229 0.181 0.235 0.209 0.198 0.233

Vox-
Fusion [30]

PSNR ↑ 22.39 22.36 23.92 27.79 29.83 20.33 23.47 25.21 24.41
SSIM ↑ 0.683 0.751 0.798 0.857 0.876 0.794 0.803 0.847 0.801
LPIPS ↓ 0.303 0.269 0.234 0.241 0.184 0.243 0.213 0.199 0.236

ESLAM [5]
PSNR ↑ 25.32 27.77 29.08 33.71 30.20 28.09 28.77 29.71 29.08
SSIM ↑ 0.875 0.902 0.932 0.960 0.923 0.943 0.948 0.945 0.929
LPIPS ↓ 0.313 0.298 0.248 0.184 0.228 0.241 0.196 0.204 0.336

Co-
SLAM [25]

PSNR ↑ 27.27 28.45 29.06 34.14 34.87 28.43 28.76 30.91 30.24
SSIM ↑ 0.910 0.909 0.932 0.961 0.969 0.938 0.941 0.955 0.939
LPIPS ↓ 0.324 0.294 0.266 0.209 0.196 0.258 0.229 0.236 0.252

Point-
SLAM [19]

PSNR ↑ 32.40 34.08 35.50 38.26 39.16 33.99 33.48 33.49 35.17
SSIM ↑ 0.974 0.977 0.982 0.983 0.986 0.960 0.960 0.979 0.975
LPIPS ↓ 0.113 0.116 0.111 0.100 0.118 0.156 0.132 0.142 0.124

GS-
SLAM [29]

PSNR ↑ 31.56 32.86 32.59 38.70 41.17 32.36 32.03 32.92 34.27
SSIM ↑ 0.968 0.973 0.971 0.986 0.993 0.978 0.970 0.968 0.975
LPIPS ↓ 0.094 0.075 0.093 0.050 0.033 0.094 0.110 0.112 0.082

SplaTAM [6]
PSNR ↑ 32.86 33.89 35.25 38.26 39.17 31.97 29.70 31.81 34.11
SSIM ↑ 0.980 0.970 0.980 0.980 0.980 0.970 0.950 0.950 0.970
LPIPS ↓ 0.070 0.100 0.080 0.090 0.090 0.100 0.120 0.150 0.100

GS3LAM
(Ours)

PSNR ↑ 33.67 35.80 35.96 40.28 41.21 34.30 34.27 34.59 36.26
SSIM ↑ 0.986 0.989 0.990 0.993 0.994 0.988 0.990 0.983 0.989
LPIPS ↓ 0.051 0.039 0.046 0.040 0.030 0.065 0.061 0.081 0.052

Table 3: Tracking performance on Replica [21] (ATE RMSE ↓
[cm]).

Method R0 R1 R2 O0 O1 O2 O3 O4 Avg.
NICE-SLAM [34] 0.97 1.31 1.07 0.88 1.00 1.06 1.10 1.13 1.07
Vox-Fusion [30] 1.37 4.70 1.47 8.48 2.04 2.58 1.11 2.94 3.09
ESLAM [5] 0.71 0.70 0.52 0.57 0.55 0.58 0.72 0.63 0.63

Co-SLAM [25] 0.65 1.13 1.43 0.55 0.50 0.46 1.40 0.77 0.86
Point-SLAM [19] 0.61 0.41 0.37 0.38 0.48 0.54 0.69 0.72 0.53
GS-SLAM [29] 0.48 0.53 0.33 0.52 0.41 0.59 0.46 0.70 0.50
SplaTAM [6] 0.31 0.40 0.29 0.47 0.27 0.29 0.32 0.55 0.36
GS3LAM (Ours) 0.27 0.25 0.28 0.67 0.21 0.33 0.30 0.65 0.37
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scene representation of SG-Field and the tile-based rasterization
technology, GS3LAM achieves real-time rendering of RGB, depth,
and semantics at 109.12 FPS on the 1200 × 680 Replica dataset, a
36.86-fold improvement over NeRF-based SLAMmethods. Similarly,
on the 640 × 480 ScanNet dataset, it reaches 499.78 FPS, providing
possibilities for downstream real-time tasks.

4.3 Tracking Evaluation
Table 3 presents a comparison of the tracking performance between
GS3LAM and state-of-the-art NeRF-based and 3DGS-based SLAM
systems on the Replica [21] dataset. Since these methods employ a
frame-to-model tracking strategy, SG-Field can more accurately rep-
resent the scene compared to NeRF-based methods, thus resulting
in higher tracking precision. In contrast to SplaTAM [6], although
semantic embedding allows GS3LAM to focus more on the edges
and details of the field, tracking relies on prominent features rather
than details, thereby leading to a slight decrease in accuracy.

4.4 Semantic Reconstruction Evaluation
Table 4 presents the quantitative comparison between GS3LAM
and several contemporary neural semantic SLAM approaches. Fol-
lowing the protocol outlined in NIDS-SLAM [3], we report the
mean Intersection over Union (mIoU) across four scenes from the
Replica dataset [21]. From Table 4, it can be observed that leverag-
ing SG-Field for semantic feature embedding within GS3LAM leads
to noticeable enhancements (increased by 9.22%) when compared
with competing NeRF-based semantic methods.
Table 4: Semantic reconstruction accuracy on Replica [21]
(mIoU ↑ [%]).

Method Room 0 Room 1 Room 2 Office 0 Avg.
NIDS SLAM [3] 82.45 84.08 76.99 85.94 82.37
DNS SLAM [9] 88.32 84.90 81.20 84.66 84.77
SNI-SLAM [32] 88.42 87.43 86.16 87.63 87.41
GS3LAM (Ours) 96.83 96.68 96.40 96.61 96.63

4.5 Ablation Study
Cumulative Opacity Mask Ablation. As evidenced by the abla-
tion experiments in Table 5, the utilization of cumulative opacity
masks is pivotal within the GS3LAM framework. During the track-
ing stage, the observable region mask𝑀𝑜𝑏𝑠 serves as the basis for
decoupling camera pose estimation and SG-field optimization. It pre-
vents the influence of unoptimized SG-Field on the current frame’s
tracking, reducing tracking errors from 43.12cm to 0.21cm. In map-
ping, compared to randomly sampling pixels from the current frame
for expansion, the unobserved region mask𝑀𝑢𝑛𝑜𝑏𝑠 filters regions
already optimized, thereby avoiding the addition of new Gaussians
to regions already represented by Gaussians. This effectively con-
trols the number of Gaussians in the field and improves PSNR by
2.22 dB and mIoU by 6.91%.

DSR Ablation. As depicted in Fig. 6, the absence of DSR strat-
egy results in the emergence of numerous Gaussians with large
scales at scene edges or unobserved regions, leading to blurriness
at object boundaries and spatial misalignment between geometry
and semantics. Furthermore, as shown in Table 5, the clear geomet-
ric contours achieved by DSR can reduce tracking errors by 16%,
increase PSNR by 1.17 dB, and enhance semantic reconstruction
accuracy by 3.36%.

Table 5: The ablation study on Replica “Office 1”.

Method Metrics
PSNR ↑SSIM ↑LPIPS ↓Depth [cm] ↓ATE [cm] ↓mIoU [%] ↑

w/o𝑀𝑜𝑏𝑠 19.63 0.720 0.493 13.31 43.12 30.23
w/o𝑀𝑢𝑛𝑜𝑏𝑠 39.10 0.986 0.068 1.08 0.28 90.44
w/o DSR 40.04 0.990 0.059 0.85 0.25 93.96
w/o RSKM 37.48 0.983 0.081 1.23 0.29 89.13

Ours 41.21 0.993 0.046 0.41 0.21 97.35
RSKM Ablation. As illustrated in Fig. 7, our proposed RSKM
achieves a 5.49 dB increase in PSNR while reducing the variance by
24.42 times, mitigating the optimization bias of the SG-Field and
ensuring consistency in rendering across all perspectives. When
RSKM is not employed (using LCKM instead), in regions with
a high number of co-observed frames, the SG-Field undergoes
repetitive optimization across frames, making it challenging to
converge. Conversely, in regions with fewer co-observed frames,
under-optimization occurs due to insufficient sampling. Conse-
quently, LCKM results in numerous holes and blurriness in the field.
Furthermore, as indicated in Table 5, RSKM also reduces tracking
errors and enhances semantic reconstruction accuracy, contribut-
ing tremendously to achieving a globally consistent map in terms
of geometry, semantics, and appearance.

w/o DSRw/ DSR

3D Gaussians2D Semantic Map

w/o DSRw/ DSR

Figure 6: The ablation study of DSR on Replica “Office 1”.

w/ RSKM w/o RSKM

Figure 7: The ablation study of RSKM on Replica “Office 3”.
5 Conclusion
We propose GS3LAM, a Gaussian Semantic Splatting SLAM system
that utilizes 3D semantic Gaussians for dense map construction and
tracking. Leveraging semantic Gaussian field scene representation,
our approach better captures appearance, geometry, and semantics
within the scene. Additionally, our proposed depth-adaptive scale
regularization strategy adaptively adjusts the scales of Gaussians
to characterize the scene, reducing uncertainties of 3D Gaussians
at object surfaces and edges, thereby enhancing the accuracy of
the 3D scene representation and achieving spatial alignment be-
tween geometry and semantics. Moreover, our proposed simple yet
powerful random sampling-based keyframe mapping strategy effec-
tively reduces optimization biases, mitigates the exacerbation of the
forgetting phenomenon induced by semantic feature embedding,
and enhances the global consistency of the semantic map. Thor-
ough evaluations on benchmark datasets corroborate that GS3LAM
outperforms its rivals noticeably in terms of tracking accuracy,
rendering quality and speed, and semantic reconstruction.



GS3LAM: Gaussian Semantic Splatting SLAM MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia

Acknowledgments
This work was supported in part by the National Natural Sci-
ence Foundation of China under Grant 62272343; in part by the
Shuguang Program of Shanghai Education Development Founda-
tion and Shanghai Municipal Education Commission under Grant
21SG23; and in part by the Fundamental Research Funds for the
Central Universities.

References
[1] Yun Chang, Yulun Tian, Jonathan P. How, and Luca Carlone. 2021. Kimera-Multi:

A System for DistributedMulti-RobotMetric-Semantic Simultaneous Localization
and Mapping. In Proceedings of IEEE International Conference on Robotics and
Automation. Xi’an, China, 11210–11218.

[2] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser,
and Matthias Nießner. 2017. ScanNet: Richly-annotated 3D Reconstructions of
Indoor Scenes. In Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition. Los Alamitos, CA, USA, 2432–2443.

[3] Yasaman Haghighi, Suryansh Kumar, Jean-Philippe Thiran, and Luc Van Gool.
2023. Neural Implicit Dense Semantic SLAM. arXiv:2304.14560.

[4] Huajian Huang, Longwei Li, Hui Cheng, and Sai-Kit Yeung. 2023. Photo-SLAM:
Real-time Simultaneous Localization and Photorealistic Mapping for Monocular,
Stereo, and RGB-D Cameras. arXiv:2311.16728.

[5] Mohammad Mahdi Johari, Camilla Carta, and François Fleuret. 2023. ESLAM:
Efficient Dense SLAM System Based on Hybrid Representation of Signed Dis-
tance Fields. In Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition. Vancouver, BC, Canada, 17408–17419.

[6] Nikhil Keetha, Jay Karhade, Krishna Murthy Jatavallabhula, Gengshan Yang,
Sebastian Scherer, Deva Ramanan, and Jonathon Luiten. 2024. SplaTAM: Splat,
Track & Map 3D Gaussians for Dense RGB-D SLAM. arXiv:2312.02126.

[7] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkuehler, and George Drettakis.
2023. 3D Gaussian Splatting for Real-Time Radiance Field Rendering. ACM
Transactions on Graphics 42, 4 (2023), 1–14.

[8] Olaf Kähler, Victor Prisacariu, Julien Valentin, and David Murray. 2016. Hier-
archical Voxel Block Hashing for Efficient Integration of Depth Images. IEEE
Robotics and Automation Letters 1, 1 (2016), 192–197.

[9] Kunyi Li, Michael Niemeyer, Nassir Navab, and Federico Tombari. 2023. DNS
SLAM: Dense Neural Semantic-Informed SLAM. arXiv:2312.00204.

[10] Konstantinos-Nektarios Lianos, Johannes L Schonberger, Marc Pollefeys, and
Torsten Sattler. 2018. VSO: Visual Semantic Odometry. In Proceedings of the
European Conference on Computer Vision. Munich,Germany, 234–250.

[11] RobertMaier, Raphael Schaller, andDaniel Cremers. 2017. Efficient Online Surface
Correction for Real-time Large-Scale 3D Reconstruction. arXiv:1709.03763.

[12] Hidenobu Matsuki, Riku Murai, Paul H. J. Kelly, and Andrew J. Davison. 2023.
Gaussian Splatting SLAM. arXiv:2312.06741.

[13] John McCormac, Ankur Handa, Andrew Davison, and Stefan Leutenegger. 2017.
SemanticFusion: Dense 3D Semantic Mapping with Convolutional Neural Net-
works. In Proceedings of IEEE International Conference on Robotics and Automation.
Singapore, 4628–4635.

[14] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi
Ramamoorthi, and Ren Ng. 2020. NeRF: Representing Scenes as Neural Radiance
Fields for View Synthesis. In Proceedings of the European Conference on Computer
Vision. Glasgow, United Kingdom, 405–421.

[15] Raúl Mur-Artal and Juan D. Tardós. 2017. ORB-SLAM2: An Open-Source SLAM
System for Monocular, Stereo, and RGB-D Cameras. IEEE Transactions on Robotics
33, 5 (2017), 1255–1262.

[16] Richard A. Newcombe, Shahram Izadi, Otmar Hilliges, David Molyneaux, David
Kim, Andrew J. Davison, Pushmeet Kohi, Jamie Shotton, Steve Hodges, and
Andrew Fitzgibbon. 2011. KinectFusion: Real-time Dense Surface Mapping and
Tracking. In Proceedings of IEEE International Symposium onMixed and Augmented
Reality. Basel, Switzerland, 127–136.

[17] Matthias Nießner, Michael Zollhöfer, Shahram Izadi, and Marc Stamminger. 2013.
Real-time 3D Reconstruction at Scale Using Voxel Hashing. ACM Transactions
on Graphics 32, 6 (2013), 1–11.

[18] Renato F. Salas-Moreno, Richard A. Newcombe, Hauke Strasdat, Paul H.J. Kelly,
and Andrew J. Davison. 2013. SLAM++: Simultaneous Localisation and Mapping
at the Level of Objects. In Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition. Portland, OR, USA, 1352–1359.

[19] Erik Sandström, Yue Li, Luc Van Gool, and Martin R. Oswald. 2023. Point-
SLAM: Dense Neural Point Cloud-based SLAM. In Proceedings of the IEEE/CVF
International Conference on Computer Vision. Los Alamitos, CA, USA, 18387–
18398.

[20] Xuan Shao, Lin Zhang, Tianjun Zhang, Ying Shen, Hongyu Li, and Yicong
Zhou. 2020. A Tightly-coupled Semantic SLAM System with Visual, Inertial
and Surround-view Sensors for Autonomous Indoor Parking. In Proceedings
of the 28th ACM International Conference on Multimedia. New York, NY, USA,
2691–2699.

[21] Julian Straub, Thomas Whelan, Lingni Ma, Yufan Chen, Erik Wijmans, Simon
Green, Jakob J. Engel, Raul Mur-Artal, Carl Ren, Shobhit Verma, Anton Clark-
son, Mingfei Yan, Brian Budge, Yajie Yan, Xiaqing Pan, June Yon, Yuyang Zou,
Kimberly Leon, Nigel Carter, Jesus Briales, Tyler Gillingham, Elias Mueggler,
Luis Pesqueira, Manolis Savva, Dhruv Batra, Hauke M. Strasdat, Renzo De Nardi,
Michael Goesele, Steven Lovegrove, and Richard Newcombe. 2019. The Replica
Dataset: A Digital Replica of Indoor Spaces. arXiv:1906.05797.

[22] Jürgen Sturm, Nikolas Engelhard, Felix Endres, Wolfram Burgard, and Daniel
Cremers. 2012. A Benchmark for The Evaluation of RGB-D SLAM Systems. In
Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems.
Vilamoura-Algarve, Portugal, 573–580.

[23] Jörg Stückler and Sven Behnke. 2014. Multi-resolution Surfel Maps for Efficient
Dense 3D Modeling and Tracking. Journal of Visual Communication and Image
Representation 25, 1 (2014), 137–147.

[24] Edgar Sucar, Shikun Liu, Joseph Ortiz, and Andrew J. Davison. 2021. iMAP:
Implicit Mapping and Positioning in Real-Time. In Proceedings of the IEEE/CVF
International Conference on Computer Vision. Montreal, QC, Canada, 6209–6218.

[25] Hengyi Wang, Jingwen Wang, and Lourdes Agapito. 2023. Co-SLAM: Joint
Coordinate and Sparse Parametric Encodings for Neural Real-Time SLAM. In
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Van-
couver, BC, Canada, 13293–13302.

[26] Kaixuan Wang, Fei Gao, and Shaojie Shen. 2019. Real-time Scalable Dense
Surfel Mapping. In Proceedings of IEEE International Conference on Robotics and
Automation. Montreal, QC, Canada, 6919–6925.

[27] Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. 2004. Image Quality
Assessment: From Error Visibility to Structural Similarity. IEEE Transactions on
Image Processing 13, 4 (2004), 600–612.

[28] Thomas Whelan, Stefan Leutenegger, Rafael F. Salas-Moreno, Ben Glocker, and
Andrew J. Davison. 2015. ElasticFusion: Dense SLAM Without A Pose Graph. In
Proceedings of Robotics: Science and Systems.

[29] Chi Yan, Delin Qu, Dong Wang, Dan Xu, Zhigang Wang, Bin Zhao, and Xue-
long Li. 2024. GS-SLAM: Dense Visual SLAM with 3D Gaussian Splatting.
arXiv:2311.11700.

[30] Xingrui Yang, Hai Li, Hongjia Zhai, Yuhang Ming, Yuqian Liu, and Guofeng
Zhang. 2022. Vox-Fusion: Dense Tracking and Mapping with Voxel-based Neural
Implicit Representation. In Proceedings of IEEE International Symposium on Mixed
and Augmented Reality. Los Alamitos, CA, USA, 499–507.

[31] Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang.
2018. The Unreasonable Effectiveness of Deep Features as a Perceptual Metric. In
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Salt
Lake City, UT, USA, 586–595.

[32] Siting Zhu, Guangming Wang, Hermann Blum, Jiuming Liu, Liang Song, Marc
Pollefeys, and Hesheng Wang. 2024. SNI-SLAM: Semantic Neural Implicit SLAM.
arXiv:2311.11016.

[33] Zihan Zhu, Songyou Peng, Viktor Larsson, Zhaopeng Cui, Martin R Oswald,
Andreas Geiger, and Marc Pollefeys. 2024. NICER-SLAM: Neural Implicit Scene
Encoding for RGB SLAM. In Proceedings of the International Conference on 3D
Vision. Davos, Switzerland.

[34] Zihan Zhu, Songyou Peng, Viktor Larsson, Weiwei Xu, Hujun Bao, Zhaopeng
Cui, Martin R. Oswald, and Marc Pollefeys. 2022. NICE-SLAM: Neural Implicit
Scalable Encoding for SLAM. In Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition. New Orleans, LA, USA, 12776–12786.

[35] M. Zwicker, H. Pfister, J. van Baar, and M. Gross. 2001. EWA volume splatting. In
Proceedings of IEEE Conference on Visualization. San Diego, CA, USA, 29–538.

https://arxiv.org/abs/2304.14560.
https://arxiv.org/abs/2311.16728.
https://arxiv.org/abs/2312.02126.
https://arxiv.org/abs/2312.00204.
https://arxiv.org/abs/1709.03763.
https://arxiv.org/abs/2312.06741.
https://arxiv.org/abs/1906.05797.
https://arxiv.org/abs/2311.11700.
https://arxiv.org/abs/2311.11016.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Scene Representation for Semantic SLAM
	2.2 NeRF-based and 3DGS-based SLAM

	3 Methodology
	3.1 Framework Overview
	3.2 Semantic Gaussian Field
	3.3  Geometric-Semantic Consistent Mapping
	3.4 Frame-to-Model Tracking

	4 Experiment
	4.1 Setup
	4.2 Rendering Evaluation
	4.3 Tracking Evaluation
	4.4 Semantic Reconstruction Evaluation
	4.5 Ablation Study

	5 Conclusion
	Acknowledgments
	References

