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Abstract—Image enhancement is an essential and long-
standing task in computer vision, in which the 3D lookup table
(3DLUT) is widely used due to its powerful mapping capability
and high time efficiency. However, the 3DLUT generally requires
a large parameter amount since it caches the mapping results for
all colors of the entire discrete color space with a 3D array. As a
result, standard 3DLUT-based enhancement methods suffer from
heavy memory footprints, limiting their practical applications.
Based on the analyses of the inherent low grid utilization rate
of 3DLUT, we propose HashLUT, an efficient hash form of
the standard 3DLUT, and further build a lightweight real-time
image enhancement network that adaptively learns HashLUTs
and handles hash collisions end-to-end. Experiments on two
benchmarks demonstrate that our model achieves comparable
enhancement performance to the state-of-the-art methods with
significantly fewer parameters. Source codes are available at
https://github.com/Xian-Bei.

Index Terms—Image enhancement, photo retouching, 3-
dimensional lookup table (3DLUT), hashing, compression

I. INTRODUCTION

Image enhancement techniques are widely applied in the
digital imaging pipeline and retouching tools to improve the
image quality. This domain has witnessed the rapid develop-
ment of learning-based automatic enhancement methods since
they reduce the expensive manual work and further boost
the performance. The 3-Dimensional LookUp Table (3DLUT),
one of the most popular image enhancement operators, has
also been explored to be combined with deep-learning, achiev-
ing state-of-the-art (SOTA) overall performance [1]. 3DLUT
directly caches the mapping outputs for all colors of the
discrete color space with a 3D lattice in memory, instead of
computing them only for input colors in runtime using a series
of cascade modules, such as adjustment of exposure, white
balance, hue and saturation. Consequently, for 3DLUT, on the
one hand, only highly parallelizable lookup and interpolation
operations are needed for the enhancing procedure, which
brings great superiority in time efficiency. On the other hand,
however, its space complexity grows cubically with the resolu-
tion which controls the mapping fineness, resulting in massive
parameters to learn and store in 3DLUT-based models [1]–[6]
which typically contain several to dozens of basis 3DLUTs.
Such a large parameter amount not only hinders their practical
deployment but also gives rise to the training difficulty.

Focusing on this problem, we conduct in-depth analyses
on 3DLUT and observe its extremely low grid utilization
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Fig. 1. (a) The utilized grids when applying a 3DLUT of D = 33 to the given
input image only occupy a small part of the 3DLUT’s entire mapping space.
(b) The distribution histograms of the grid utilization rates when applying a
3DLUT of D = 33 to each input image of three benchmark datasets. The
horizontal axis represents the utilization rate while the vertical axis represents
the number of images that fall into the same utilization rate interval.

rate, which could be further improved to obtain a much
more compact form without affecting its mapping capabilities.
Specifically, the colors appearing in a single input image
generally only utilize a small part of grids of a 3DLUT, as in-
tuitively and quantitatively demonstrated in Fig. 1 (a) and (b),
respectively. Therefore, given an input image, most grids of
3DLUT are redundant and contribute nothing to the enhanced
result apart from increasing the memory usage. Inspired by
the success of sophisticated hash techniques in compressing
neural networks [7], [8], signed distance functions (SDF) [9]–
[11] and explicit density fields [11], we propose to adaptively
hash 3DLUT to increase its grid utilization rate and construct
a lightweight real-time image enhancement network based on
it. Our main contributions are summarized as follows:
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• To the best of our knowledge, we are the first to introduce
hash techniques to the image enhancement task, and
propose an efficient hash form of 3DLUT, namely Hash-
LUT, which enjoys all its advantages while has orders of
magnitude fewer parameters.

• A lightweight and real-time image enhancement network
is constructed based on HashLUT, which adaptively
learns progressive basis HashLUTs and handles hash
collisions in an end-to-end manner.

• Experiments conducted on two benchmarks verify the
efficacy of our proposed method which presented com-
parable image enhancement performance to the SOTA
models but with significantly fewer parameters.

II. RELATED WORK

A. Image enhancement
Recent learning-based enhancement methods could be

roughly classified into two paradigms. The first paradigm
[12]–[14] leverages image translation networks to predict the
enhancement results directly. Since the convolution computa-
tional burden increases rapidly with the input resolution, meth-
ods belonging to this paradigm usually struggle to meet the
practical applications. The second paradigm employs neural
networks only to predict [15]–[19] or simulate [20] certain
manual-designed enhancement operators. Such a paradigm
generally possesses high feasibility as usually only lightweight
networks are employed to work on down-sampled input im-
ages and most of the manual-designed operators enjoy fast
processing speed even on high-resolution images.

B. 3DLUT-based methods
Zeng et al. [1] first embedded 3DLUT into the learning-

based image enhancement framework and achieved powerful
enhancement capability and high time efficiency. Following
their strategy, Liang et al. [2] collected a large-scale portrait
dataset and applied 3DLUT to the portrait photo retouching
(PPR) task. Wang et al. [3] extended the network of [1] to
achieve spatial-aware enhancement effects by predicting pixel-
level weights. Yang et al. [5] proposed to compensate 3DLUT
with 1DLUT to improve its efficiency. Yang et al. [6] learned
the non-uniform sampling intervals in the 3D color space to
achieve a more flexible sampling point allocation.

C. Hash-based compression
There exists a wide range of studies focusing on data

compression, where hash-based methods rearrange the pa-
rameters into a more compact space by allowing different
indexes to share the memory. HashedNets [7] and follow-up
work like [8] achieved drastic parameter reduction of neural
networks by exploiting their inherent redundancy through
hashing. VoxelHashing [9] and ChunkFusion [10] applied
hashing techniques on SDF to achieve scalable volumetric
representation. Instant-NGP [11] constructed an effective hash
encoding for representing images, SDF and NeRF [21]. In
this work, we deeply analyzed 3DLUT and observed that its
inherent low grid utilization properties are naturally suitable
for hashing to rearrange the parameter space.

III. METHOD

A. Grid utilization of 3DLUT

A standard 3DLUT is commonly formulated as a 3D
cubic lattice Φ ∈ R3×D×D×D containing D3 three-channel
elements where D is the resolution controlling the mapping
fineness. Each element is denoted by Φ[i,j,k] ∈ R3 and defines
a color mapping as (i, j, k)→ Φ[i,j,k] where i, j, k = 1, ..., D.
Given an input color (rin, gin, bin) in which each element is
distributed in [0, 1), its corresponding mapping output in a
3DLUT Φ is calculated as,

(rout, gout, bout) = tri(look(rin, gin, bin,Φ)), (1)

which contains a lookup operation look followed by a trilinear
interpolation tri. Specifically, the input color is first scaled by
D as (r̃in, g̃in, b̃in) = (rin ·D, gin ·D, bin ·D) to fall in [0, D)
and then its eight surrounding elements are found as,

l(rin, gin, bin,Φ) = {Φ[r̃,g̃,b̃]}, (2)

where r̃ ∈ {br̃inc, dr̃ine}, g̃ ∈ {bg̃inc, dg̃ine}, and b̃ ∈
{bb̃inc, db̃ine}. Then the eight surrounding elements are trilin-
early interpolated to get the mapping output. This procedure is
intuitively illustrated in the left part of Fig. 2. Given an input
image I , each of its pixels is processed in parallel following
(1) to get the enhanced image O denoted by O = Φ(I).

Since only lookup and interpolation operations are involved,
3DLUT enjoys extremely high time efficiency that it could
easily enhance 4K video streams in real-time on a laptop
device. However, 3DLUT possesses a space complexity of
O(D3) which grows cubically with D, resulting in massive
parameters to learn and store in 3DLUT-based models.

To reduce the parameters of 3DLUT while maintaining
its superiority, we analyzed its intrinsic mapping space and

Standard 3DLUT HashLUT

Hash

R

G
B

Input color

Fig. 2. Illustration of the standard mapping process of 3DLUT and the
additional hash operation of HashLUT. Given an input color, both 3DLUT
and HashLUT calculate the indexes of its nearest eight neighbors, trilinearly
interpolating the neighbors’ values as the mapping output. The only difference
is that the actual storage locations of the eight neighbors are the indexes
themselves for 3DLUT, but calculated by querying the indexes through a
hash function for HashLUT.
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Fig. 3. Framework of our proposed HashLUT-based image enhancement network which contains N progressive basis HashLUTs, a collision-compensation
network and an expert network. The basis HashLUTs not only cover the enhancement effects required by different scenes but also are set with progressive
resolutions, cooperating with the collision-compensation network to largely mitigate the impact of hash conflict. The expert network selectively fuses the
results of different HashLUTs by predicting image-adaptive weights based on the understanding of the characteristics of the input image.

observed its property of sparse grid utilization. Specifically,
we conducted statistics on the 5,000 input images of FiveK
[22], 111,61 ones of PPR10K [2], and 922 ones of HDR+ [23].
The distribution histograms of the grid utilization rates when
applying a 3DLUT with a classical setting of D = 33 to each
input image are demonstrated in Fig. 1 (b). It can be seen that
the average grid utilization rate across all three benchmarks
is around 10%, which indicates the huge redundant space of
3DLUT that could be leveraged for lossless compression. In
other words, given any input image, there exists a compact
representation of 3DLUT that could produce the same en-
hancement effect as the standard representation does, while
the average parameter amount of the former is only about
10% of that of the latter.

B. Adaptively hashing 3DLUTs

Motivated by the aforementioned observation, we propose
an efficient hash form of 3DLUT, namely HashLUT, denoted
by H ∈ R3×T containing T three-channel elements where
T balances the mapping capacity and the parameter amount.
Instead of representing the mapping space explicitly as a 3D
array, HashLUT represents it as a 1D hash table by mapping
3D indexes into 1D. Specifically, given an index [i, j, k],
H[i,j,k] is actually stored in H[h(i,j,k)] where h denotes a hash
function of R3 → R1. This procedure is illustrated in the right
part of Fig. 2. In our work, h is implemented as a classical
spatial hash function [24] which is widely used [9], [11] and
enjoys a time complexity of O(1), resulting in little extra time
costs. Consequentially, equation (2) is changed to,

l(rin, gin, bin,H) = {H[r̃,g̃,b̃]}, (3)

and the result of enhancing a given input image I with a
HashLUT H is denoted by O = H(I).

As illustrated in Fig. 3, we construct a HashLUT-based
image enhancement network which comprises N basis Hash-

LUTs denoted by {Hn}n=1,...,N , a collision-compensation
network C and an expert network E . The role of the ba-
sis HashLUTs lies in twofold. On the one hand, different
HashLUTs cover the enhancement effects required by various
scenes as the basis 3DLUTs do in the classical 3DLUT-based
models [1]. On the other hand, they are set with progressive
resolutions, cooperating with the collision-compensation net-
work C to largely mitigate the impact of hash conflicts, which
would be analyzed in detail in Sect. III-C. The expert network
E selectively fuses the results of different HashLUTs by
predicting image-adaptive weights based on the understanding
of the characteristics of the input image such as environment,
lightness and tones. Since such global information preserves
across the image resolution, it is a common practice [1]–[3],
[5], [6], [16], [25] to let E only work on the down-sampled
input image to greatly save the computational cost.

Specifically, given a high-resolution (HR) input image I ,
it is first enhanced by N basis HashLUTs in parallel as
{On = Hn(I)}n=1,...,N which are then refined by C as
{Õn} = C({On}). At the same time, I is downsampled to a
low-resolution (LR) version Ĩ and then Ĩ is fed into E to get
the N image-adaptive weights {wn}n=1,...,N = E(Ĩ). Finally,
the enhanced image O is generated as,

O =

N∑
n=1

wnÕn + I, (4)

where a residual strategy is applied for the stability of training
by combining the mapping output with I . Given P pairs
of input and target images denoted by {(Ip,T p)}p=1,...,P ,
the associated optimization problem for training our model
is formulated as,

arg min
({Hn},E,C)

P∑
p=1

L(T p,Op), (5)
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where L denotes the loss function which in our implementa-
tion is defined as the L1 distance for simplicity.

C. Analyses of the hash collision

Hashing technology reduces storage overhead by mapping
different indexes to the same grid, which is called the hash
collision. Given an input image, if a collision happens between
one of its utilized grids and other unused ones, this collision
avoids the space consumption of the latter without harming
the enhancement effects. In fact, we rely on such collisions to
achieve the compression of 3DLUT. However, if a collision
happens among utilized grids, it may affect the enhancement
results since different input colors would be mapped to the
same one, determined by the training gradients. In the fol-
lowing discussion, we will only focus on the latter type of
collisions and ignore the former one.

Previous approaches like [9] explicitly handled hash col-
lisions by typical means such as probing, bucketing and
chaining which are nontrivial and may increase the model
complexity and introduce additional costs. Unlikely, inspired
by the successful practice of recent multi-resolution hash en-
coding [11], we leverage multiple hash tables with progressive
resolutions followed by a refine network and rely on the
gradient-based optimization to handle collisions adaptively
under the end-to-end learning framework.

As aforementioned, the basis HashLUTs work in two ways.
Apart from adapting to various scenes, they are set with
different resolutions denoted by {Dn}n=1,...,N to statistically
avoid collisions occurring in the same places simultaneously.
Take one color channel as an example for simplicity, given
an input color cin, the indexes of its surrounding grids are
bcin ·Dnc and dcin ·Dne according to the description in Sect.
III-A. If {Dn} share the same value, the input color would
utilize grids with the same indexes across all the HashLUTs,
meaning collisions happen in either none of HashLUTs or
the same places of all of them. Instead, we implement {Dn}
as a geometric progression, leading to utilized grids with
different indexes across the progressive HashLUTs so that hash
collisions occur approximately randomly in time and space.

Thanks to the the progressive resolutions, given an input
image, the N basis HashLUTs representing different scenes
would statistically have collisions with different degrees and
space distributions and enjoy the potential to complement each
other. We thus propose to consider the mapping results of all
basis HashLUTs comprehensively and refine each of them.
Specifically, a lightweight collision-compensation network is
added following the progressive HashLUTs, cooperating with
them to reduce the impact of hash conflicts. The efficacy of
such collision handling strategies is verified in Sect. IV-B1.

IV. EXPERIMENTS

A. Experimental setup

Our model was implemented based on PyTorch and the hash
encoding of Tiny-CUDA-NN. Since our primary objective lies
in hashing 3DLUT for lightweight image enhancement, we
simply implemented the expert network as a five-layer CNN

and the collision-compensation network as a one-layer MLP
instead of more sophisticated architectures. A batch size of 1
and the Adam [26] optimizer was employed for training. Ex-
periments were conducted on two benchmark datasets, namely
MIT-Adobe FiveK [22] and PPR10K [2], and quantitative
enhancement performance was measured according to three
metrics, namely PSNR, SSIM [27], and the L2 distance in
CIELAB color space (∆E) which is proven consistent to
human perception [28].

B. Ablation study

Ablation studies were conducted on FiveK [22] to verify
the efficacy of our adaptive collision-handling strategy and
demonstrate the effects of the hyper-parameters in our model.

1) Efficacy of the adaptive collision-handling strategy:
We adaptively handle hash collisions by employing progres-
sive basis HashLUTs and the followed collision-compensation
network. To verify their efficacy, we compared our model
with three baselines on FiveK [22] dataset. All the exper-
imental settings were the same except for the collision-
handling strategy as presented below: (1) “Single”, Single-
resolution basis HashLUTs without the collision-compensation
network; (2) “Single+C”, Single-resolution basis HashLUTs
with the collision-compensation network; (3) “Progressive”,
Progressive-resolution basis HashLUTs without the collision-
compensation network; and (4) “Progressive+C (Ours)”,
Progressive-resolution basis HashLUTs with the collision-
compensation network.

TABLE I
QUANTITATIVE COMPARISON OF DIFFERENT BASELINES AND OUR MODEL

ON FIVEK [22] DATASET.

Method PSNR ↑ SSIM ↑ ∆E ↓
Single 24.88 0.853 9.80

Single+C 25.24 0.912 8.43
Progressive 25.22 0.908 8.49

Progressive+C (Ours) 25.50 0.926 7.46

As shown in Table I, both Single+C and Progressive
enjoyed a notable improvement in terms of all three metrics
compared to Single, which fully verifies the effectiveness
of the two parts of our adaptive collision-handling strategy,
i.e. the progressive-resolution HashLUTs and the collision-
compensation network. Besides, by combining them, our
model Progressive+C achieved the best overall performance
compared to Single+C and Progressive, which indicates that
these two parts are able to cooperate well with each other
to further improve performance. It is in line with our anal-
yses since the progressive resolutions statistically reduce the
probability that collisions happened at the same time and place
across the basis HashLUTs, providing the potential to let them
complement each other and compensate for collision.

2) Effects of hyper-parameters: To quantitatively demon-
strate the effects of the hyper-parameters T and N in our
model, we conducted experiments on FiveK [22] dataset with
T = {210, 211, 212, 213, 214, 215} and N = {3, 5, 7, 10, 15, 20}.
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Fig. 4. Effects of hyper-parameters T and N on the enhancement performance
on FiveK [22] dataset.

As shown in Fig 4, the enhancement performance increases
with both T and N before meeting the saturation points,
and then stagnates or even starts to decrease slightly. It is
reasonable since T balances the hash collision degree and
space utilization, and N determines the number of basis
HashLUTs which not only controls the coverage of various
scenes but also affects the ability to handle collisions. We
attribute the stagnation and declination to the overfitting of
excessive parameters on the training set. Overall, we set T =
14 and N = 3 for a good balance between the enhancement
performance and model complexity.

C. Comparison with SOTA

We compared our model with eight SOTA learning-based
counterparts, including UPE [14], DPE [13], HDRNet [18],
CSRNet [20], 3DLUT [1], SALUT [3], SepLUT [5] and
AdaInt [6]. The quantitative experimental results obtained on
the two benchmarks are reported in Table II and Table III,
respectively. It needs to be noticed that following the practice
of [2], UPE [14] and DPE [13] were not experimented on
PPR10K [2] due to their heavy computational burden. As
highlighted in red, our model achieved the best performance
on most metrics of each dataset. Most importantly, compared
with the standard [1] and the follow-up [3], [5], [6] 3DLUT-
based methods, our model achieved comparable or even better

TABLE II
QUANTITATIVE COMPARISON ON FIVEK [22] DATASET.

Method PSNR ↑ SSIM ↑ ∆E ↓ Param. (K)
UPE [14] 21.88 0.853 10.80 999
DPE [13] 23.75 0.908 9.34 5,750
HDRNet [18] 24.32 0.912 8.49 482
CSRNet [20] 25.23 0.923 7.70 37
3DLUT [1] 25.23 0.912 7.60 592
SALUT [3] 25.40 0.925 7.46 4,155
SepLUT [5] 25.47 0.921 7.54 120
AdaInt [6] 25.49 0.926 7.47 620
Ours 25.50 0.926 7.46 114

TABLE III
QUANTITATIVE COMPARISON ON PPR10K [2] DATASET.

Dataset Method PSNR↑ ∆E ↓ Param. (K)

PPR-a

HDRNet [18] 23.93 8.70 482
CSRNet [20] 22.72 9.75 37
SALUT [3] 25.85 6.84 4,155
3DLUT+HRP [2] 25.99 6.76 11,716
SepLUT [5] 26.28 6.59 120
AdaInt [6] 26.33 6.56 620
Ours 26.34 6.56 114

PPR-b

HDRNet [18] 23.96 8.84 482
CSRNet [20] 23.76 8.77 37
SALUT [3] 25.01 7.67 4,155
3DLUT+HRP [2] 25.06 7.51 11,716
SepLUT [5] 25.23 7.49 120
AdaInt [6] 25.40 7.33 620
Ours 25.42 7.40 114

PPR-c

HDRNet [18] 24.08 8.87 482
CSRNet [20] 23.17 9.45 37
SALUT [3] 25.36 7.54 4,155
3DLUT+HRP [2] 25.46 7.43 11,716
SepLUT [5] 25.59 7.51 120
AdaInt [6] 25.68 7.31 620
Ours 25.65 7.30 114

enhancement performance but with significantly fewer param-
eters. Although CSRNet [20] enjoys an extremely small model
size, our method outperformed it on each dataset in terms of
all three metrics by a large margin.

The qualitative comparison with SOTA competitors is pre-
sented in Fig. 5. It can be seen that compared with the other
methods, the enhancement effects of our model are visually
the most pleasing and closest to the ground truth. Overall, by
adaptively learning progressive basis HashLUTs and handling
hash collisions end-to-end, our method improves the enhance-
ment performance of the standard 3DLUT-based methods both
quantitatively and qualitatively with a significantly smaller
parameter amount, achieving SOTA on consideration of both
the enhancement performance and the model complexity.

V. CONCLUSION

In this paper, we introduced hash techniques to the image
enhancement task to reduce the space complexity of 3DLUT-
based models, where 3DLUT is a powerful enhancement
operator but suffers a large parameter amount. Specifically,
in-depth analyses are conducted on the inherent low grid
utilization rate of 3DLUT and an efficient hash form of
3DLUT is proposed, based on which a lightweight real-time
image enhancement network is further constructed. Extensive
experiments demonstrate that our model achieves SOTA en-
hancement performance with significantly fewer parameters.
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