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Abstract—The pedestrian detection task which aims to predict
bounding-boxes of all the pedestrian instances in an image is of
paramount importance for many real-world applications and has
attracted much attention within the computer vision community.
However, the researchers generally ignore the critical issue that
due to the reasons of partial occlusion or being out of FOV,
the definition for pedestrian is ill-posed in many cases and even
humans will find it difficult to give accurate bounding-boxes. It
is found that in many real applications, pedestrian detection can
be substituted by upper-body detection, which is more robust and
is much less affected by occlusion or being partially out of FOV.
However, few studies have been conducted in this area. To fill
this research gap to some extent, we make two contributions in
this paper. Firstly, in order to facilitate the study of upper-body
detection, a large-scale benchmark dataset is established. This
dataset comprises 9585 images extracted from typical surveillance
video clips and for each image, all the upper-body instances were
carefully labeled. Secondly, the performances of four state-of-the-
art object-detection frameworks were thoroughly evaluated in the
context of upper-body detection, which can serve as a baseline for
other researchers to develop even more sophisticated methods. To
make the results fully reproducible, the collected dataset has been
made publicly available at https://github.com/AmazingMei/upper-
body-detection.

I. INTRODUCTION

Pedestrian detection is meaningful in many fields, such as
Advanced Driver Assistant System (ADAS) [1], Pedestrian
Protection System (PPS), robotic and surveillance. There are
extensive researches on pedestrian detection and many de-
tectors turn out to have good results. The main paradigm-
s for object detection, including Viola&Jones variants [2],
HOG+SVM rigid templates [3], deformable part model (DPM)
[4]and convolutional neural network (CNN) [5], are all good
solutions for this task.

At the same time, pedestrians are one of the most challenging
categories for object detection. Because of the various types
and styles of clothing, their local and global appearance have a
large variability. In addition, the global shape undergoes a large
range of transformations caused by occlusion and movement.
To solve these problems, some researchers focus on pedestrian
detection in crowded scenes [6] and some focus on part-based
approaches [7].
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But all these researches have ignored the disadvantages of
pedestrian detection. It is hard to give an exact definition to
“pedestrian”. In Figure 1, people in these images are various in
many ways: taking bicycles or motorcycles, sitting or squatting,
or even using handcart. Should they be defined as pedestrian
instances? Because of occlusions, some people only have heads
in sight in Figure 1. There are also many people partially out
of the field of view (FOV) caused by the short distance to
the camera. These people are usually on the down side of the
images and only half of their bodies can be seen. Should we
treat them as pedestrians as well?

To detect every person in the image, most answers to the
questions above are “yes”. But this means the appearances of
pedestrians become various and the performance of pedestrian
detector will be weakened. To make the instance become
consistent, we can just substitute upper-body for pedestrian.
Upper-body regions have low flexibility and their shapes are
basically stable. Different transports also have no effect on the
appearance of upper-body. For the people who are partially out
of FOV or occluded by other people, their upper-bodies are still
in the field of view. This makes upper-body detection easier to
have a better performance.

Actually, in many real-world applications, upper-body de-
tection can completely replace pedestrian detection. The main
purpose of pedestrian detection is to find and track people in
the images or videos. In ADAS, pedestrian detection is used
to find the position and distance to the people in sight. Upper-
body detection is enough to achieve these goals. At the same
time, compared with upper-body, the lower-body contains few
information and is more flexible. Head detection is easier and
popular, but also contains less information. It is hard to tell
the human’s action, pose or position through head. So using
upper-body detection as a substitute of pedestrian detection is
more reasonable.

Most of the upper-body datasets are acquired from TV
shows for motion classification or action recognition, like the
BBC TV Signing dataset [8], TV Human Interaction dataset
[9] and VGG Upper Body Dataset [10]. The viewpoints of
these datasets are similar and the backgrounds are simple. The
numbers of people in the images are limited, usually 2 to 3
people, which means there are basically no occlusion in these
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Fig. 1. Examples for ambiguous pedestrians. (a) Sitting people. (b) Squatting people. (c) People taking motorcycle. (d) People using handcart.

pictures. As a result, these datasets are not suitable to detect
the upper-body instance as a substitute for pedestrian detection.
For applications in ADAS or surveillance, the scenes need to
be on the road, with low image resolution and high viewpoint.
In surveillance videos, the crowd may cause occlusion. At the
same time, these datasets are very small. BBC TV Signing
dataset contains 300 video clips and each one of them is only
1-3 seconds. VGG Upper Body Dataset has 290 images. These
datasets are too small to train deep learning models. Some
researchers use INRIA Person Dataset [11] to train upper-
body detectors. But as INRIA Person Dataset only contains
annotated pedestrians, researchers have to refine the annotations
by themselves, which means a lot of extra work. So the existing
datasets are not enough for upper-body detection.

Many researchers have investigated upper-body detection
and most of the approaches are the same as pedestrian de-
tection. The most frequent features used in these works are the
Histogram of Oriented Gradient (HOG) [3] features. At the
same time, Dollar proposed an alternative representation of the
channel feature called Aggregated Channel Features (ACF) [11]
for pedestrian detection. ACF is quite appealing for its good
performance in terms of detection results and computation time.

On the other side, recent years more and more deep learning
models have been proposed to solve problems in different areas.
Many DCNN-based methods turn out to have fantastic results

()]

for object detection, such as Faster R-CNN [12], SSD [13] and
YOLOV2 [14]. The original detection methods using features
and classifiers seem out-of-date and slow compared with them.
But few of deep learning methods have been used in this area.

To fill this research gap, we make two contributions in this
paper: (1) We present a new dataset for upper-body detection.
Unlike other existing upper-body datasets acquired from TV
shows, the images in our dataset are acquired from surveil-
lance cameras. There are more people and more complicated
background than the exit datasets. Our dataset is more suitable
for applications in ADAS or surveillance. (2) We investigate the
performance of four state-of-the-art object-detection methods in
the context of upper-body detection. We adopt three DCNN-
based deep learning methods, including Faster R-CNN [12],
SSD [13] and YOLOvV2 [14], for evaluation. In addition, we
also investigate the performance of the ACF-based framework
for upper-body detection on our collected dataset.

The rest of this paper is structured as follows: Section 2
introduces our new dataset. Section 3 gives a brief glance at
architectures of different DCNN-based learning models. Sec-
tion 4 shows the experimental results and Section 5 concludes
the work.
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Fig. 3. The upper-body regions of different pedestrians. In our dataset, there are male and female, pedestrians and cyclists, taken from front, back and sides.

II. DATABASE

Our dataset comprises 9585 images acquired from 26 differ-
ent surveillance cameras. The surveillance videos are collected
in various scenes, such as shopping street, housing estate and
community gate. These places are very common in our daily
life. The selected scenes have various weathers: sunny, rainy
or cloudy. And the images are taken at different time, vary
from late night without light to noon with bright sunlight.
These pictures also vary in crowd density, motion direction and
shooting distance. This makes our dataset have high diversity
and is more challenging for detection. Figure 2 shows some

examples in our dataset.

As shown in Figure 3, examples are acquired from the front,
back and sides of people and they face to different directions.
This makes it hard to be detect by traditional methods. There
are also many images with crowd or acquired at night. The
occlusion and illumination also increase the difficulty to tell
the upper-body regions.

After we get the raw video data, we extracted static frames
from the video and remove the frames without human or
blurred. Then we use an application implemented by C++ to
annotate the upper-body regions manually. This application can
annotate different parts of human body such as head, shoulder,
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leg or foot. Besides upper-body detection, this application can
be used in many other computer vision areas such as pedestrian
detection or part-based human detection.

However, unlike head or pedestrian instance, upper-body is
still an ambiguous definition. Some may think the breast is the
bottom line of upper-body region while some think the hip is.
In our dataset, we define the region between the top of head
to the bottom of shoulders as upper-body.

To increase the accuracy of our annotations, we annotate
the head and shoulder areas respectively and then merge the
two regions together to get a new rectangle as the upper-body
region. In this way, the annotation we use can be more accurate,
because it is much easier and clearer for people to tell the
regions of head and shoulders. After that, to make our dataset
easy to be trained by deep learning methods, we convert the
form of our annotations to the same as VOC2007 database
[15]. The images and annotations have been publicly online at
https://github.com/AmazingMei/upper-body-detection.

III. DEEP CNN-BASED OBJECT DETECTION FRAMEWORKS

In recent years, deep learning has achieved many successful
results in different fields. Compared with traditional machine
learning methods, deep learning methods have a stronger
learning ability and can make better use of the training data.
Convolutional Neural Network (CNN) is an excellent model
that can accomplish detection tasks efficiently. Many Deep
CNN-based frameworks do a great job to solve object detection
problems. Upper-body is an object detection task and can
use these frameworks. In the following, we will give a brief
introduction to several methods of them, Faster R-CNN, SSD
and YOLOV2 in particular. In section 4, we will use these
methods in our experiments.

A. Faster R-CNN

Region-based convolutional neural network (R-CNN) [16] is
a popular approach for object detection based on CNN. While
accurate, R-CNN is computationally expensive. But the per-
formance has become better in the following incarnation: Fast
R-CNN [17] . Although Fast R-CNN takes advantage of GPUs,
the region proposal methods used in research are implemented
on the CPU, costing a lot of time. The researchers observed that
the convolutional feature maps used by region-based detectors
could also be used for generation region proposals. So Faster
R-CNN introduced novel Region Proposal Network (RPN) that
shares convolutional layers with Fast R-CNN, which makes the
cost for computing proposals small (e.g. 10ms per image).

Faster R-CNN achieves 73.2% mAP and 7 FPS on
VOC2007test on Nvidia Titan X.

B. SSD

Single Shot MultiBox Detector (SSD) [13] used a set of
default boxes with different aspect ratios and scales to represent
the output space of the bounding boxes. When predicting, SSD
gives scores for each class in each default box and adjusts the
box to match the object shape better. By eliminating object
proposal and following pixel or feature resampling stages, SSD

encapsulates all computation in a single network, which makes
it easy to train and integrate into other systems.

The elimination of object proposal step does not reduce the
detection accuracy and make it much faster. For 300 x 300
input, SSD achieves 74.3% mAP on VOC2007test at 59 FPS
on Nvidia Titan X and for 512 x 512 input, it achieves 76.9%
mAP.

C. YOLOv2

You Only Look Once (YOLO) [18] reframes object detection
as a single regression problem, from pixels to bounding boxes
and associated class probabilities.

The pipeline of YOLO is quite simple. First resize the input
picture and then run a single convolutional network on the
image to predict both bounding boxes and class probabilities.
Finally, YOLO sorts the results by the model’s confidence
score. Such a simple pipeline turns to make YOLO extremely
fast, runs at 45 FPS on Nvidia Titan X. Besides, YOLO uses the
whole image when making predictions, which means it encodes
contextual information about classes and their appearances and
make less background errors compared with other methods.
However, YOLO makes more localization errors.

YOLOV2 [14] uses a few tricks to improve training and
increase performance. Like SSD, YOLOV2 uses a fully con-
volutional model, but train on whole images instead of hard
negatives. Like Faster R-CNN, it adjusts priors on bounding
boxes instead of predicting height and weight, but predicts the
x and y coordinates directly. At 67 FPS, YOLOv2 get 76.8%
mAP on VOC2007test and at 40 FPS, YOLOv2 gets 78.6%
mAP.

IV. EXPERIMENTS
A. Experimental protocol

Experiments were conducted on a workstation with Ubun-
tul4.04 and Nvidia Tesla K40. Training set is composed of
6709 images randomly chosen from the dataset, and the rest
2876 images constitute testing set.

As for measurement, many researchers use precision/recall
curve or average precision to measure the object detection
performance. The precision/recall curve used in the PASCAL
object detection challenges [15] shows the relationship between
precision and recall rate, by plotting precision p(r) as a function
of recall r. Average precision (AP) is used to summarize the
performance of precision/recall curve and is the average value
of p(r) over the interval from » = 0 to r = 1. In our experiments,
to make the training results comparable and more intuitive, AP
is applied to measure the performances of different detection
methods and the threshhold of Intersection over Union (IoU)
is changed to compare their localization accuracy.

Intersection over Union (IoU) is an evaluation metric used
to measure the accuracy of an object detector. To compute the
IoU, the ground-truth bounding box and the predicted bounding
box are necessary. Then the area between two bounding boxes
and the area encompassed by both two bounding boxes need
to be compute. Dividing the area of overlap by the area of
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Fig. 4. The detection result of different methods. (a) ACF Detector, (b) Faster R-CNN, (c) SSD, (d) YOLOvV2.

union yields the final score. When the predict position is more
accurate, the overlap area and union area are closer, and the
IoU is closer to 1. A threshhold is used to calculate the AP of
our detector. If the IoU of a predicted bounding box is bigger
than the threshhold, it is accurate and average precision is
calculated. The detection position accuracy can be seen through
the change of average precisions under different threshholds. If
the average precisions change a lot, the position accuracy of the
detector is bad. In our experiments, the latest version of Dollars
Computer Vision MATLAB Toolbox [19] is used to train
aggregate channel features (ACF) [11] upper-body detector
and compared with other DCNN-based detection methods. The
negative samples are extracted from the background of each
image randomly. The model’s size is changed from 100 x 41
to 36 x 45, because of the shape of upper-body region.

Then Faster R-CNN is applied with network VGG16 [20] .
The open-source Faster R-CNN has both Python version and
MATLAB version. In our experiments, we used Python version.
The sizes of input images were not generalized and negative

samples were extracted from the background of positive im-
ages. Other network configurations and parameters were the
same as the original paper.

We also applied Python version of SSD with pre-trained
network VGG16. The input images are generalized to 300 x 300
pixels. The negative samples and other settings are the same
as Faster R-CNN.

For YOLOV2, its Python version is used and YOLOV2 uses
its own darknet instead of VGG16. At the beginning, it resizes
the input images to 448 x 448. The other network configurations
are the same as above.

B. Comparisons

Table 1 shows the upper-body detection average precision
(AP) on the test dataset. Obviously, all the deep learning ap-
proaches have better results than ACF-based detection method.
When IoU is 0.5, the AP of it is 0.817. SSD and Faster R-
CNN have the approximate AP by 0.9056 and 0.9074, while
YOLOV2 achieves 0.9710 when the IoU is 0.5. But when we
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ACF Faster SSD YOLOvV2
R-CNN
IoU =0.25 0.9076 0.9065 0.9081 0.9893
ToU = 0.5 0.8466 0.9056 0.9074 0.9712
ToU = 0.7 0.4576 0.797 0.9036 0.8656
ToU =0.8 0.1306 0.5203 0.8049 0.5112
TABLE I

AVERAGE PRECISION (AP) OF DIFFERENT METHODS WITH DIFFERENT IoU

ACF Faster SSD YOLOvV2
R-CNN
Detection time  0.642 0.244 0.092 0.056
TABLE II

AVERAGE DETECTION TIME

increase the IoU to 0.7 or even 0.8, the average precisions of
YOLOV2 and Faster R-CNN drop rapidly to 0.5, while 0.8 for
SSD, which means the positions these two methods give are
not as exact as SSD.

Figure 4 shows the different detection results for the same
image by the four methods mentioned above when the IoU
is 0.5. As we can see in Figure 4(a), there are many false
positive samples in the result of ACF detection. For Faster R-
CNN in Figure 4(b), the results and positions are good and the
detected upper-body regions are all with high scores. In Figure
4(c), the result of SSD detection fails to find some small upper-
body regions, like the man in the top left corner. Figure 4(d)
shows the YOLOvV2 detection result. The locations of resultant
bounding boxes are not accurate compared with other methods.
Like the man in top left corner, some people are only cropped
with head.

As the IoU changes, the performances of the four methods
change a lot. As we can see, SSD detection result seems stable
and changes only a little from 0.8 to 0.9. At the same time, the
results of YOLOV2, Faster R-CNN and ACF detection change a
lot. This means detection of SSD has a better location accuracy.

Table 2 shows the average detect time for the test set. Of
course, all the deep learning methods are better than ACF.
Among them, YOLOV2 turns to be the fastest and is about
4 times better than Faster R-CNN. YOLOv2 and SSD both
skip the proposal step and predict bounding boxes directly.
This gives them a high speed in return. SSD and Faster R-
CNN both use a deep and complicated network, VGG-16. At
the same time, YOLOV2 uses a custom network based on the
Googlenet [21] architecture, which is much lighter and faster
than VGG-16.

In our experiments, we can find that YOLOv2 and SSD are
fast enough to do real-time detections. SSD has a weakness
on detecting small objects but the positions of its bounding
boxes are very accurate. On the other hand, YOLOV2 is good
at detections when its location accuracy is not required.

V. CONCLUSION

In this paper, we thoroughly investigated the problem of
vision-based upper-body detection. Specifically, we made two

contributions. Firstly, we established a new dataset for hu-
man upper-body detection. Unlike other upper-body datasets
acquired from TV shows, the images in our dataset are captured
from surveillance cameras and can be used in many appli-
cations such as public security system or ADAS. Secondly,
the performances of four representative object detectores were
thoroughly evaluated in the context of upper-body detection.
Among them, there are DCNN-based while the other is ACF-
based. The evaluation results can serve as a baseline when
other researchers develop even more advanced approaches in
this area. In the future, we will expand our dataset and collect
more images for surveillance system.
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