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Abstract
Depth completion aims to estimate dense depth images from sparse depthmeasurements with RGB image guidance. However,
previous approaches have not fully considered sparse input fidelity, resulting in inconsistency with sparse input and poor
robustness to input corruption. In this paper, we propose the deep unrolledWeighted Graph Laplacian Regularization (WGLR)
for depth completion which enhances input fidelity and noise robustness by enforcing input constraints in the network design.
Specifically, we assume graph Laplacian regularization as the prior for depth completion optimization and derive the WGLR
solution by interpreting the depth map as the discrete counterpart of continuous manifold, enabling analysis in continuous
domain and enforcing input consistency. Based on its anisotropic diffusion interpretation, we unroll the WGLR solution into
iterative filtering for efficient implementation. Furthermore, we integrate the unrolled WGLR into deep learning framework
to develop high-performance yet interpretable network, which diffuses the depth in a hierarchical manner to ensure global
smoothness while preserving visually salient details. Experimental results demonstrate that the proposed scheme improves
consistency with depth measurements and robustness to input corruption for depth completion, outperforming competing
schemes on the NYUv2, KITTI-DC and TetrasRGBD datasets.

Keywords Depth completion · LiDAR sensor · Graph Laplacian regularization · Deep neural network

1 Introduction

The acquisition of precise scene depth is crucial for various
applications, including automatic driving (Li et al., 2022),
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scene understanding (Chang et al., 2017), and augmented
reality (Du et al., 2020), etc. However, depth sensors, such
as LiDAR sensors, typically provide sparse depth maps, as
illustrated in Fig. 1b and g. These sparsemaps are impractical
for downstream applications where dense depth maps are
required (Uhrig et al., 2017). Therefore, numerous research
efforts have been focused on depth completion from sparse
depth maps using RGB image guidance to provide dense
depth maps, as shown in Fig. 1c, d, h, i (Uhrig et al., 2017;
Ma and Karaman, 2018; Van Gansbeke et al., 2019).

Recent works have made remarkable improvements in
depth completion using deep neural networks (DNNs)
(Cheng et al., 2019; Park et al., 2020; Hu et al., 2021; Zhao
et al., 2021; Lopez-Rodriguez et al., 2022). However, exist-
ing schemes do not fully consider the preservation of sparse
inputs, resulting in two issues: (1) the output dense depth is
not guaranteed to be consistent with the sparse input, and
(2) the accuracy of the output depth is sensitive to input
corruption, such as sensor noise or misalignment between
depth measurements and RGB images caused by synchro-
nization or occlusion (Zeng et al., 2019; Qiu et al., 2019), as
illustrated in Fig. 1g. Even state-of-the-art algorithms (Park

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11263-024-02188-3&domain=pdf
http://orcid.org/0000-0003-3038-1863


International Journal of Computer Vision

Fig. 1 Depth completion with different approaches: (a, f) RGB input;
(b, g) sparse depth input; (c, h) results of NLSPN (Park et al., 2020),
where the depth estimation is not consistent with input values in (c),
and the edge accuracy degrades due to mis-alignment between depth
input and RGB in (h); (d, i) results of proposed HUGNet with input

constraints, where the results well preserve the input in (d) and is robust
to depth-RGBmis-alignment in (i); (e, j) results of 3D object detection,
colored in blue for NLSPN and red for HUGNet, where HUGNet pro-
vides more accurate car positions and pedestrian orientations (Color
figure online)

et al., 2020; Liu et al., 2023; Zhang et al., 2023) suffer
from the above two issues. In Fig. 1, we show the results
of non-local spatial propagation network (NLSPN) (Park et
al., 2020) for demonstration. For instance, Fig. 1c exemplifies
the input inconsistency, showing an approximate 1m offset
between depth estimation and input LiDAR samples in the
car’s region. Moreover, Fig. 1h demonstrates the high sensi-
tivity to noise, where the edge accuracy is severely degraded
due to misalignment between input depth and RGB images.
This hinders the application of depth maps in downstream
tasks, e.g., using the predicted depth in 3D object detection
(Ma et al., 2020), NLSPN results generate inaccurate car
position in Fig. 1e and inconsistent pedestrian orientations in
Fig. 1j.

To improve input fidelity, approaches based on spatial
propagation networks (SPNs) replaced depth estimation at
sample locations with valid input values during propagation
(Cheng et al., 2019; Park et al., 2020). However, such input
replacement procedure for post-processing refinement leads
to discontinuity surrounding sample locations, as shown in
Fig. 1c. Meanwhile, some methods (Eldesokey et al., 2020;
Chodosh et al., 2018) incorporated model-based approaches
with input constraints into deep learning frameworks to
explicitly propagate the input to its neighbors. By consider-
ing input reliability in the propagation, these methods further
enhance input corruption robustness. However, compared to
recent schemes, these methods are less accurate in struc-
tural detail enhancement and prediction in large input-invalid
areas, which is due to the limited expressiveness of their
model-based network designs.

In this paper, we propose deep unrolled Weighted Graph
Laplacian Regularization (WGLR) which enhances input

fidelity and noise robustness, as shown in Fig. 1d, i. This
further improves the accuracy of downstream 3D object
detection application, where the proposed approach provides
more accurate car positions in Fig. 1e and pedestrain orien-
tations in Fig. 1j. In particular, we assume graph Laplacian
regularization (GLR) as the data smoothness prior for depth
completion optimization in an uncertainty-aware manner,
and derive the WGLR solution by solving the optimiza-
tion in the continuous domain with correct boundary term to
enforce input consistency. Based on its anisotropic diffusion
interpretation, WGLR solution is efficiently implemented by
unrollingWGLR into iterativefiltering, and thus canbe recast
into a trainable module in the deep network. The unrolled
WGLR is then incorporated into the DNN framework to
develop high-performance yet interpretable network with
explicit input constraints. Additionally, the unrolled WGLR
is adopted in a hierarchical manner to successively diffuse
depth in multiple scales, ensuring global smoothness while
preserving structural details. The proposed network is named
asHierarchical Deep Unrolled WGLR Network, referred to
as HUGNet for short.

Compared with SPN-based schemes (Cheng et al., 2019;
Park et al., 2020), we provide continuous-domain analysis
to explain how the proposed WGLR corrects the boundary
term to avoid discontinuity in SPN-based schemes. Com-
pared with pure DNN-based schemes (Zhao et al., 2021;
Hu et al., 2021), our approach incorporates the WGLR prior
with input constraint in the network design so as to explicitly
enforce input fidelity. While there are also schemes incor-
porating input constraints in the network (Eldesokey et al.,
2020; Chodosh et al., 2018), they sacrifice detail preservation
due to limited expressiveness of the model-based network
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design. Instead, we combine the merits of the two, i.e., the
robustness of data prior and learning power of DNN, to pro-
duce a network that ensures input fidelity while maintaining
structural details. The contributions of our work are summa-
rized as follows.

• We assume GLR prior in depth completion optimization
and derive the WGLR solution via continuous-domain
analysis to enforce confidence-aware input consistency;

• We design unrolled WGLR to efficiently implement
WGLR solution based on its diffusion interpretation,
enabling WGLR to be recast into a trainable module in
the deep network;

• We incorporate unrolled WGLR into DNN to develop
high-performance yet interpretable network with explicit
input constraints; unrolled WGLR is adopted to dif-
fuse the depth in a hierarchical manner to ensure global
smoothness while preserving structural details.

Experiments validate the advantages of the proposed deep
unrolled WGLR in input consistency and noise robustness
with detail preservation. The paper is organized as follows.
Related works are discussed in Sect. 2, and Sect. 3 provides
a detailed discussion of the proposed algorithm with the net-
work design in Sect. 4. Comparison with competing schemes
and ablation study are demonstrated in Sect. 5. The work is
concluded in Sect. 6.

2 RelatedWorks

In this section, we will first overview the learning-based
schemes for depth completion, and focus on the learning-
based schemes with input constraints for network design that
are most related to the proposed approach.

2.1 Learning-Based Depth Completion

With thedevelopment ofDNNs, deep learningbasedmethods
provide the state-of-the-art performance for depth comple-
tion and outperform model-based methods (Ferstl et al.,
2013; Liu et al., 2015; Barron and Poole, 2016) by a wide
margin. Early methods relied only on sparse depth maps
and designed sparsity-invariant convolution for sparse input
(Uhrig et al., 2017; Huang et al., 2019), but the resulting
depth completion suffered from blurry edges and missing
structural details, so recent methods utilize RGB images as
the guidance for accurate detail preservation in depth predic-
tion.

RGB-guided depth completion focuses on the fusion
between two modalities (Ma and Karaman, 2018; Van Gans-
beke et al., 2019; Li et al., 2020; Hu et al., 2021; Zhao et
al., 2021). Sparse-to-Dense (Ma and Karaman, 2018) con-

catenated RGB and sparse depth map and fed them into
an encoder-decoder network for final prediction. FusionNet
(Van Gansbeke et al., 2019) fused the local information from
sparse depth and the global guidance map learnt from RGB
and sparse depth, weighted by their respective confidence
maps. PENet (Hu et al., 2021) generated depth maps from
color-dominant and depth-dominant branches respectively
then adaptively fused the two complimentary depth maps.
ACMNet (Zhao et al., 2021) designed attention-based graph
propagation to extract multi-modal features from RGB and
depthwhichwere then combinedwith the gated fusion. Some
works introduced intermediate representations to explore
extra constraints for depth estimation. For example, DeepL-
iDAR (Qiu et al., 2019) and DepthNormal (Xu et al., 2019)
estimated the surface normal as the intermediate represen-
tation used as an additional constraint for depth estimation.
GAENet (Chen et al., 2022) integrated implicit 3D geometric
structure information into 2D learning architecture to guide
depth estimation.

Recent learning-based approaches achieve high accuracy
and sharp details, but do not guarantee consistency with
sparse input since the input values are not explicitly pre-
served, and are often vulnerable to input corruption. This
motivates works to incorporate input constraints in the net-
work design discussed as follows.

2.2 Learning-Based Depth Completion with Input
Constraints

Recent works notice the offset between output depth esti-
mation and input depth measurement, thus incorporate input
constraints into network design to improve input fidelity. For
example, CSPN (Cheng et al., 2019) and its variants, e.g.,
NLSPN (Park et al., 2020) andGraphCSPN (Liu et al., 2022),
adopted input replacementwhich replaced estimation at sam-
ple locations with input values during propagation. However
input replacement resulted in discontinuity at sample loca-
tions as illustrated in Fig. 1c.

On the other hand, someworks combined the prior knowl-
edge of depth image and deep neural network, enabling
more interpretable control on output than pure learning-based
methods, since they explicitly propagated and rectified cor-
rupted measurements. In Chodosh et al. (2018), the depth
completionwas formulated as compressed sensingwith input
constraint, which was solved with a deep recurrent auto-
encoder based on Alternating Direction Neural Networks.
PNCNN (Eldesokey et al., 2020) assumed the depth image
as a multivariate normal distribution and explicitly propa-
gated the input to its neighbors conditioned on its reliability
using the learnt applicability function. Although the prior
knowledge enabled control on output, these methods were
less effective in reconstructing structural details and estimat-
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ing depth in large input-invalid area, since the incorporated
prior limited their network expressive power.

Therefore, it is challenging to combine the advantages of
both in the network design: (1) accurate structural details
using learning-based approaches and (2) input fidelity using
model-based approaches. In contrast, our proposed deep
unrolled WGLR combines the merits of both to improve
confidence-aware input fidelity while maintaining the struc-
tural details.

2.3 Depth Rectification with Sparse Measurements

While sparse input fidelity is essential in depth completion,
it is also considered in other depth estimation scenarios. For
example, Pseudo-LiDAR++ (You et al., 2020) rectified the
stereo depth with the sparse LiDAR depth via graph-based
depth correction (GDC) for accurate 3D object detection,
but GDC required solving linear system and was not imple-
mented efficiently. To speed up GDC, FusionDepth network
(Feng et al., 2022) fused monocular image features and
sparseLiDAR features to correctmonocular depth estimation
with sparse LiDAR input using GDC as the teacher module,
though FusionDepth was less accurate than GDC. Unlike
previous works that do not well balance the accuracy and
efficiency in depth rectification with sparse input, we imple-
ment the depth completion with input constraint efficiently
without sacrificing accuracy via algorithm unrolling based
on the diffusion interpretation of WGLR.

3 Problem Formulation and Algorithm
Design

In this section, we propose the unrolling of weighted graph
Laplacian regularization (WGLR) for depth completion
which enforces input consistency conditioned on its relia-
bility. First, by solving the depth completion optimization in
continuous domain, we derive WGLR solution by extend-
ing the point integral method so as to properly propagate
the sparse input values. Then, to speed up implementation,
we unroll the WGLR solution into iterative filtering via its
anisotropic diffusion interpretation, based on which the net-
work architecture is designed in the sequel.

3.1 Problem Formulation

In this paper, we are interested in reconstructing the dense
depth map x ∈ R

N from the sparse depth map y ∈ R
N

produced by the depth sensor with inherent noise ε ∈ R
N ,

where x, y and ε are in the vectorized form, N is the total
number of pixels in the depth map. The relation between x

and y is described as

y = m � x + ε, (1)

where � is Hadamard product, m is the binary mask, i.e,
mi = 1 indicates the depth at the i-th pixel is measured by
the sensor, i = 1, . . . , N .

Due to the ill-posedness of the problem, extra prior knowl-
edgedescribing the characteristics ofx is required to facilitate
the reconstruction (Milanfar, 2012). Here we use the follow-
ing energy functionalwhich iswidely adopted in depth image
processing (Barron andPoole, 2016; Pang andCheung, 2017;
Hu et al., 2013),

J (x) = 1

2

∑

i, j

wi, j
(
xi − x j

)2
, (2)

where wi, j is the (i, j)-th element of the adjacency matrix
W ∈ R

N×N , indicating the similarity between pixel i and
j . With W, we then define the undirected weighted graph
G(V, E,W) where V is composed of the N pixels as nodes
connected via edges E with weights W on the neighbor-
hood graph G. Diagonal degree matrixD has diagonal entries
Di,i = ∑

j wi, j ,∀i . A graph Laplacian matrix L is defined

as L � D − W, then (2) can be rewritten as

J (x) = 1

2
x�Lx, (3)

which is referred to as thewell-known graph Laplacian regu-
larizer (GLR) (Ortega et al., 2018), which is validated towell
preserve the piece-wise smooth property of depth images
(Cheung et al., 2018; Pang andZeng, 2021), and thus adopted
as signal prior in our approach.

Considering the reliability of depth samples varies, we
generalize the binary maskm to the confidence map c ∈ R

N

in the range of [0, 1]. To seek the maximum a posteriori
(MAP) solution of x (Bishop and Nasrabadi, 2006), the opti-
mization is formulated as

min
x

1

2
‖c � (x − y)‖22 + λ

2
x�Lx (4)

where λ is the weight for the GLR prior. The first term is the
uncertainty-aware data fidelity term, where x is optimized to
be close to y conditioned on the confidence c.Meanwhile, the
second term is the GLR prior which enforces x to be smooth
with respect to the graph G.

3.2 WGLR Solution Derivation

Next, we derive solution for (4). While previous works solve
(4) in the discrete domain and suffer from input inconsis-
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tency,wederive the solution in continuous domain tomitigate
input inconsistency.

3.2.1 GLR Solution in Discrete Domain

Previous works solved the optimization in (4) by differentiat-
ing the objective function with respect to x, and set the result
equal to 0 to get the solution as follows which we denote as
GLR solution:

C(x − y) + λLx = 0, (5)

where C = diag(c). SPN-based approaches (Cheng et al.,
2019; Park et al., 2020) are special cases of GLR solution
which we will discuss in Sect. 3.3. However, it is observed
that GLR solution does not preserve input. Direct input
replacement as adopted in Cheng et al. (2019), Park et
al. (2020) results in discontinuity at sample locations. For
demonstration, we test on a sample image from KITTI-DC
dataset (Uhrig et al., 2017) where we show the output depth
image of NLSPN (Park et al., 2020) in Fig. 2c with disconti-
nuity at sample locations. In Fig. 2e, we plot the depth values
along the green line highlighted in RGB, where the output
depth has an offset of about 1m from input, validating that
GLR solution does not preserve input.

3.2.2 ProposedWGLR Solution in Continuous Domain

In contrast to previous works, we solve the optimization in
continuous domain. We assume the pixels in x are discrete
samples on the continuous manifoldM (Osher et al., 2017),
then the solution in the continuous form is aLaplace-Beltrami
equation (Shi et al., 2018) over the manifold M as follows,

c(i)(x(i) − y(i)) + λ�Mx(i) = 0, pi ∈ M, (6)

where �M is the Laplace-Beltrami operator on M. pi is
the point on M corresponding to the i-th depth pixel. x , y
and c are the continuous functionals with x, y and c as their
discrete counterparts. For indexing, we write x(pi ) as x(i)
for simplification.

The Laplace-Beltrami operator in (6) is defined on con-
tinuousM, but the observations ofM is discrete and finite.
To solve (6), we adopt the point integral method (Li et al.,
2017) to approximate (6) with the following integral,

c(i)(x(i) − y(i)) + λ

∫

M
(x(i) − x( j))w(i, j)dp j

+ 2μλ

∫

∂M
(x( j) − y( j))w(i, j)c( j)dp j = 0, (7)

where ∂M is the boundary of M and the sparse input y
lie on ∂M. The third term is referred to as boundary term

Fig. 2 Depth completion comparison between GLR and WGLR: (a)
RGB image with green line indicating the locations of plotted depth
values in (e); (b) sparse input; (c, d) results of GLR and WGLR solu-
tions; (e) plots of depth values along the green dashed line in (a), where
GLR has about 1m offset with input, and WGLR well preserves input
(Color figure online)

with weight μwhich makes the sparse input values correctly
spread to neighboring pixels and gives much better recovery.
We then discretize (7) with

ci (xi − yi ) + λ

N∑

j=1

(xi − x j )wi, j

+ 2μλ

N∑

j=1

(x j − y j )wi, j c j = 0,∀i . (8)

However, the linear systems in (8) is asymmetric which
makes the numerical solver inefficient. Based on the smooth-
ness assumption of x and the local support of the weightwi, j ,
we replace x j with xi in the third term to achieve symmetry.
Assume y j is approximated with x j , (8) becomes

ci (xi − yi ) + λ

N∑

j=1

wi, j (xi − x j )

+ μλ

N∑

j=1

(c jwi, j + c jw j,i )(xi − x j ) = 0. (9)
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Fig. 3 Summary of key
concepts, where a blue arrow
pointing from block A to block
B means B is derived from A
(Color figure online)

By rewriting (9) in matrix form, the solution is expressed as

C(x − y) + λ(L + μLC + μCL)x = 0, (10)

which is equivalent to reweight the original graph Laplacian
L as L = L + μ(LC + CL) to give the solution

C(x − y) + λLx = 0. (11)

Hence we call this solution the weighted graph Laplacian
regularization, named WGLR for short.

3.2.3 Comparison Between GLR andWGLR

By comparingWGLR in (10) with GLR in (5), GLR drops an
non-negligible termμ(LC+CL)x thus suffers from the sam-
ple discontinuity, while WGLR corrects the boundary term
in (7) and enforces input preservation as shown in Fig. 2d.

3.2.4 Interpretation of WGLR

WGLR alleviates discontinuity by enlarging the weight for
high confidence samples, i.e., typically the depth samples.
Specifically, using the original L, when the samples are very
sparse, even if the summation of the difference between the
depth samples and its neighbors is large, it is overwhelmed by
the summation over invalid pixels. In this case, the continuity
is sacrificed in the optimization. On the other hand, when
using the weighted L, the weight for the summation over
depth samples gets enlarged, so the solution is enforced to
adhere to the input samples and alleviate the discontinuity. A
special case is when the samples are dense, i.e., C = I, then
L becomes the original L.

The key concepts are summarized in Fig. 3. The ques-
tion that remains is how to efficiently solve (11), which is
addressed as follows.

3.3 UnrolledWGLR Algorithm

Even if the linear system in (11) is sparse, symmetric and
positive definite and can be solved efficiently with conju-
gate gradient (CG) based approaches (Shewchuk, 1994), it is
still computationally expensive and cannot enable real-time

implementation. Therefore, to further speed up the algo-
rithm, we unroll the WGLR solution into iterative filtering
based on its anisotropic diffusion interpretation,which is effi-
ciently accomplished with layers of convolution. Algorithm
unrolling has also been used in image processing (Monga
et al., 2021), but we focus on anisotropic image completion
which has not been addressed. Detailed algorithm design is
as follows.

Let D and W denote the degree and adjacency matrices
of L, (11) is rewritten as

C(x − y) + λ(D − W)x = 0. (12)

The solution in (12) can be obtained with the diffusion
scheme by running the following solution procedure,

∂tx = g(�x)(C(y − x) − λ(D − W)x), x0 = y, (13)

where x0 is the initial state,� is the discrete Laplace operator
on the image grid, g(�x) is the diffusion coefficient as a
function of �x (Perona and Malik, 1990). We set g(�x) as
(C + λD)−1 to give,

∂tx = C(y − x) − λ(D − W)x
C + λD , (14)

leading to a geometry-driven diffusion that diffuses more at
pixelswith sharp discontinuitywhere elements inD are small
(Strong and Chan, 1996). Moreover, the diffusion diffuses
less at high-confidence pixels where elements inC are large.
By replacing ∂txwithxt+1−xt as done inCheng et al. (2018);
Liu et al. (2017), (14) becomes,

xt+1 − xt = C(y − xt ) − λ(D − W)xt

C + λD , (15)

xt+1 = Cy + λWxt

C + λD . (16)

From (16), we can see at each time step t , xt+1 is obtained
by the convolutional transform of xt with kernel specified
by W , followed by fusion with the initial state Cy. In the
convolution procedure, the input values get propagated to
the neighboring pixels defined by adjacency matrixW . With
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Fig. 4 Illustration ofUnrolledWGLR: one iteration ofWGLRexecutes
a convolutional transform and then linear fusion and thus can be recast
into a network layer; by stacking the layers together a deep network

is formed. The trainable parameters in the network are colored in blue
(Color figure online)

Algorithm 1 Unrolled Weighted Graph Laplacian Regular-
ization
Require: Sparse input depthwith noise corruption y and corresponding

confidence c, graph Laplacian matrix L, weight for GLR prior λ,
weight for boundary correction μ, iteration number T

Ensure: Dense output depth x
1: Reweight L with c and μ to obtain weighted graph Laplacian L =

L + μ(LC + CL)

2: Obtain corresponding W and D from L
3: Obtain the normalized affinity Ŵ with D−1W/λ

4: Initialize x0 = y
5: for t = 0 : T − 1 do
6: Transform xt with convolutional kernel Ŵ
7: Fuse with y via c as specified in (16) to update x(t+1)

8: end for

a larger λ, the output will be better aligned with the structure
specified byW . In the fusion procedure, given the confidence
C in the range [0, 1], if the input sample yi is highly reliable,
the output xt+1

i will preserve the corresponding sample.
To ensure stability of the diffusion, we normalized W

with Ŵ = D−1W/λ. By recurrently repeating the above
procedure, we obtain the solution to the optimization in (4)
enforcing input fidelity conditioned on its confidence. We
call this algorithm Unrolled WGLR, which is summarized in
Algorithm1 and illustrated in Fig. 4.

Relation toSPN-basedApproachesWith similar unrolling
algorithm, the GLR solution can be implemented with the
following diffusion scheme,

xt+1 = (Cy + λWxt )/(C + λD). (17)

If we use C = I, (17) boils down to CSPN (Cheng et al.,
2019). Therefore,WGLR solution improves over SPN-based
approaches in termsof input fidelity via (1) reweightinggraph
Laplacian matrix L which corrects boundary term of L so

that sparse input properly diffuses to neighboring pixels; (2)
considering input reliability C which prohibits propagation
of noisy input values. This is validated experimentally in
Sect. 5.

4 Network Design

In this section, the proposed unrolled WGLR algorithm is
integrated into deep learning framework to developHUGNet,
a high-performance yet interpretable network for depth com-
pletion. First, we describe the motivation for executing
unrolledWGLRalgorithmas a deep neural network. Thenwe
introduce the network design of hierarchical unrolledWGLR
that applies depth diffusion at multi-scales. Following that,
we discuss supportingmodules of spatial-variant graph learn-
ing and confidence estimation to provide structural guidance
and input conditioning for hierarchical unrolled WGLR.

4.1 Deep UnrolledWGLR

The unrolled WGLR algorithm in Sect. 3.3 is built upon
prior knowledge of data smoothness with respect to the
graph structure. Due to its interpretability as an anisotropic
diffusion process, the algorithm explicitly enforces input
constraints and enhances robustness to input corruption.
However, the challenges are how to learn accurate struc-
tural features for graph construction, and how to estimate
input confidence for prohibiting noisy input from spreading
to neighbors.

To address the above challenges, we execute each iteration
of unrolled WGLR as a convolutional transform and then
linear fusion, which is thus recast into a network layer; by
stacking the layers together forms a deep neural network
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Fig. 5 Overview of the proposed HUGNet consists of three mod-
ules: (1) hierarchical unrolled WGLR module for depth completion;
(2) spatial-variant graph learning module for graph Laplacian construc-

tion; (3) confidence estimation module for input confidence generation.
An input with size 256 × 256 is used for demonstration (Color figure
online)

where the trainable parameters in the network are colored in
blue as shown in Fig. 4. Specifically, the graph Laplacian L
and input confidence C corresponding to y are learnt from
neural networks. The deep network of unrolled WGLR is
named Deep Unrolled WGLR, which is then integrated as a
trainable module in the proposed network with a simplified
illustration in the green box shown in the lower-left of Fig. 5.

4.2 Network Architecture

The overview of the network is illustrated in Fig. 5, which is
composed of threemodules: (1) hierarchical unrolledWGLR
module for depth completion, where the encoder pre-filters
the sparse input to generate multi-scale dense depth and con-
fidence, and the decoder hierarchically diffuses the depth
via deep unrolled WGLR; (2) spatial-variant graph learning
module for graphLaplacian construction; (3) confidence esti-
mationmodule for semantic confidence generation. Next, we
will discuss the design motivation and detailed implementa-
tion for each module.

4.2.1 Hierarchical Unrolled WGLR

This is the fundamental module in the network which takes
the sparse depth and confidence as input and output the dense
depth. The unrolled WGLR is implemented in a hierarchi-
cal manner, where the encoder pre-filters the sparse input to
generatemulti-scale depth and confidence, while the decoder
hierarchically diffuses the depth via deep unrolled WGLR.
The last unrolledWGLR block outputs the final dense depth.
The structure and feature size are shown at the top of Fig. 5.

Encoder for Input Pre-filtering Although the sparse
depth and confidence are ready to be used in the unrolled
WGLR, using the sparse depth as the initial state requires
large number of iterations to reach the steady state in the
diffusion process. Therefore, to accelerate the diffusion con-
vergence, we pre-filter the sparse depth to generate dense
depthwith noise reduction andvalue-preserveddensification.
We adopt NConv layers (Eldesokey et al., 2019) to jointly
filter depth and confidence, which explicitly rectifies the dis-
turbed measurements with confidence-equipped convolution
layers, and removes the bias in NConv to satisfy the require-
ment for input preservation. As shown in Fig. 6b, the encoder
generates densified depth feature while preserving the input
values, which is consistent with the design purpose. Note
that the encoder feature is not required to be fully densified
because the depth diffusion mainly relies on the decoder.

Additionally, to provide input for hierarchical WGLR, a
multi-scale architecture based on U-Net (Ronneberger et al.,
2015) is adopted, and the depth feature y and confidence
C with corresponding scale are used as input for unrolled
WGLR blocks at the decoder.

Decoder forHierarchicalDiffusionWhenusingunrolled
WGLR at full resolution, the convergence is slow. More-
over, it is observed that the result is less smooth especially
in large input-invalid area. This is because the learnt graph
with localized connectivity is less effective in ensuring global
smoothness.

In light of this, single-scale unrolled WGLR is insuffi-
cient, which motivates us to adopt unrolled WGLR at four
different scales in a hierarchical manner as shown Fig. 5. The
depth is successively refined, where the WGLR output from
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Fig. 6 Visualization of encoder and decoder features in hierarchical unrolled WGLR module (Color figure online)

previous scale shown in Fig. 6c is used as x0 in the next scale.
Then with the learnt graph structureL, the decoder refines x0

conditioned on the encoder feature input y, and generates out-
put shown in Fig. 6d. In this way, global smoothness would
be corrected at small resolution, while detail enhancement
would take place at the full resolution.

4.2.2 Spatial-Variant Graph Learning

Thismodule extracts structural features fromRGBand sparse
depth images to estimate the multi-scale graph Laplacian L.
We emphasize that we do not limit the network architecture
for thismodule, andmore accurate fusion network for seman-
tic feature learning can be adopted. In this work, we adopt
the encoder-decoder structure built upon ResNet-34 back-
bone (He et al., 2016). The outputs of the decoder features
are fed into the graph construction layer, which outputs the
spatial-variant kernels to compute L connecting pixels in the
local 3 × 3 region. L at four scales are then used to enable
hierarchical unrolled WGLR.

4.2.3 Confidence Estimation

Along with the graph learning, the RGB-D fusion network
outputs the semantic confidence for sparse input depth. The
confidence is then fed into the NConv layer and pre-filtered
along with the sparse depth to provide C in the unrolled
WGLR as the corresponding confidence for input depth to
prohibit noise propogation.

4.3 Loss Function

For accurate prediction of dense depth map, we train our
network with the following loss function below supervised
by the ground truth depth as follows:

L(xgt, xpred) = 1

| V |
∑

v∈V
| xpredv − xgtv |p (18)

where xgt is the ground-truth depth, xpred is the final predicted
dense depth. xv and | V | denote the depth values at pixel

index v and the number of valid pixels, respectively. p is set
to 1 for l1 loss and 2 for l2 loss. Note that we do not have
any supervision on the confidence because there is no ground
truth; therefore, it is indirectly trained based on L .

5 Experiments

In this section, we experimentally validate the effectiveness
of the proposed HUGNet for depth completion via com-
parison with competing schemes on indoor NYUv2 dataset
(Silberman et al., 2012) and outdoor KITTI depth comple-
tion (KITTI-DC) dataset (Uhrig et al., 2017), with extra
focus on illustration of input preservation and noisy robust-
ness.We additionally verify the effectiveness of eachmodule
in HUGNet via ablation study. Furthermore, TetrasRGBD
dataset (Sun et al., 2023) is used to demonstrate performance
on noisy RGB-D data captured by mobile devices, show-
ing the potential of proposed scheme to support commodity
RGB-D cameras with low imaging quality.

5.1 Experiment Setting

Dataset We adopt NYUv2 dataset (Silberman et al., 2012)
and KITTI-DC dataset (Uhrig et al., 2017) for evaluation.
NYUv2 dataset (Silberman et al., 2012) contains images
collected from 464 different indoor scenes with Microsoft
Kinect. We use the official split of data, where 249 scenes
are used for training and the remaining 215 for testing, with
sample number in the sparse depth input set to 500. For train-
ing and testing, the input images are resized to 320×240 and
then center-cropped to 304× 228. KITTI-DC dataset (Uhrig
et al., 2017) is an outdoor dataset for autonomous driving,
which contains 85k color images and corresponding dense
annotated depth maps and sparse raw LiDAR scans for train-
ing, 6k for validation, and 1k for testing. The sparse LiDAR
scans are captured by the real LiDAR sensor with noise cor-
ruption (Geiger et al., 2012). We use the selected validation
set for evaluation in our experiment. For training, we crop
the first 100 rows of color and depth images (which have no
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corresponding ground-truth depth) and then randomly crop
color and depth images to 1216 × 240.

Training Details We use Adam optimizer with initial
learning rate set to 1e−3 anddecayed at epoch [10, 20, 30, 40]
with decay rate 0.5. We initialize the weights of the encoder
in graph learningmodulewithmodel pretrained on ImageNet
(Deng et al., 2009). The model is trained for 50 epochs using
l1 and l2 losses to balance RMSE and MAE. We implement
with PyTorch (Paszke et al., 2017) on 2 NVIDIA GeForce
RTX 3090 GPUs, and batch size for NYUv2 and KITTI-DC
is 16 and 6, respectively. For parameter setting, we set λ = 1,
μ = S/N which is the sampling rate with S as the input sam-
ple number. Iteration number is set empirically with T = 5
for WGLR at 1/2, 1/4, 1/8 scales and T = 10 for the last
WGLR block at full resolution.

EvaluationMetrics For quantitative evaluation, we adopt
the commonlyusedmetrics, includingRMSE,MAE, iRMSE,
iMAE, REL, δτ as used in Park et al. (2020):

• RMSE: root mean squared error

√
1

| V |
∑

v∈V
(dgtv − dpredv )2;

• MAE: mean absolute error

1

| V |
∑

v∈V
| dgtv − dpredv |;

• iRMSE: RMSE of inverse depth

√√√√ 1

| V |
∑

v∈V

(
1

dgtv

− 1

dpredv

)2

;

• iMAE: MAE of inverse depth

1

| V |
∑

v∈V

∣∣∣∣∣
1

dgtv

− 1

dpredv

∣∣∣∣∣ ;

• REL: mean absolute relative error

1

| V |
∑

v∈V

∣∣∣∣∣
dgtv − dpredv

dgtv

∣∣∣∣∣ ;

• δτ : percentage of pixels satisfying

max

(
dgtv

dpredv

,
dpredv

dgtv

)
< τ, τ ∈ {1.25, 1.252, 1.253}.

In addition, we focus on the accuracy at sample locations and
edge areas using the following metrics:

• SMAE: spot mean absolute error measuresMAE for pix-
els within 5×5 neighborhoodNS of the sample locations
S, which is computed as

1

| NS |
∑

v∈NS

| dgtv − dpredv | .

Lower SMAE value indicates better confidence-aware
input preservation and continuity around sample loca-
tions.

• EWMAE: edge weighted mean absolute error (Sun et al.,
2023) measures the weighted average of absolute error,
assigning larger weights to regions with larger depth dis-
continuity, which is computed as

(
∑

v∈V
gv | dgtv − dpredv |

) / (
∑

v∈V
gv

)
,

where gv denote the weight coefficient at pixel v com-
puted following (López-Randulfe et al., 2017). Lower
EWMAE value indicates more accurate structural details
preservation.

5.2 Comparison with State-of-the-Art Schemes

5.2.1 NYUv2 Dataset

The proposedHUGNet is comparedwith competing schemes
including Sparse-to-dense (S2D) (Ma and Karaman, 2018),
PNCNN(Eldesokey et al., 2020),NConvwithRGBguidance
using EncDec-Net (Eldesokey et al., 2019), CSPN (Cheng
et al., 2019), NLSPN (Park et al., 2020) and PENet (Hu et
al., 2021). S2D and PENet are pure data-driven methods,
PNCNN andNConv are representativemethods for networks
with prior knowledge to incorporate input constraints, CSPN
andNLSPNareGLR-basedmethodswith input replacement.

In real-world scenarios, the captured depth is highly likely
to be corrupted by noise. However, NYUv2 samples the
sparse depth from the ground-truth depth without noise cor-
ruption. Therefore, in addition to the original setting (Park et
al., 2020),we simulate corrupted sparse input depth to evalu-
ate performance of input fidelity under noise attack.Next, we
will describe the result comparison for the above two cases.

OriginalNYUv2To test existing schemes,we use the pre-
trained models provided by the authors, except for S2D and
PENet that did not provide NYUv2 pretrained models, so we
use the providedmodel structures and retrain themodels. Fol-
lowing (Park et al., 2020), we use the metrics of RMSE, REL
and δτ . The top part entitled “Original Setting” in Table 1
shows the quantitative comparison among different schemes
on original NYUv2 dataset and the proposed HUGNet out-
performs competing schemes.
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Fig. 7 Quantitative evaluation on NYUv2 dataset with different input noise settings, left for outlier level from 0.1 to 0.5; right for noise level from
0.1 to 0.5

Note that the advantage of HUGNet is less obvious in
this setting because the sparse input contains no noise thus
not realistic, making the task relatively easy and less mean-
ingful. This motivates us to evaluate the noisy setting closer
to real sensor data, which is more meaningful to reveal the
performance in real practice.

NYUv2 with Synthetic Noise According to the statis-
tical analysis of Time-of-Flight (ToF) depth sensor noise
Mufti and Mahony (2011), the noise distribution in ToF
depth approximates Gaussian distribution where the vari-
ance depends on the Signal-to-Noise ratio (SNR), except for
low-SNR regions where the depth values scatter across the
unambiguous range. Therefore, two types of noise are con-
sidered, (1) outliers with value randomly sampled from the
uniform distribution from 0 to 10ms and outlier ratio over
total number of pixels set to p; (2) additive white Gaus-
sian noise (AWGN) with standard deviation σ . To adopt the
models to noise, we retrain all the competing schemes as
well as HUGNet with noise data augmentation to enhance
noise robustness. That is, during training, we apply noise
corruption described above to the input sparse depth, where
p uniformly distributed from 0.0 to 0.3 and σ uniformly dis-
tributed from 0.0 to 0.3m.

In Table 1, we choose noise setting of outlier ratio p = 0.2
and AWGN σ = 0.2 as a median level of corruption for
testing. Furthermore, we simulate noise based on the statis-
tical analysis of TetrasRGBD (Sun et al., 2023) to generate
noise closer to real sensor noise. Specifically, we select pix-
els at certain distance ds from 1 to 7ms and compute the
error variance and outlier ratio (error larger than 3% depth
value). The statics show that the noise variance approxi-
mately increases linearly with distance, while the noise ratio
does not show a correlation with distance. Accordingly, we
include three types of noise: (1) AWGNwith distance-aware
variance σi = 0.0079+ 0.0118× di at i-th pixel with depth
di , and the coefficients are regressed from the noise statis-

tics; (2) outlier ratio p = 0.04 using themean value of outlier
ratios at different distances; (3) edge noise following the sup-
plementary of Barron and Malik (2013), where we replace
each pixel in the disparity map with the bilinearly interpo-
lated value of a location near that pixel, and the shift is drawn
from a normal distribution with σ = 0.5. The noise setting
is named Synthetic TetrasRGBD used for testing.

Since REL and δτ cannot distinguish performance, we
instead use MAE, iRMSE, iMAE, SMAE and EWMAE,
where we can see HUGNet outperforms other schemes in all
metrics. For example in the outlier setting, HUGNet reduces
iRMSE by at least 15.6% than competing schemes. Also,
HUGNet has the lowest SMAE and EWMAE, due to the uti-
lization of the reweighted graph Laplacian matrix to enforce
input preservation, and the use of confidence map to pro-
hibit propagation of noisy input and promote structural detail
fidelity.

Additionally, we have accordingly included the complex-
ity comparison in Table 1, showing the average running time,
FLOPs, and the parameter size. The runtime is tested on one
GeForce RTX 1080 Ti GPU. As shown in Table 1, the most
competitive method, i.e., NLSPN, consumes a higher run-
time, while HUGNet achieves higher accuracy at moderate
complexity with 43% runtime reduction.

To evaluate the generalization ability, we test with dif-
ferent levels of noise corruption using the same model.
Figure7 shows the RMSE results for HUGNet and compet-
ing schemes where p, σ ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. NConv,
CSPN, NLSPN are used for comparison as they show com-
petitive performance in Table 1. Our HUGNet outperforms
existing schemes with lower error at all noise levels, demon-
strating higher robustness to noise.

The results show that CSPN and NLSPN degrade when
noise attack is involved. This is because the adjacency matri-
ces are not corrected in SPN schemes which makes it hard
to adhere to the input, especially when the input is not
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Fig. 8 Depth completion with different algorithms, tested on NYUv2
sample data with outlier p = 0.2 (upper part), AWGN σ = 0.2 (mid
part), and synthetic TetrasRGBD noise (lower part). RMSE is shown
on top of each result image, and the error map of the selected patch is

enlarged and visualized in the green box. The proposed HUGNet out-
performs existing schemes with input consistency and noise robustness
(Color figure online)

smooth; moreover, they do not consider input confidence
during propagation, thus invulnerable to noise corruption.
Although NLSPN utilizes the confidence in the propagation,
the confidence map is to quantify the confidence of pre-
dicted initial dense depth, which does not necessarily reflect
the confidence of input sparse depth. For NConv, even if
input constraint is incorporated in the network, the accu-
racy is less satisfying since the model-based network design
limits its expressiveness in utilizing structural features from
RGBD fusion. In contrast, HUGNet shows more accurate

input fidelity as well as noise robustness, without sacrificing
of detail preservation.

This is further validated in visual comparison in Fig. 8,
where we show our depth completion results with out-
lier p = 0.2, noise σ = 0.2 and synthetic TetrasRGBD.
Pure data-driven S2D and PENet cannot preserve input, and
model-based PNCNN and NConv show blurry edges due
to limited model expressiveness. This is consistent with the
quantitative evaluation using SMAE and EWMAE shown in
Table 1, where S2D, PNCNN, NConv and PENet exhibit
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Table 2 Comparison of quantitative evaluation on KITTI-DC valida-
tion dataset among existing schemes

Method RMSE MAE iRMSE iMAE
(mm)↓ (mm)↓ (1/km)↓ (1/km)↓

PNCNN 1255.5 278.3 4.5 1.0

CSPN 1047.8 239.1 3.2 1.1

NConv 908.8 209.6 2.5 0.9

GAENet 813.8 245.1 2.6 1.2

DNormal 811.1 236.7 2.5 1.1

FusionNet 802.5 214.0 2.2 0.9

ACMNet 786.9 216.2 2.3 1.0

NLSPN 771.8 197.3 2.0 0.8

HUGNet 756.8 202.2 2.0 0.8

large SMAE and EWMAE values, indicating poor input
preservation and inaccurate edge details. CSPN, NLSPN
shows provide sharper depth details but suffer from dis-
continuity at sample locations due to the lack of boundary
correction in the adjacency matrices, e.g., on the flat wall in
Fig. 8, CSPN and NLSPN show uneven results, where the
error is large except for input locations. On the contrary,
for our proposed HUGNet, the input is properly diffused to
neighboring pixels enforcing input consistency and global
smoothness; moreover, the WGLR prior does not affect the
model expressiveness due to the design of deep unrolled
WGLR, thus the structural details are preserved.

Discussion on ConfidenceMapWe notice that the confi-
dencemap ismore effective in defendingoutlier thanAWGN.
In the lower part of Fig. 8, the confidence has much smaller

values at outlier pixels but does not vary much at pixels with
moderate AWGN noise. This is because confidence not only
depends on the reliability of input, but also the accuracy of
L in (4). If L provides accurate structural features of x, then
the optimization relies less on confidence for noise resistance.
Therefore in the case of moderate AWGN where noise can
be removed via the diffusion based on L, c does not show
strong correlation with input noise in Fig. 8.

5.2.2 KITTI-DC Dataset

For evaluationonKITTI-DC,weadditionally includeFusion-
Net (Van Gansbeke et al., 2019) and ACMNet (Zhao et al.,
2021) for pure data-drivemethods,DNormal (Xu et al., 2019)
and GAENet (Chen et al., 2022) for methods utilizing extra
constraints, and DySPN (Lin et al., 2022), RigNet (Yan et
al., 2022), MFFNet (Liu et al., 2023), CompletionFormer
(CFormer) (Zhang et al., 2023) and BEV@DC (Zhou et al.,
2023) which achieve state-of-the-art performance.

Tables 2 and 3 show the quantitative evaluation of our
HUGNet on KITTI-DC validation and online test dataset
with comparison with above mentioned competing schemes.
The values are those originally reported in their respective
papers. We have additionally included the complexity com-
parison in Table 3, including average running time (s) and
FLOPs (G) with 1216 × 352 input size, and parameter size
(M) of the model. Two types of runtime are provided. One
is “RT Online” quoted from the KITTI benchmark website.
For a fair comparison, we include “RT@1080Ti” which is

Table 3 Comparison of quantitative evaluation on KITTI-DC test dataset among existing schemes

Method RMSE MAE iRMSE iMAE RT Online RT@1080Ti FLOPs Params
(mm)↓ (mm)↓ (1/km)↓ (1/km)↓ (s)↓ (s)↓ (G)↓ (M)↓

CSPN (Cheng et al., 2019) 1019.64 279.46 2.93 1.15 1.00 – – –

NLSPN (Park et al., 2020) 741.68 199.59 1.99 0.84 0.22 0.159 1355 25.84

RigNet (Yan et al., 2022) 712.66 203.25 2.08 0.90 0.20 – – 65.00

DySPN (Lin et al., 2022) 709.12 192.71 1.88 0.82 0.16 – – 26.79

CFormer (Zhang et al., 2023) 708.87 203.45 2.01 0.88 0.12 0.214 1072 82.51

BEV@DC (Zhou et al., 2023) 697.44 189.44 1.83 0.82 0.13 – – –

PNCNN (Eldesokey et al., 2020) 960.05 251.77 3.37 1.05 0.02 0.023 109 0.67

NConv (Eldesokey et al., 2019) 829.98 233.26 2.60 1.03 0.02 0.014 356 0.36

DNormal (Xu et al., 2019) 777.05 235.17 2.42 1.13 0.10 – – 28.99

GAENet (Chen et al., 2022) 773.90 231.29 2.29 1.08 0.05 – – 4.19

FusionNet (Van Gansbeke et al., 2019) 772.87 215.02 2.19 0.93 0.02 – – 2.55

ACMNet (Zhao et al., 2021) 744.91 206.09 2.08 0.90 0.08 – 544 4.90

PENet (Hu et al., 2021) 730.08 210.55 2.17 0.94 0.03 0.144 816 131.92

MFFNet (Liu et al., 2023) 719.85 208.11 2.21 0.94 0.05 – – –

HUGNet 724.64 200.28 2.02 0.88 0.09 0.087 1359 26.67

The online methods are listed in the lower section while the non-online methods are listed in the upper section
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Fig. 9 Depth completion comparison with competing schemes on
KITTI-DC test set: a RGB input, b sparse depth input, results of c
NConv, d NLSPN, e proposed HUGNet and f confidence estimation

in HUGNet. On the left scene, HUGNet shows higher robustness to
depth-RGB mis-alignment; on the right scene, HUGNet shows better
input preservation (Color figure online)

tested on one GeForce RTX 1080 Ti GPU with source codes
released by the authors.

Similar to the evaluation in MFFNet (Liu et al., 2023), we
refer to methods faster than 10 Hz as online methods since
the sampling frequency of most LiDARs is 10 Hz (Geiger
et al., 2012). In Table 3, the methods are listed in order of
RMSE, where HUGNet achieves SOTA performance among
online methods. As compared to non-online works, HUGNet
achieves competitive results to RigNet (Yan et al., 2022)
with 55% reduced runtime.We acknowledge that HUGNet is
lower in accuracy than SOTA CFormer (Zhang et al., 2023)
and BEV@DC (Zhou et al., 2023), but with 59% speed-up
than CFormer, HUGNet enables online processing which is
vital for downstream tasks.

The proposed HUGNet shows competitive performance
among existing schemes due to the confidence-aware input
preservation, which is visually validated in Figs. 9 and 10.
Similar to results on NYUv2, NConv shows blurry edges,
while NLSPN provides sharper structural details but suffers
from input inconsistency and noise sensitivity. On the con-
trary,with deep unrolledWGLR,HUGNet not only preserves
input but also resists noisy input via confidence estimation
shown in Figs. 9f and 10h where the low confidence val-
ues prohibit noisy input from diffusing, but also preserves
structural details. In addition, in Fig. 10, we include the visu-

alization of the error maps of the sparse depth maps so as
to demonstrate the relation between the sparse input error in
Fig. 10g and the learned confidence in Fig. 10h. As shown
in Fig. 10, there is a strong correlation between input error
and the confidence, e.g., in the left column, the confidence in
Fig. 10h zeros out the values at the locations of the green input
samples in Fig. 10f, which are outliers due to RGB-D mis-
alignment along the object boundary. This explains how the
confidence map enhances the noise robustness of HUGNet.

5.3 Ablation Study

To better understand how HUGNet works, in the ablation
study as follows, we investigate the effect of each module in
the network, including the confidence estimation, the spatial-
variant graph learning, graphLaplacian re-weighting, and the
hierarchical architecture of unrolledWGLR. For quantitative
evaluation, we test with KITTI-DC validation set and results
are shown in Table 4. For all the variants of HUGNet, the
baseline model is the single-scale deep unrolled GLR and
the filter kernels are learnt from depth input without graph
Laplacian reweighting. The components to be investigated
are then added to the baseline.

Confidence Estimation via RGBD Fusion (FConf)
Based on how confidence is estimated in the baseline, we
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Fig. 10 Depth completion comparison with competing schemes on
KITTI-DCvalidation set: aRGB input, results of bNConv, cNLSPN,d
proposed HUGNet, eGT depth, sparse depth f input and g error, h con-

fidence estimation in HUGNet which reflect input reliability. HUGNet
shows higher robustness to noise corruption in sparse input (Color figure
online)

Table 4 Quantitative evaluation on KITTI-DC validation set for ablation study

Method Variants Metrics
FConf GLR WGL HUG RMSE MAE iRMSE iMAE

DConf 1180.3 268.5 3.4 1.1

FConf � 1053.4 259.2 3.0 1.0

FConf+GLR � � 847.5 220.5 3.2 1.0

FConf+WGLR � � � 796.4 210.9 2.2 0.9

FConf+GLR+HUG � � � 809.0 214.2 2.8 0.9

FConf+WGLR+HUG (HUGNet) � � � � 756.8 202.2 2.0 0.8

have two variants: one is estimating confidence from depth
with an UNet prefixed to the baseline similar to Eldesokey
et al. (2020), named DConf; one is estimating confidence
from the RGBD fusion network, named as FConf. As shown
in Table 4, FConf shows improvement in accuracy by learn-
ing a more accurate confidence with semantic RGBD fusion
features than with only depth features as shown in Fig. 11,
leading to a decrease of 126.9 mm in RMSE. Moreover, by

sharing weight with the graph learning module, FConf saves
the computational cost than DConf which involves an extra
network for confidence estimation. In the following variants,
the FConf module is adopted by default.

Graph Learning for GLR Solution (GLR) The spatial-
variant graph learning produces adaptive kernels for con-
structing graph Laplacian used in GLR solution, and the
variant is named as GLR.Without graph learning, the convo-
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Fig. 11 Evaluation of
confidence estimation module
with sample KITTI-DC data,
where the FConf learnt from
RGBD fusion generates more
accurate confidence than DConf
learnt from depth input. Depth
estimation in the green boxes are
enlarged and shown on the right,
and confidence maps are shown
on the left (Color figure online)

Fig. 12 Evaluation of graph learning and re-weighting graph Lapla-
cian with sample KITTI-DC data. With graph learning, (d) GLR and
(e) WGLR show sharper structural details than (c) FConf; with Lapla-
cian re-weighting, (e) WGLR further enhances continuity at sample
locations and robustness to input corruption than (d) GLR (Color figure
online)

lutional kernels are static for all pixels and learnt from depth
input only. With graph learning from RGBD fusion network,
GLR solution improves the accuracy by a largemargin shown
in Table 4, e.g., FConf+GLR outperforms FConf in RMSE
by 205.9 mm, showing much better edge accuracy in Fig. 12.

Re-Weighting Graph Laplacian (WGL) While GLR
does not enforce input preservation,WGLR is used to correct
boundary term of GLR to mitigate the input inconsistency
via re-weighting the graph Laplacian (WGL). As shown in
Table 4, FConf+WGLR outperforms FConf+GLR by 51.1
mm, which is visually validated in Fig. 12.

Fig. 13 Evaluation of hierarchicalWGLRwith sampleKITTI-DCdata,
where hierarchical WGLR shows enhanced global smoothness than
single-scale WGLR due to the use of multi-scale diffusion, especially
in large input-invalid area highlighted in white rectangles (Color figure
online)

Hierarchical Unrolled WGLR (HUG) The module of
Hierarchical Unrolled WGLR adopts deep unrolled WGLR
blocks in a hierarchical manner, which successively diffuses
the depth at multi-scale. FConf+WGLR+HUG in Table 4
is HUGNet, and the variants using HUG outperforms those
without HUG, e.g., RMSE of HUGNet is 39.6 mm less
than FConf+WGLR. Moreover, in Fig. 13, HUGNet enti-
tled “hierarchical WGLR” shows better smoothness than
FConf+WGLR entitled “single-scale WGLR”, validating
that hierarchical implementation promotes global smooth-
ness while maintaining local details.

Iterations and Scales in HUG Module In addition, we
provide an analysis of the impact of the scales and the corre-
sponding iteration numbers in hierarchical unrolled WGLR,
which we denote as Ts where s is the scale. The analysis of
s and Ts is based on the evaluation on NYUv2 test dataset.
Since there are substantial combinations of s and Ts settings,
we first examine the impact of T1 for full scale and T1/2 for
1/2 scale excluding other scales, then investigate the impact
of Ts for smaller scales. Specifically, we start with the two-
scale unrolledWGLR and set T1 to 6, 10, 14, 18 and T1/2 to 0,
3, 5, 7, and investigate their impact on performance. RMSE
values are plotted in Fig. 14 where we can see: 1) limited T1
(e.g., T1 = 6) is insufficient to diffuse the depth, resulting in
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Fig. 14 Impact of the number of iterations and scales on the prediction
RMSE on NYUv2 testset (Color figure online)

Table 5 Impact of scales on RMSE and complexity on NYUv2 testset

Scales Iterations RMSE (m) FLOPs (G)

1 [10 0 0 0 0] 0.0953 5.487

1/2 [10 5 0 0 0] 0.0930 2.011

1/4 [10 5 5 0 0] 0.0915 0.981

1/8 [10 5 5 5 0] 0.0913 0.494

1/16 [10 5 5 5 5] 0.0913 0.165

The FLOPs number is for the diffusion block at each scale including
graph learning module

poor RMSE; 2) larger T1 leads to performance convergence,
while larger T1/2 (e.g., T1/2 = 5, 7) fastens the convergence
and more importantly enhances the accuracy.

To balance the efficiency and effectiveness, we set T1 =
10, T1/2 = 5 respectively, based on which we further inves-
tigate the impact of multi-scale diffusion, and add scales of
1/4, 1/8 and 1/16 successively. Since the required iteration
number is related to the density of the input feature, we set
fewer iterations for smaller scales, i.e., Ts ≤ T1/2 = 5 for
s ≤ 1/2. Moreover, since the FLOPs number for diffusion
decreases linearly with the scales as shown in Table 5, so for
simplicity, we set Ts = 5 for s ≤ 1/2. The RMSE values
are shown in Table 5 where involving more scales enhances
the performance and the result converges at 1/8 scale, so we
include scales up to 1/8 input size. In sum, we set T1 = 10,
and Ts = 5 for s ∈ {1/2, 1/4, 1/8} for the experiments.

Network Structure for Graph Learning As mentioned
in Sect. 4.2.2, the model structure for spatial-variant graph
learning is not limited. Here we compare three typical net-
work structures, i.e., Res34-UNet used in HUGNet based
on ResNet, JCAT in CFormer (Zhang et al., 2023) based on
transformer, and ENet in PENet (Hu et al., 2021) based on
multi-branch fusion.

The HUGNet variants are trained with NYUv2 dataset
following the training strategies in the original papers. For

Res34-UNet and JCAT, we initialize the encoder with mod-
els pretrained on ImageNet (Deng et al., 2009), while ENet
is trained from scratch since no pretrained model is pro-
vided. The evaluation results are shown in Table 6 where
only Res34-UNet produces competitive results.

However, when we initialize Res34-UNet and JCAT with
the pre-trained models of NLSPN and CFormer trained
on NYUv2 dataset, JCAT shows improved accuracy while
Res34-UNet is not affected. This is because JCAT and ENet
are more difficult to train than Res34-UNet. This implies
that Res34-UNet possesses training stability and competi-
tive accuracy without the requirement of dedicated training
strategy. On the other hand, with dedicated training, more
sophisticated networks, such as those based on transformers,
have the potential to achieve superior performance.

The complexity comparison is included in Table 6, show-
ing the average running time tested on one GeForce RTX
1080 Ti GPU and the parameter size. While Res34-UNet
and JCAT both achieve state-of-the-art performance, Res34-
UNet reduced the runtime by 58.2%. Therefore, we choose
Res34-UNet as the backbone for HUGNet to balance accu-
racy and efficiency.

5.4 Evaluation onMobile Device

To demonstrate the generalization to real world practice, we
adopt the TetrasRGBD dataset (Sun et al., 2023) for testing
with real data captured by mobile devices, where the input
depth suffers from large sensor noise. TetrasRGBD provides
real data collected from a fixed camera equipped with cal-
ibrated RGB and ToF sensors. However, the corresponding
ground-truth depth maps are not provided, thus we use the
pretrained model using NYUv2 dataset with synthetic noise
augmentation.

For quantitative evaluation of the results, we adopt two
blind depth assessment metrics, Blind Depth Quality Metric
(BDQM) (Farid et al., 2015) and depth confidence measure
(DCM) (Conget al., 2016). InTable 7, the results forHUGNet
surpasses those of NConv and NLSPN. In addition, we show
visual comparison in Fig. 15 which is consistent with the
metric results. While NConv and NLSPN show uneven sur-
faces in the background of first row images, and inaccurate
estimation in large input-invalid areas in second and third
row images, the proposed HUGNet shows strong robustness
to noise and enhanced global smoothness due to the use of
hierarchical WGLR. Additionally, NLSPN shows disconti-
nuity highlighted in red rectangle in the second row,HUGNet
demonstrates better input preservation. This additionally val-
idates the generalization ability of HUGNet to real sensor
noise when trained with synthetic noise, showing the poten-
tial of HUGNet to support commodity RGB-D cameras with
low imaging quality.
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Table 6 Ablation study of
model structure for
spatial-variant graph learning
module tested on NYUv2
dataset

Backbone & Pretrain RMSE (m) MAE (m) Runtime (ms) #Params (M)

Res34-UNet w/ ImageNet (HUGNet) 0.0913 0.0348 18.55 26.67

Res34-UNet w/ NLSPN 0.0911 0.0348

JCAT w/ ImageNet 0.0933 0.0361 44.38 83.34

JCAT w/ CFormer 0.0904 0.0350

ENet from scratch 0.1132 0.0513 52.22 132.95

Table 7 Blind assessment of depth completion results on TetrasRGBD
dataset with real noise

Metric NConv NLSPN HUGNet

↑ BDQM 76.0 122.7 125.6

↑ DCM 0.2657 0.2747 0.2854

5.5 Limitations and FutureWorks

We have investigated the input preservation with noise
robustness, and the noise mainly refers to sensor noise and
RGB-D misalignment in areas within sensing range. Never-
theless, there are other types of “corruption” in sparse input,
e.g., large input-invalid area that is of low reflectance or out
of sensing range, then depth completion merely relies on
monocular RGB features. Though HUGNet is able to handle
large input-invalid area via hierarchical unrolled WGLR, the
accuracy is not justified due to the lack to ground-truth depth.
Therefore, for future study, the investigation will be devoted

to a more comprehensive processing of input corruption via
self-supervised learning or multi-view RGB input settings.

Moreover, the current graph learning module does not uti-
lize non-local neighborhoods,while existing schemes such as
NLSPN and DySPN utilize non-local neighbors to enhance
performance.Therefore, efficiently utilizingnon-local neigh-
bors in the WGLR will be our future direction.

6 Conclusion

In this paper, we proposeHierarchical DeepUnrolledWGLR
Network (HUGNet) for depth completion that enforces
input preservation and enhances noise robustness. Based
on continuous domain analysis, the weighted graph Lapla-
cian regularization (WGLR) solution is derived to solve
the depth completion optimization with input preservation.
Then WGLR solution is unrolled into iterative filtering via
its anisotropic diffusion interpretation, which is efficiently
implemented via convolutional transforms and integrated

Fig. 15 Depth completion with different approaches on TetrasRGBD
set, where HUGNet shows advantages in 1 global smoothness in the
background of first row images, 2 input preservation highlighted in red

rectangles of second row images, 3 accuracy in large input-invalid area
highlighted in green rectangles of third row images (Color figure online)
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into the deep learning framework as a trainable module.With
hierarchical unrolled WGLR, HUGNet is designed which
shows global smoothness and accurate structural detail, and
strong generalization ability that robustifies the network
against input corruption. Experimental results show that
HUGNet improves input preservation and noise robustness
over competing schemes in datasets with synthetic noise as
well as real sensor noise.
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