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Extracting local rotation invariant features is a popular method for the classification of rotation

invariant texture. To address the issue of local rotation invariance, many algorithms based on

anisotropic features were proposed. Usually a dominant orientation is found out first, and then

anisotropic feature is extracted by this orientation. To validate whether local dominant orientation is

necessary for the classification of rotation invariant texture, in this paper, two isotropic statistical

texton based methods are proposed. These two methods are the counterparts of two state-of-the-art

anisotropic texton based methods: maximum response 8 (MR8) and gray value image patch.

Experimental results on three public databases show that local dominant orientation plays an

important role when the training set is less; when training samples are enough, local dominant

orientation may not be necessary.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Texture analysis is a hot research topic in the fields of
computer vision and pattern recognition. It includes four funda-
mental problems: classifying texture images based on content
[1–4,34,35]; segmenting an image into regions with homoge-
neous texture [5]; synthesizing textures for computer graphics
[6]; and establishing shape information from texture cue [7].
Among them, texture classification has been widely studied
because of its wide range of applications, such as medical image
analysis [1], remote sensing [2], surface inspection [3], biometrics
[4] and plant image classification [34,35].

In the early stage, extracting statistical features to classify texture
images is the main stream. The representative methods include the
co-occurrence matrix method [8] and the filtering based methods [9].
Their classification results are good as long as the training and test
samples have identical or similar orientations. However, in real
situations, the rotations of textures could vary arbitrarily, severely
affecting the performance of the statistical methods and raising the
classification issue of rotation invariant texture.

To address the issue of rotation invariance, many algorithms
were proposed. Kashyap and Khotanzad [10] were among the first
researchers to study rotation-invariant texture classification by
utilizing a circular autoregressive model. After that, many other
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models were explored, including the multiresolution autoregres-
sive model [11], hidden Markov model [12], and Gaussian Markov
random field [13].

In general, there are three kinds of methods for the classifica-
tion of rotation invariant texture: computing global rotation
invariant features [14,15], extracting local rotation invariant
features [16–19], and global matching scheme with local rotation
variant features [20,21]. The local rotation invariant feature is
intuitive and simple, as it processes the image directly and does
not require complicated operations, such as thresholding [36] and
moment computation [37]. And it could get good results [16–19],
especially for small size images [14]. In Ojala et al. [16] proposed
to use the local binary pattern (LBP) histogram for the classifica-
tion of rotation invariant texture. LBP is a simple but efficient
operator to describe local image patterns. Using a group of filter
banks, Varma and Zisserman [17] proposed a statistical learning
based algorithm, namely maximum response 8 (VZ_MR8), with
which a rotation invariant texton library is first built from a
training set and then an unknown texture image is classified
according to its texton distribution. Later, Varma and Zisserman
[18,19] extended their work by proposing a new texton, VZ_Joint,
using image patch to represent features directly. Similar to
VZ_MR8, an image is classified by its texton distribution. LBP,
VZ_MR8 and VZ_Joint are three typical local rotation invariant
features, while their underlying local invariance is different: LBP
extracts an isotropic feature, as it does not consider any local
dominant orientation; VZ_MR8 and VZ_Joint select anisotropic
features, as VZ_MR8 defines a dominant orientation from six
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orientations and keeps the response at that orientation only,
while VZ_Joint finds a dominant orientation and aligns the local
patch by that orientation. To investigate whether local dominant
orientation is important for the classification of rotation invariant
texture, two operators, complex response 8 (CR8) and Joint_Sort
are proposed. These two operators could be regarded as the
counterparts of VZ_MR8 and VZ_Joint, as they own the same
framework of image classification and the only difference is how
to represent the local rotation invariant feature. In CR8, instead of
getting the maximal response among six orientations, average
and standard deviation of responses are computed and an 8-
dimensional complex feature is extracted. In Joint_Sort, without
finding a dominant orientation, intensity values of each radius in
a local patch are sorted in descending order, then these values are
concatenated together one radius by one radius to represent the
local patch. Since the same filters and feature extraction scheme
are used, it is relatively fair to evaluate the role of local dominant
orientation in texture classification. Based on three public texture
databases: Outex [22], CUReT [23] and UIUC [24], it is empirically
found that local dominant orientation may not be necessary for
the classification of rotation invariant texture when the training
set is enough.

The rest of the paper is organized as follows: Section 2 reviews
VZ_MR8 and VZ_Joint. Section 3 introduces the proposed CR8 and
Joint_Sort, and the dissimilarity metric. Section 4 reports the
experimental results on three representative texture databases.
Section 5 gives the conclusion and future work.
2. Review of VZ_MR8 and VZ_Joint

2.1. Review of VZ_MR8

The VZ_MR8 filter bank consists of 38 filters, which are shown
in Fig. 1. To achieve rotation invariance, the filters are implemen-
ted at multiple orientations and multiple scales. At each scale,
only the maximal response among the different orientations is
kept. The final response at each position is an 8-dimension feature
vector. After getting all 8-dimension feature vectors from a
training set, a texton library is learned by clustering. For a given
Fig. 1. The VZ_MR8 filter bank consists of a series of anisotropic filters (an edge

and a bar filter at 6 orientations and 3 scales), and 2 rotationally symmetric ones

(a Gaussian and a Laplacian of Gaussian) [17].
image, each position is assigned a texton by searching the closest
one from the trained library, and finally a statistical histogram is
built according to its texton distribution [17].

2.2. Review of VZ_Joint

Instead of using a filter bank to generate filter responses at a
point, VZ_Joint takes pixels by row and records raw pixel
intensities of an N�N square neighborhood around that point
to form a vector in an N2dimensional feature space. Similar to
VZ_MR8, a texton library is first built from a training set and then
an unknown texture image is classified according to its texton
distribution [18,19]. Fig. 2 shows the main difference between
VZ_MR8 and VZ_Joint.

To address rotation invariant issue, VZ_Joint finds a dominant
orientation of the patch and measure the neighborhood relative to
this orientation. And instead of using N�N square patch, the
neighborhood is redefined to be circular with a given radius [19].
3. Proposed CR8 and Joint_Sort

VZ_MR8 and VZ_Joint have shown good performance on
texture classification [17–19]. However, finding an accurate
dominant orientation is not a trivial issue for VZ_Joint. Further-
more, it takes time to compute the orientation especially when
the size of local patch is big. As a typical isotropic feature, LBP has
achieved success in texture classification [16], thus, it is intuitive
to develop isotropic features based on the framework of VZ_MR8
and VZ_Joint.

3.1. Feature extraction of CR8

As shown in Fig. 3, some local regions may have multiple
dominant orientations or no dominant orientations. One domi-
nant orientation may not be able to fully represent local char-
acteristics. And, there may contain different dominant
orientations in different patches of the same image. For example,
as illustrated in Fig. 4, there are two distinctive orientations in
each of the two patches; the angle difference between the two
orientations in (b) is different with the angle difference between
the two orientations in (c). Average and standard deviation of
filter responses for the same scale could convey more information
and they are rotation invariant. They were also proven to contain
discriminant and robust features for classification [25]. Thus, a
complex response is defined:
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where i is the imaginary unit, n is the convolution operation, � is
the multiply operation, and I is the input image. Fig. 5 shows an
example to illustrate VZ_MR8 and CR8. It is empirically found that
representing F7(x,y) and F8(x,y) as the imaginary parts could get
better results.

Similar to VZ_MR8, after getting an 8-dimensional complex
feature for each pixel, a texton dictionary is learnt from a training
set by clustering [17]. Before clustering, different weights could
be assigned for the real and imaginary parts of CR8, as it is found
that average and standard deviation of filter response could



Fig. 2. The main difference between VZ_MR8 and VZ_Joint. (The figure is copied from Ref. [19]).

Fig. 3. The top row shows 3 texture images. The central image patch (highlighted by red rectangle) is matched with an edge filter at all orientations. The magnitude of the

filter response versus the orientation is plotted in the bottom row. (The figure is copied from Ref. [17]). (a) Concrete (b)and (c).
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represent different properties of image and these values have
different discriminant abilities on different databases.

CR8 x,yð Þ ¼wr � real CR8 x,yð ÞÞþwi � i� imagery CR8 x,yð ÞÞðð ð4Þ

where wr and wi are two weights for the real and imaginary parts.
These two weights are set empirically.

Following [17] and motivated by Weber’s law [26], a prepro-
cessing step is used to lead to better classification results. CR8 x,yð Þ
at each pixel is normalized as:

FðCR8ðx,yÞÞ’FðCR8ðx,yÞÞ½logð1þLðCR8ðx,yÞÞ=0:03Þ�=LðCR8ðx,yÞÞ

ð5Þ

where LðCR8ðx,yÞÞ ¼ :FðCR8ðx,yÞÞ:2 is the magnitude of the filter
response vector at that pixel.

Then, k-means clustering [27] is used to learn the CR8
dictionary. For a given image, the 8-dimensinal feature of each
pixel is labeled by the closest texton in the dictionary; finally a
histogram representing the frequency of each texton is built as
the feature for classification.

3.2. Feature extraction of Joint_Sort

It is not a trivial issue to find an accurate orientation for
VZ_Joint. More importantly, it is time consuming to get the
orientation when the size of local patch is big. Recently, Khellah
[28] found that intensity value alone plays more important roles
in describing a local structure. Based on this finding, an isotropic
local patch method, Joint_Sort, is proposed.

For a given local patch, the center of the local patch is defined
as the origin of a coordinate. The intensity values are sampled on
circles of various radiuses based on the origin. If a point is not in
the image grid, its value can be estimated by interpolation. For a
patch of size 7�7, 4 circles (R¼0–3, R is the radius of circles) are
used to cover the whole region. Then, the intensity values of each
circle are sorted separately in descending order. Finally, a feature
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Fig. 4. The top row shows 1 texture image. Two image patches (highlighted by red rectangles) are matched with a bar filter at all orientations. The magnitude of the filter

response versus the orientation is plotted in the bottom row.

Fig. 5. An illustration of VZ_MR8 and CR8.
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Fig. 6. An illustration of VZ_Joint and Joint_Sort. Here, structure tensor is used to find the dominant orientation [31].

Z. Guo et al. / Neurocomputing 116 (2013) 182–191186
vector is constructed by concatenating sorted values of each circle
from the innermost circle and moving up to the outermost circle.
Fig. 6 shows an illustration of Joint_Sort and VZ_Joint.

Similar to CR, a preprocessing step defined as Eq. (5) is applied
for vector normalization and k-means clustering algorithm is used
to build the texton library.

3.3. Dissimilarity metric

The dissimilarity of sample and model histograms is a test of
goodness-of-fit, which can be measured with a nonparametric
statistic test. There are many metrics for evaluating the fit
between two histograms, such as histogram intersection, log-
likelihood ratio, and chi-square statistic [16]. In this study, a test
sample S was assigned to the class of model M that minimizes the
chi-square distance:

D S,Mð Þ ¼
XL

l ¼ 1

Sl�Mlð Þ
2

SlþMl
ð6Þ

where L is the number of bins. Sl and Ml are the values of the
sample and model images at the lth bin, respectively. Here, we
use the nearest neighborhood classifier with chi-square distance
as it is equivalent to the optimal Bayesian classification [29] and
shows good performance for texture classification [30].
4. Experimental results

To evaluate the effectiveness of the proposed methods, we
carried out a series of experiments on three large and compre-
hensive texture databases: the Outex database [22], which
includes 24 classes of textures collected under three illuminations
and at nine angles, the Columbia–Utrecht Reflection and Texture
(CUReT) database, which contains 61 classes of real-world tex-
tures, each imaged under different combinations of illumination
and viewing angle [23], and University of Illinois at Urbana-
Champaign (UIUC) database [24], which includes 25 classes, and
there are 40 images collected under significant viewpoint varia-
tions for each class.

The typical isotropic feature, LBP, is compared with VZ_MR8,
VZ_Joint and the proposed methods. In the following experiments, for
LBP, each texture sample was normalized to have an average
intensity of 128 and a standard deviation of 20 [16]. For VZ_MR8,
VZ_Joint, CR8 and Joint_Sort methods, the image sample was normal-
ized to have an average intensity of 0 and a standard deviation of 1
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[17–19]. This is to remove global intensity and contrast [16–19]. To
get better results, multiscale scheme is used for the LBP method [16].
For VZ_Joint, the largest eigenvector of structure tensor is defined as
the dominant orientation [31]. 7�7 local patch (49 dimensions) is
used for VZ_Joint and Joint_Sort. Although large size patch could get
better recognition accuracy, it is more time consuming [19] and the
main focus of this work is to investigate the effect of local dominant
orientation. The Chi-square dissimilarity defined in Section 3.3 and
the nearest neighborhood classifier were used for all methods here.

4.1. Experimental results on Outex database

This section reports the experimental results on two test suites of
Outex: Outex_TC_00010 (TC10) and Outex_TC_00012 (TC12). These
two test suites contain the same 24 classes of textures as shown in
Fig. 7. Each texture class was collected under three different
illuminants (‘‘horizon’’, ‘‘inca’’ and ‘‘t184’’) and nine different angles
of rotation (01, 51, 101, 151, 301, 451, 601, 751 and 901). There are 20
non-overlapping 128�128 texture samples for each class under
each setting. The experimental setups are as follows:
1.
 For TC10, the classifier was trained using samples of illumi-
nant ‘‘inca’’ and 01 angle in each texture class and the classifier
was tested using the other eight angles of rotation, under the
same illuminant. There are a total of 480 (24�20) models and
3840 (24�8�20) validation samples.
2.
 For TC12, the classifier was trained with the same training
samples as TC10 and tested with all samples captured under
illuminant ‘‘t184’’ or ‘‘horizon’’. There are a total of 480
(24�20) models and 4320 (24�20�9) validation samples
for each illuminant.

In this database, 40 textons are clustered from each of the
texture classes using the training samples, and then a histogram
is computed based on the 960 (40�24) textons for each model
and sample image.
Fig. 7. Samples of the 24 tex
Table 1 lists the experimental results by different schemes. Under
TC12, ‘‘t’’ represents the test setup of illuminant ‘‘t184’’ and ‘‘h’’
represents ‘‘horizon’’. Here, wr and wi are set to 0 and 1 empirically.

Three findings could be found from Table 1. First, CR8 could
get comparable results with VZ_MR8. CR8 and VZ_MR8 could get
same accuracy for TC10 data set, while when the illumination
changes, CR8 is a little inferior to VZ_MR8 as shown in TC12 test.

Second, Joint_Sort is more illumination sensitive than VZ_Joint.
Joint_Sort is better than VZ_Joint in TC10 test, while it is worse
than VZ_Joint in TC12 test. It shows that when the illumination is
fixed, intensity value itself plays more important roles. Thus,
Joint_Sort is more suitable for applications with fixed illumina-
tion, such as fabric defect detection [32]. Although VZ_Joint could
get better results than Joint_Sort, it is time consuming in feature
extraction, as estimating local dominant orientation by structure
tensor [31] takes time. The algorithms are implemented using
Matlab R2010a on a Windows XP, E2160 CPU (1.8 GHz) and 2 G
RAM PC. For a 128�128 image, VZ_Joint takes about 280 s, while
Joint_Sort spends 5 s only on feature extraction.

Third, CR8 and VZ_MR8 get better results than LBP for TC12
test set, but they are worse than LBP in TC10. It is probably
because of the fact that LBP has finer orientation resolution (151
when P¼24) than CR8 and VZ_MR8 (301), so it could get better
performance when there is only rotation variance. However,
when the illumination changes like TC12, LBP is too short to
contain enough discriminant information.

4.2. Experimental results on CUReT database

The CURet database contains 61 textures, as shown in Fig. 8, and
there are 205 images of each texture acquired at different view-
points and illumination orientations. There are 118 images which
have been shot from a viewing angle of less than 601. Of these 118
images, we selected 92 images, from which a sufficiently large
region could be cropped (200�200) across all texture classes [17].
To get statistically significant experimental results [19], L training
tures in TC10 and TC12.
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images are randomly chosen from each class while the remaining
92-L images are used as the test set. The first 23 images of each
class are used to learn the library and 40 textons are clustered from
each of the texture classes. The average accuracy and standard
deviation over 1000 randomly splits are listed in Table 2. Here, wr

and wi are set to 1 and 1 empirically for CR8.
Similar findings could be found in Table 2. First, CR8 could get

comparable results with VZ_MR8. Second, Joint_Sort could get
comparable results with VZ_Joint when the number of training
sample is large. As L decreases, Joint_Sort is worse than VZ_Joint.
However, Joint_Sort is much faster on feature extraction. By the
same hardware as mentioned in Section 4.1, Joint_Sort takes 27 s,
while VZ_Joint spends about 717 s to build a texton histogram for
one image in CUReT database.

4.3. Experimental results on UIUC database

The UIUC texture database [24] includes 25 classes and 40
images in each class. The resolution of each image is 640�480.
Table 1
Classification rate (%) for Outex database.

Method Feature size TC10 TC12‘‘t’’ TC12‘‘h’’

LBPriu2
8,1 þLBPriu2

16,2þLBPriu2
24,3

54 97.21 89.21 84.32

VZ_MR8 960 94.06 92.61 93.31

CR8 960 94.06 92.31 92.80

VZ_Joint 960 98.51 97.45 98.35

Joint_Sort 960 99.19 94.88 96.82

Fig. 8. Textures from the Columbia–Utrecht database. In this work, all images are conver
The database contains materials imaged under significant view-
point variations as shown in Fig. 9. To assess classification
performance, L training images are randomly chosen from each
class while the remaining 40-L images are used as the test set. The
first 10 images of each class are used to learn the library and 100
textons are clustered from each of the texture classes. The average
accuracy and standard deviation over 1000 randomly splits are
listed in Table 3. Here, wr and wi are set to 1 and 1 empirically
for CR8.

Three findings could be found in Table 3. First, CR8 is a little
worse than VZ_MR8 in this database. Second, Joint_Sort
could get comparable results with VZ_Joint, but the former is
much faster than the latter. Joint_Sort spends 220 s while
VZ_Joint takes 6235 s on feature extraction for one image. Third,
because this database contains big affine and scale variation,
rotation and gray level invariant based LBP method could not get
good results.
5. Conclusion

To achieve rotation invariance, extracting local isotropic and
anisotropic features are two popular methods. Few studies have
compared different ways to see which way is more suitable for
texture classification. As the counterparts of VZ_MR8 and VZ_Joint,
two local isotropic operators, CR8 and Joint_Sort are proposed. By
three large public databases, it is empirically shown that local
dominant orientation provides useful information for rotation invar-
iance. However, when the training set is big enough, local dominant
ted to monochrome so colour is not used to discriminate between different textures.



Table 2
Classification rate (%) for CUReT database.

Method Feature size L

46 23 12 6

LBPriu2
8,1 þLBPriu2

16,3þLBPriu2
24,5

54 95.8470.82 91.9671.39 86.4172.05 78.0973.33

VZ_MR8 2440 98.6870.52 96.4171.08 92.2872.07 85.0173.51

CR8 2440 98.6270.59 96.3571.25 92.0872.26 84.8973.56

VZ_Joint 2440 97.5170.75 94.2771.63 89.0072.66 80.2273.93

Joint_Sort 2440 96.9370.95 93.0071.92 86.2873.11 76.2474.16

Fig. 9. Samples of the 25 textures in UIUC Database.

Table 3
Classification rate (%) for UIUC database.

Method Feature size L

20 15 10 5

LBPriu2
8,1 þLBPriu2

16,3þLBPriu2
24,5

54 76.8871.87 72.9171.92 66.6671.98 55.2572.07

VZ_MR8 2500 94.6871.00 93.2871.01 90.5471.22 83.7171.74

CR8 2500 93.5971.07 91.6771.07 88.3571.27 80.7171.73

VZ_Joint 2500 93.4771.04 92.0071.06 89.3571.19 82.8771.77

Joint_Sort 2500 92.7370.99 91.0371.07 88.2771.28 81.7971.87
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orientation may not be necessary. It is mainly because value and local
dominant orientation contain complementary information, when
there are enough and comprehensive training sets, value alone could
provide enough discrimination for classification. Especially, for fixed
environment or real time applications, isotropic feature is more
suitable.

As a counterpart of VZ_Joint, the idea of the proposed Join-
t_Sort could be extended to other local patch based methods, such
as VZ_MRF and VZ_Neighborhood [18,19]. In the future we will
investigate the correlation between CR8 and VZ_MR8, Joint_Sort
and VZ_Joint to further improve recognition accuracy through
their fusion. Another direction is to investigate histogram varia-
tion for classification [33].
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tion invariant texture classification with local binary pattern, IEEE Trans.
Pattern Anal. Mach. Intell. 24 (7) (2002) 971–987.

[17] M. Varma, A. Zisserman, A statistical approach to texture classification from
single images, Int. J. Comput. Vision 62 (1–2) (2005) 61–81.

[18] M. Varma, and A. Zisserman, Texture classification, are filter banks neces-
sary? International Conference on Computer Vision and Pattern Recognition,
pp. 691–698, 2003.

[19] M. Varma, A. Zisserman, A statistical approach to material classification using
image patch examplars, IEEE Trans. Pattern Anal. Mach. Intell. 31 (11) (2009)
2032–2047.

[20] T. Ahonen, J. Matas, C. He, and M. Pietikäinen, Rotation invariant image
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