4788

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 32, NO. 7, JULY 2022

MOFISsr am: A Multi-Object Semantic SLAM
System With Front-View, Inertial, and
Surround-View Sensors for Indoor Parking

Xuan Shao™, Lin Zhang™, Senior Member, IEEE, Tianjun Zhang, Ying Shen™, Member, IEEE,
and Yicong Zhou™, Senior Member, IEEE

Abstract—The semantic SLAM (Simultaneous Localization
And Mapping) system is a crucial module for autonomous
indoor parking. Visual cameras (monocular/binocular) and IMU
(Inertial Measurement Unit) constitute the basic configuration
to build such a system. The performance of existing SLAM
systems typically deteriorates in the presence of dynamically
movable objects or objects with little texture. By contrast,
semantic objects on the ground embody the most salient and
stable features in the indoor parking environment. Due to their
inabilities to perceive such features on the ground, existing SLAM
systems are prone to tracking inconsistency during navigation.
In this paper, we present MOFISg1 An, @ novel tightly-coupled
Multi-Object semantic SLAM system integrating Front-view,
Inertial, and Surround-view sensors for autonomous indoor
parking. The proposed system moves beyond existing semantic
SLAM systems by complementing the sensor configuration with
a surround-view system capturing images from a top-down
viewpoint. In MOFISgy oM, apart from low-level visual features
and inertial motion data, typical semantic objects (parking-slots,
parking-slot IDs and speed bumps) detected in surround-views
are also incorporated in optimization, forming robust surround-
view constraints. Specifically, each surround-view feature imposes
a surround-view constraint that can be split into a contact term
and a registration term. The former pre-defines the position
of each individual surround-view feature subject to whether it
has semantic contact with other surround-view features. Three
contact modes, defined as complementary, adjacent and coincident,
are identified to guarantee a unified form of all contact terms. The
latter further constrains by registering each surround-view obser-
vation and its position in the world coordinate system. In parallel,
to objectively evaluate SLAM studies for autonomous indoor
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parking, a large-scale dataset with groundtruth trajectories is
collected, which is the first of its kind. Its groundtruth trajec-
tories, commonly unavailable, are obtained by tracking artificial
features scattered in the indoor parking environment, whose
3D coordinates are measured with an ETS (Electronic Total
Station). The collected dataset has been made publicly available
at https://shaoxuan92.github.io/MOFIS.

Index Terms—Semantic SLAM, surround-view
autonomous indoor parking, groundtruth trajectory.

system,

I. INTRODUCTION

N ORDER to realize fully autonomous indoor parking,

a SLAM (Simultaneous Localization And Mapping) sys-
tem is indispensable. It aims to create three-dimensional
representations of an unknown environment and track the
location of the vehicle during navigation with a strong focus
on real-time operation. There are different approaches to
this task according to the parking environment. In an out-
door parking environment, since a highly reliable information
source like GPS (Global Positioning System) is available,
the additional dependence of other on-board sensors of the
vehicle could be decreased in SLAM systems for outdoor
parking. As the differential GPS can provide high-precision
vehicle localization results in the outdoor environment, the
autonomous parking system only needs to transform the
coordinates of parking-slots into the same coordinate sys-
tem of GPS. As the poor coverage of satellite signals
caused by occlusions weakens the performance of GPS-based
approaches, a SLAM system for indoor parking is normally
built simply with the on-board sensors of the vehicle. In this
article, we focus on SLAM studies for the indoor parking
environment.

Various advanced SLAM systems [1]-[5] in this field have
already attained satisfactory performance based on different
sensor modalities including camera, IMU (Inertial Measure-
ment Unit) and laser scanner, efc. Particularly, VI-SLAM
(Visual-Inertial SLAM) systems with visual cameras and
IMUs, have gained considerable popularity in the past decade
due to inherently complementary properties of these two
sensor modalities. While an IMU is responsive in short-
term dynamics, one camera provides rich and consistent
exteroceptive information for long-term navigation. Specifi-
cally, an IMU measures the motion of the vehicle in the
environment lacking of enough textures for visual tracking,
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whereas the camera offers consistent visual observations to
reduce trajectory bias of IMU motion data with lower price and
simplicity to calibrate. The VI-SLAM systems [6], [7] can be
expected to surpass the state-of-the-art visual SLAM systems
in universality and robustness in different kinds of environ-
ments. However, the performance of these VI-SLAM systems
usually deteriorates in the presence of illumination changes
and repetitive patterns. Moreover, they construct maps merely
with geometric information, failing to provide any high-level
semantic understanding essential for autonomous indoor park-
ing. In order to acquire a semantic understanding of their
surrounding environment, the semantic SLAM systems attempt
to incorporate semantic information to build meaningful maps
that have both metric (orientation, position) and semantic
(cars, people, efc.) representations of the scene. While existing
semantic SLAM systems have been successfully demonstrated
in specific circumstances, unexpected changes of surroundings
would probably degrade the quality of the generated map
and even lead to tracking failure. For instance, the presence
of dynamics in the environment [8], like a moving car or
pedestrian, might corrupt the quality of the state estimation by
deceiving feature association in SLAM systems. Nevertheless,
semantic objects on the ground (parking-slots, speed bumps
and parking-slot IDs) are stable and salient features for the
specific application scenario of autonomous indoor parking,
exhibiting strong semantic consistency. Unfortunately, thus far,
few eminent semantic SLAM systems have fully explored
these features. Additionally, a large-scale benchmark dataset
with groundtruth trajectories is a must for objective evaluation
of different SLAM systems. Due to a lack of GPS signal in
the indoor parking environment, the groundtruth trajectories
are commonly unavailable in current datasets for autonomous
indoor parking.

As mentioned above, in the field of autonomous indoor
parking, a highly mature, reliable SLAM system and an
appropriate benchmark dataset are still lacking. In this paper,
we attempt to address these issues by developing a semantic
SLAM system, namely MOFISgsy am (a Multi-Object semantic
SLAM system with Front-view, Inertial, and Surround-view
sensors) and constructing a large-scale dataset for indoor
parking. The proposed SLAM system is deployed on an
electric car. The sensor configuration of the car comprises two
sensor modalities, the perception sensor and the navigation
sensor. The perception sensor provides the perception of the
surrounding environment and motion data is given by the
navigation sensor. Specifically, the perception sensor consists
of a front camera and a surround-view system with four
fisheye cameras mounted around the vehicle. The navigation
sensor consists of an IMU, providing temporally synchronized
navigation data reflecting the motion of the vehicle. As seen
in Fig. 1, five brackets were customized to fix the front-view
camera and four fisheye cameras in the surround-view system,
respectively. The orientation of each fisheye camera is about
45 degrees ground-oriented, capturing images of the ground
around the vehicle. The front-view camera was fixed higher
than the front-view camera in the surround-view system, facing
straight ahead to ensure a broad view. All the sensors were
connected to a lap-top with an Intel (R) Core (TM) i7-6700HQ
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Fig. 1. Sensor setup of our MOFISg oM. The sensor configuration of the car
consists of a front-view camera, an IMU and four fisheye cameras forming
a surround-view camera system to provide a surround-view image. All the
sensors were connected to a lap-top with an Intel (R) Core (TM) i7-6700HQ
CPU, 16 GB memory and an Nvidia (R) Quadro (R) M1000M GPU via a
USB 3.0 hub.

Visual

Constraint

Low-level
Visual Features

IMU
Constraint

Surround-view
Constraint

aef

Surround-view

Semantic Features

Fig. 2. The architecture of MOFISg; oM. Front-view low-level visual
features, motion data from IMU, and semantic features (parking-slots, speed
bumps, parking-slot IDs) in the surround-views are collectively combined,
providing both accurate localization and semantic mapping result. Top view
of the map built by MOFISg; oM is shown on the right side of the figure.
Parking-slot IDs are omitted for display.

CPU, 16 GB memory and an Nvidia (R) Quadro (R) M1000M
GPU via a USB 3.0 hub.
Our main contributions can be summarized as follows:

(1) We propose a tightly-coupled semantic SLAM sys-
tem MOFISgp oM, leveraging front-view, inertial, and
surround-view sensor modalities, specially for the task
of autonomous indoor parking as illustrated in Fig. 2.
MOFISspaMm is the first VI-SLAM system attempting to
make full use of various semantic objects detected in
surround-views. Because of the integration of surround-
view objects, the constructed map carries crucial semantic
information that facilitates both intuitive visualization
and high-level understanding of the surrounding environ-
ment. It has to be noted that MOFISsp am is designed
for autonomous parking in an indoor environment that
lacks the GPS data source. It merely relies on the
on-board sensors of the vehicle to achieve accurate local-
ization results. For autonomous parking in an outdoor
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environment, a more mature, stable and low-priced
scheme is usually adopted. As the differential GPS can
provide high-precision localization results in the outdoor
environment, there is no need for a front-view camera or
even an IMU.

(2) In MOFISspam, common salient objects (parking-slots,
speed bumps and parking-slot IDs) extracted from
surround-views ensure the tracking consistency over the
long-term navigation. These objects are exploited in
optimization to form a robust surround-view error term
with both prior and observational constraints. Specifi-
cally, three contact modes among surround-view features,
adjacent, complementary and coincident, are identified to
guarantee a unified form of the prior constraints for all
surround-view features. We experimentally validate that
the proposed optimization strategy enables both higher
localization accuracy and semantically meaningful scene
representations (Please refer to Sect. VII for details).

(3) To fairly and objectively evaluate the performance of
various SLAM systems developed for autonomous indoor
parking, we establish a large-scale benchmark dataset
with available groundtruth trajectories, which is the first
of its kind. In this dataset, the groundtruth trajectories
during navigation are obtained by tracking artificial fea-
tures scattered in the indoor parking environment, whose
coordinates are recorded in a surveying manner with a
high-precision ETS (Electronic Total Station). The dataset
has been publicly available to the research community at
https://shaoxuan92.github.io/MOFIS.

The results of this manuscript were partially reported in ACM
MM 2020 [9]. The following improvements are made in this
version. 1) We present a unified optimization framework,
in which semantic surround-view landmarks of any types
can be modeled and exploited, not limited to parking-slots,
parking-slot IDs and speed bumps. Qualitative and quantitative
experiments corroborate the superiority of the proposed frame-
work compared with its counterpart in [9]. 2) We propose an
effective yet cost-efficient groundtruth trajectory acquisition
approach simply with a mild intervention of the indoor park-
ing environment. Specifically, the groundtruth trajectories are
obtained by tracking AprilTags pasted on walls/pillars, whose
coordinates are measured with an ETS. 3) In order to facilitate
SLAM studies for autonomous indoor parking, we estab-
lish a large-scale benchmark dataset comprising synchronous
multi-sensor data collected from a typical indoor parking site.
With the proposed groundtruth trajectory acquisition scheme,
the groundtruth trajectories are also provided in the dataset.
One point needs to be noted is that without the groundtruth
trajectories, the performance evaluation of SLAM systems
would not be so reliable. The collected dataset is now publicly
released to benefit the other researchers.

The remainder of this paper is structured as follows.
Sect. II summarizes the related work. The overall framework
of MOFISsram is presented in Sect. III. Details for system
implementation, sensor calibration and the collected dataset
are introduced in Sect. IV, Sect. V and Sect. VI, respectively.
The experimental results are reported in Sect. VII and finally,
Sect. VIII concludes the paper.
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II. RELATED WORK

A. Scene Representation for Autonomous Parking

Recent years have witnessed a growing interest in
developing scene representation approaches [10]-[15].
Gao et al. proposed a three-step pipeline to achieve scene
reconstruction by merging images and laser scans in a
coarse-to-fine manner [10]. Michailidis er al. developed a
novel customized hardware-based reconstruction architecture
for time-critical applications [11]. Kim et al. presented a
multi-view segmentation-based framework for separately
reconstructing background and foreground [12]. However,
since these approaches fail to build the semantic map
of the scene in real time, they cannot be applied to the
autonomous parking task. As an attempt to solve the above
issue, researchers resort to road markings (signs marked
on the road) towards developing VI-SLAM systems for
autonomous driving. Typically studied road markings include
lane lines, curbs, markers, efc. Compared with traditional
features, road markings are distinct and fairly abundant
on the road whose detection is less susceptible to lighting
changes [16], [17]. Schreiber et al. [13] proposed a system to
incorporate markers and curbs detected online for the precise
localization and mapping. Since their system determines the
current localization by matching these road markings with
a prior map built by extended sensor setups (laser scanner
and GPS unit, etc.), its localization accuracy is limited by
the map accuracy. In [14], Ranganathan et al. incorporated
distinct road markings to perform pose estimation by solving
a windowed bundle adjustment problem. In their work, the
pose was estimated based on the premise that road markings
are standardized and their sizes are fixed and known, and
thus the main limitation of Ranganathan er al.’s approach
is the high ambiguity caused when the markings and the
lanes have similar shapes and repetitive patterns. A more
appealing scheme, RoadSLAM, was presented in [15] by
Jeong et al., where only the distinguishable road markings
with informative features classified by the random forest
were used in both localization and loop detection modules.
Unfortunately, Jeong er al. mentioned that their system was
sensitive to the shadow of surrounding objects in some cases.

To address the instability of aforementioned SLAM sys-
tems, panoramic surround-view images with metric scale are
utilized in recent SLAM studies [9], [18]. The surround-
view image is stitched by four bird’s-eye view images from
a surround-view system [19]. In one surround-view image,
semantic objects on the ground can be stably and consis-
tently detected despite of changing perspectives and lighting
conditions. Zhao et al. detected parking-slots in the surround-
view images and incorporated them into the SLAM system
they built [18]. However, in their work, artificial landmarks
were used to facilitate localization, whereas parking-slots
contributed little for optimization. To the best of our knowl-
edge, the latest system that leveraged features detected on
the ground is the one reported in [9]. In [9], Shao ef al
proposed a SLAM system where parking-slots in the surround-
view images are incorporated during optimization. However,
surround-view features selected in [9] are parking-slot specific,
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Fig. 3.

The overall framework of MOFISgp apm. Sensor configuration of MOFISgy apm consists of a front-view camera, an IMU and four fisheye cameras

facing the ground to form a surround-view system. Apart from front-view visual features and IMU motion data, semantic features in the surround-views,
including parking-slots, speed bumps and parking-slot IDs, are detected and geometrically associated. The visual, inertial as well as the surround-view terms
are integrated into MOFISgy op during optimization for accurate localization and semantic mapping suitable for autonomous indoor parking.

resulting in tracking inconsistency in circumstances where
parking-slots are occluded by a parked car. Moreover, the
property of two neighboring parking-slots used in their system
are scenario specific, rather than being completely general
when it comes to different indoor parking environments where
there are no neighboring parking-slots.

B. VI-SLAM Datasets

To ensure objective evaluation of estimated camera poses,
several datasets with groundtruth trajectories were estab-
lished [20]-[25]. Among them, Urban@CRAS [20] and
KAIST Urban [21] are two typical outdoor datasets. Sequences
in the Urban@CRAS dataset were acquired in a sunny
day of several scenarios including a coastal zone, avenues,
roundabouts and highways. Different traffic elements (such
as moving cars, motorcycles and pedestrians) with light
changes, different scenes (urban, highway and coastal zones)
and dynamic elements were considered in this dataset. The
KAIST Urban dataset was acquired in four different cities
with abundant dynamic objects and traffic lights. Sequences
in this dataset were collected in urban environments such as
urban canyon, wide multi-lane road, high-rise buildings and
densely cluttered residential area. In both datasets, groundtruth
trajectories were provided in leverage of GPS. But GPS is
not available for indoor parking environments. The datasets
[22]-[25] are four popular indoor datasets, the groundtruth
trajectories of which were recorded. The EgoCart dataset [22]
comprises 19,531 RGB images along with depth maps con-
sidering the task of localizing shopping carts in a retail store
from egocentric images. The groundtruth trajectory of the
dataset was acquired using structure from motion algorithms.
The EuRoC MAV dataset [23] includes indoor sequences
recorded with a Skybotix stereo VI sensor from a MAV
(Micro Aerial Vehicle). Some sequences in this dataset were
recorded in a large machine hall that is unstructured and
cluttered with different flight dynamics and lighting condi-
tions. Others were recorded in one room with an approximate
size of 8mx8.4mx4m, where moving curtains and different

obstacle configurations under good visual conditions existed.
The Oxford Multimotion dataset [24] was collected in an
experimental room equipped with professional flicker-free
lighting. It contains a varying number of moving bodies,
aiming at providing a benchmark for motion estimation of
moving objects as well as vehicle self-localization. The dataset
provided in [25] contains sequences with camera motions
along a corridor, sequences featuring a walk around the central
hall in a university building, and so on. In these datasets
[23]-[25], groundtruth poses were recorded at 100-200Hz by
a motion capture system and were accurately time-aligned
with the sensor measurements as well. However, the motion
capture system is costly and its coverage capability is limited.
Moreover, none of these datasets involve scenarios typically
encountered in autonomous indoor parking.

To sum up, there is currently no existing VI-SLAM dataset
with groundtruth trajectories for autonomous indoor parking.
The current groundtruth trajectory acquisition approaches are
unsuitable in GPS-denied indoor parking environments or fail
to guarantee the integrity of the trajectory. This paper seeks
to provide a large-scale benchmark dataset with groundtruth
trajectories to facilitate SLAM studies for autonomous indoor
parking. The groundtruth trajectories are obtained by taking
advantage of an ETS, which is both affordable and applicable
in the indoor parking environments.

III. MOFISsLaMm

The overall architecture of MOFISsiam is illustrated in
Fig. 3. Sensor configuration of MOFISgpam consists of a
front-view camera, an IMU and four fisheye cameras facing
the ground to form a surround-view camera system. There
are two major components in MOFISs; apm, the multimodal
measurements acquisition module and the joint optimization
module. The former one is responsible for multimodal data
association. In this module, common semantic features in
the surround-views are detected and geometrically associated,
whose details will be introduced in Sect. IV. These surround-
view features, together with visual features from the front-view
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camera and pre-integrated IMU measurements between two
consecutive keyframes, constitute the multimodal sensor mea-
surements for MOFISg; oM. The latter joint optimization mod-
ule waits for these associated multimodal measurements to
tightly fuse them, which is the core of MOFISsy oM. Its details
will be thoroughly presented in this section with regard to its
formulation and all error terms during optimization.

A. Joint Optimization Model Formulation

We first introduce the measurements and unknowns in the
optimization model. Given keypoints Z in the front-view
image, IMU measurements M and semantic observations O
in the surround-view image, the proposed joint optimization
model for MOFISsy oM determines optimal camera poses 7,
map points P matched with Z as well as surround-view land-
marks £, jointly. We define a MAP (Maximum A Posteriori)
problem for all variables and such an optimization problem
can be casted as,

T * = T Z . 1
{(T,P, L} arg%flgfccp( ,P,LIZ, M, O) (D)

Since keypoints Z, IMU measurements M, and
surround-view observations O are independently observed by
different sensor modalities, p can be factorized by separating
these measurements from one another, i.e.,
p(T,P,LIZ,M,0)

« p(T,P,L)yp(Z,M,O|T,P, L)
=p(T,P,LOpZIT,P,L)pMIT,P,L)p(OIT, P, L)
=p(T)p(P)p(LY)p(ZIT, P, LYp(MIT, P, LYyp(OIT, P, L)
= p(M)p(P)p(L)p(Z|T, P)p(MIT)p(OIL, T)

m observation
= p(T)p(P) p(ZIT, P)p(MI|T) p(L) p(OIT, L), )

prior

visual—inertial term surround—view term

where the first two terms, p(7) and p(P), model the priors
for camera poses and map points, respectively. We assume that
both priors are uniformly distributed, thereby being converted
into a constant factor C. The middle two terms, p(Z|7,P)
and p(M|T), are relevant to front-view visual data and
IMU motion measurements, constraining camera poses and
map points by observed visual features and motion data.
Following [6], [9], the visual-inertial term can be converted
into a visual error term and an inertial error term, Ey and
E;, respectively. Specifically, Ey links each keypoint and
its projecting map point while E; constrains consecutive
keyframes by visual-inertial alignment, stably predicting reli-
able camera poses and map points. The last two terms, p(L)
and p(O|7, L), define the surround-view error term. Salient
semantic objects (parking-slots, speed bumps and parking-slot
IDs) in surround-views encode abundant information such as
the class, the location and the detection confidence, imposing
a surround-view constraint Eg. Therefore, in order to find out
optimal estimation, we jointly optimize visual, inertial and
surround-view error terms in a tightly-coupled objective,

L, T,PY = in Ev +E;+Es+C. 3
{ } argﬁr’rglp v+E/ +Es+ (3)
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Intuitively, with Eq. (3), MOFISspam is optimized by
jointly minimizing errors of visual re-projection error, IMU
motion error and surround-view error taking into account
surround-view features. In this way, MOFISsy oM deals with
both low-level geometric/motion data as well as salient
and stable semantic objects on the ground, simultaneously.
It enables robust perception of an indoor parking environ-
ment, avoiding the vulnerability to blur, dramatic lighting
changes, and low-texture conditions as in the conventional
SLAM systems. It has to be noted that feature points detected
in front-view images mainly come from the vehicles and
pillars ahead of the camera or the ceiling of the indoor
parking site. Only a small number of front-view feature
points are extracted from semantic objects on the ground.
Thus, we think that connections between front-view feature
points and surround-view objects are relatively quite weak.
Therefore, in MOFISspam the front-view feature points and
surround-view objects are optimized independently. Three
error terms appearing in Eq. (3), Ey, E; and Eg, are detailed
in the subsequent subsections.

B. Visual Error Term

The visual error term e, involving the n-th map point
P, and the front-view camera pose Ty € SE(3) of the k-th
keyframe is defined as the reprojection error with respect to
the matched observation ZZ, i.e.,

vern =2y — ¢k (Tr, Py), 4)

where ¢ (-) is the projection function of the front-view camera
at the time when taking the k-th keyframe. Given the set of
camera poses 7 = {Tk}f:1 and map points P = {Pn}f;’:l, Ey
tackles the problem of jointly optimizing camera poses 7 and

map points P, i.e.,

K N
Ev=> > pGef, Ay vew). (5)

k=1 n=1

where pj(-) is the Huber kernel function for robustness to
outliers and Ay, = Ukznlzxz is covariance matrix associated to
the scale at which the keypoint is detected.

C. IMU Error Term

The motion (orientation, velocity, position) between two
consecutive keyframes can be determined by the pre-integrated
IMU data. Each IMU error term ,,e;; links the i-th and the
j-th keyframes, i.e.,

T
meij = [reij veij peijl", (6)

where ge;;, ve;j and pe;; denote the orientation, the velocity,
and the position error terms between consecutive keyframes,
respectively. Accordingly, E; is defined as,

K
Er =" pi(ne]; i meij), (N
i=1

where X; is the information matrix determined using the
scheme introduced in [6].
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Fig. 4. Mathematical representations of semantic objects of a parking-slot,
a parking-slot ID and a speed bump.

D. Surround-View Error Term

The surround-view error term Eg is built based on seman-
tic objects detected in surround-view images. According to
Eq. (2), Eg can be split into a contact error term and a
registration error term corresponding to p(£) and p(O|7, L),
respectively. The contact error term is denoted by Ec,p.
It predefines the position of each individual surround-view
landmark subject to whether it has semantic contact with
other surround-view landmarks. The registration error term
Egeg further constrains by registering each observation and
its position in the world coordinate system. Therefore, Eg can
be defined as,

Es =Econ + EReg- (8)

1) Semantic Object Representation: As shown in Fig. 4,
three categories of semantic objects are considered, parking-
slots (), speed bumps (S) and parking-slot IDs (I). According
to the definition in the work [26], each parking-slot is repre-
sented as {p;, P2, P3, P4}, Where p;, po, p; and p4 are the
coordinates of its four vertices; p; and p, are the coordinates
of the two vertices forming the entrance-line of the parking-
slot and the four vertices are arranged in a clockwise manner.
Similarly, the speed bump is represented as {si,s»}, where
s; and sp are the coordinates of its two endpoints. And
the parking-slot ID is represented as i, the coordinate of
the parking-slot ID’s center. For optimization, each semantic
object can be further abstracted into one or two semantic
landmarks. Each semantic landmark is represented with a
four-dimensional vector [L, W], where L is its 3D position
and W is its width. Definitions of the position and the width
of each semantic landmark are illustrated in Fig. 5 and Fig. 6.
For example, the position and the width of a parking-slot
are defined as the center and the width of its entrance-line,
respectively.

2) Contact Error Term: p(L) models the prior distribution
for positions of all surround-view landmarks, i.e.,

T
P =]]r&Ly), Ly =10, )

t=1
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Fig. 5. Semantic-contact modes of surround-view semantic objects. Accord-
ing to the combination of surround-view objects with different abstractions,
three semantic-contact modes are identified as adjacent, complementary and
coincident.
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Fig. 6. The definition of the width of each surround-view landmark.

By defining the widths of a parking-slot ID and a speed bump endpoint
(dashed arrows), all surround-view landmarks are represented with the same
geometric properties. Specifically, a parking-slot ID’s width is defined as the
opposite of the width of the parking-slot it represents, and the width of a speed
bump endpoint is defined by the length of the corresponding speed bump.

where p(Ly,) and N; are the prior of the positions and the total
number of surround-view landmarks at time ¢, respectively.
L ¥ is the position of the i-th surround-view landmark at
tlme t. Data association of each observation is denoted by
yt e {l;...; M}. M is the total number of surround-view
landmarks in the indoor parking site. According to whether
a surround-view landmark has contact with other surround-
view landmarks, surround-view landmarks can be accordingly
categorized into two groups, the semantic-contact group and
the stand-alone one. Since each group is independent with one
another, p(£) can be reformulated as,

T
p) =[] p&y)

t=1

T n—1
o [T T p@yL; ))HP(L %)
t=0 i=0
T n—1
= [IdT @) payL ))HP(L ). (10)
t=0 i=0

‘,_z

semantic—contact stand—alone

where we assume there are n semantic-contact pairs. y/
denotes the id of the semantic-contact landmark of the i-th
surround-view landmark at time ¢. Thus, the contact error term
of each surround-view landmark is defined subject to whether
it has a semantic-contact neighbor, i.e.,

p(Lyi) ~ y, ¢ M,

11
p(Ly L >~N<f<yt> A viem, D

Authorized licensed use limited to: TONGJI UNIVERSITY. Downloaded on July 05,2022 at 03:06:34 UTC from IEEE Xplore. Restrictions apply.



4794

TABLE I
CONTACT MODES OF SURROUND-VIEW LANDMARKS

Mode Instance Property
Adjacent PP A and B are adjacent.
Complementary S S A and B constitute C.
Coincident I|P A stands where B is.

where all surround-view landmarks in the map at time ¢ are
denoted by M,. U is a uniform distribution and N'( ., .)
represents a normal distribution. f(y!) is the position of
a surround-view landmark induced by its semantic-contact
neighbor. A;; models the uncertainty. Intuitively, if one
surround-view landmark stands alone with no semantic-contact
neighbor, its position is distributed with equal probability in
the map. Otherwise, it is constrained by its semantic neighbor
to maintain their contact mode. As defined in Table I, accord-
ing to the combination of surround-view semantic objects
with different abstractions, three semantic-contact modes are
identified as adjacent, complementary and coincident.

a) Adjacent mode: As seen in Fig. 5 (a), the parking-slot
shares a common inner marking-point with its adjacent
parking-slot. Hence, the position of one parking-slot, f (y,i),
induced by its neighbor, is defined as,

~ 1
FOD=L; + 3 (12)

where Wi and W;i are the widths of two adjacent parking-
’ I

} e
(Wyi + Wyf)s,,

slots. si in Eq. 12 is a unit vector pointing to a parking-slot
observation O from its adjacent observation O~ g which is

defined as,

Sﬁ//O;fO),;. (13)

Intuitively, for a parking-slot, its position is constrained
by its adjacent parking-slot. Such a prior constraint implies
iteratively tweaking each parking-slot to closely contact its
adjacent neighbor.

b) Coincident mode: Similarly in Fig. 5 (b), for a
parking-slot ID, it coincides with the parking-slot it represents.
Hence, the position of one parking-slot ID, f(y!), induced by
the parking-slot it represents, is defined as,

fOH =L

Intuitively, for a parking-slot ID, it shares the same position
as the parking-slot it represents.

c) Complementary mode: As seen in Fig. 5 (c), a speed
bump is represented by its two endpoints. Similarly, f(y!) is
defined as,

(14)

f(yz)—L +D; ~Sta 15)

VisVi

where D ~ is the distance between two endpoints of a speed
bump. Intultlvely, for a speed bump endpoint, its position is
constrained by the other speed bump endpoint that belongs to
the same speed bump. By imposing such a prior constraint,
we can ensure that the distance between the two speed bump

endpoints is equal to the length of the speed bump.
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d) A unified form of the contact error terms: In order for a
unified form of the contact error terms for surround-view land-
marks modeling, all semantic landmarks should be abstracted
into features with the same geometric properties. As seen in
Fig. 6, by defining the width of each surround-view landmark
abstracted as a semantic point in complementary and coinci-
dent modes, a unified form of the contact error terms for all
surround-view landmarks is presented, i.e.,

0 y & M,

Concretely, the width of each parking-slot ID is defined
as the opposite of the width of the parking-slot it represents.
Since each speed bump consists of two speed bump endpoints,
the width of each endpoint is defined as the length of the
corresponding speed bump. Intuitively, minimizing the contact
error term implies iteratively tweaking each landmark to
closely contact its contact neighbor, ensuring that the distance
between two contacted surround-view landmarks is equal to
the half of the sum of their widths.

3) Registration Error Term: Considering all camera
poses and surround-view landmarks, the observation term
p(O|T, L) is defined as,

el,f —

. (16)
o Wy + Wost -

T K;

p©OIT. L) =[]]] POfIT,, L0,

t=1k=1

A7)

where T; is the camera pose at time ¢ and Of represents the
k-th observation at time 7. p(OfITt,Lytk) is the observation
probability of the k-th observation at time f. Since each
surround-view landmark is associated with multiple observa-
tions, the registration error term of the k-th landmark observed

at time ¢ can be defined as,
¢/, = Tl — Of. (18)

4) Surround-View Error Term: Combining both the contact
term and the registration term, the surround-view error term
Eg can be constructed by adding up all semantic features, i.e.,

ES = ECon + EReg

T N, T K
= 2 2 (eeo) Auselin + 2 D (o) s, (19)
t=1 i=1 t=1 k=1

where both A;; and @y, are in proportion to the detection
confidence of each semantic feature. By minimizing Eq. (19),
intuitively, the objective of our proposed surround-view error
term encourages both geometric and observational consistency.

IV. SYSTEM IMPLEMENTATION
A. Semantic Object Detection

We adopt a two-stage CNN for surround-view semantic
object detection as seen in Fig. 8 (a). The network consists
of a semantic point detection module and a semantic pattern
classification module. First, each semantic point candidate (the
marking-point of a parking-slot, a parking-slot ID or a speed
bump endpoint) is located, whose position is defined as the
center of the bounding box detected. Then, if a semantic
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Fig. 7.  Representative local image patterns of parking-slots. (a)-(g) are
representative local image patterns belonging to the classes “right-angled
anticlockwise”, “slanted anticlockwise with an acute parking angle”, “slanted
anticlockwise with an obtuse parking angle”, “right-angled clockwise”,
“slanted clockwise with an obtuse parking angle”, “slanted clockwise with
an acute parking angle” and “invalid”, respectively.

object is represented by two points with a specific pattern, the
above semantic point candidates will be combined in pairs.
Afterwards, the qualified pairs are selected by a classification
network. Compared with the single semantic point based repre-
sentation, a semantic object represented by a pair of semantic
points with a specific pattern can be endowed with certain
geometric information, such as the width of a parking-slot.
Meanwhile, a digit classification network is used to identify the
parking-slot ID for a high-level understanding of the surround-
ing environment. The reason why we proposed a two-stage
object detection framework by first detecting semantic points
is that the autonomous parking task has strict requirements for
the localization accuracy of the marking-points of a parking-
slot or the endpoints of a speed bump. If just one bounding
box is used to detect these objects, it is difficult to have an
accurate output of the positions of these marking-points or
endpoints. Furthermore, as illustrated in Fig. 7, for parking-slot
detection, the aim of the pair classification module is not just
to tell if two landmarks belong to the same parking-slot. Some
necessary information like the type (right-angled or slanted)
and the orientation (whether the associated parking-slot is
on the clockwise side or on the anticlockwise side of p—lﬁz)
of each parking-slot are also acquired in order to infer the
coordinates of its other two vertices.

B. Semantic Data Association

Usually, when constructing the registration term, two ele-
ments are involved, a semantic landmark and its corresponding
observation data. But in reality, data association between a
semantic landmark and its observation is unknown. For exam-
ple, a parking-slot detected in the surround-view image can’t
be told which parking-slot landmark in the map it corresponds
to. Therefore, we need to perform semantic data association
to associate each observation with a semantic landmark. Since
the appearances of semantic objects on the ground are either
blurred or occluded by a parked car, it is difficult to distinguish
them by comparing their appearances. Therefore, the semantic
data association in MOFISgp oM is mainly based on geometric
matching (seen in Fig. 8 (b)).

The probability distribution Po; of the i-th semantic

observation’s position O! detected at time ¢ follows a
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Fig. 8. Semantic object detection and data association. (a) A two-stage CNN
network is adopted to detect all semantic objects in the surround-view image.
The network consists of a detection module for semantic point detection and a
classification module for pattern classification. (b) Semantic data association
is based on geometric matching, in which both the semantic landmark and
its semantic-contact neighbor are incorporated. According to the distances
between one semantic observation and the semantic landmarks in the map, the
semantic observation will be 1) associated with one in the map, 2) discarded
as an abnormal observation, or 3) regarded as a new one.

Gaussian distribution,

where Tcw is the camera pose returned by the visual odometry
and X;; is the covariance matrix.

Since the position of each surround-view landmark is con-
strained by its semantic-contact neighbor, the probability of the
observation associated with the k-th surround-view landmark
in the map can be defined by incorporating both the landmark
and its semantic-contact neighbor, i.e.,

1K) = a poyLi) + (1 = a) pey(Lp),

(20)

21

where O} and Ly denote the positions of the semantic-contact
neighbor of the i-th surround-view observation at time ¢
and the k-th semantic landmark, respectively. For each type
of semantic objects, o is set to be larger than 0.5 if Lg’s
localization accuracy is larger than L;’s localization accuracy.
Then we perform semantic data association in a strict manner,

k fi k) < th(cr)
yi=1o thi(cr) < fi(k) < th2(ck)
N+ 1 fl (k) = th2(cp),

where th1(cy) and th2(cy) are association and creation thresh-
olds, which are self-adapted according to the statistics of each
type of semantic objects. Specifically, when f,i (k) is within
the association threshold /1, the observed semantic feature is
associated with the k-th semantic landmark in the map. When
it is larger than the predefined creation threshold /5, it means
there is no associated semantic landmark in the map, and a
new semantic landmark with ID n; 4+ 1 is created in the map.
Otherwise, the semantic observation will be discarded.

Semantic Update: Once a semantic observation is associated
with an existing surround-view landmark in the map, i
position LL W is first updated by the filtering method to pr0v1de
an initial value for the further optimization, i.e.,

(22)

ny
L= " TewOf +, P )/ (n + 1),
n=1

(23)

where n; is the total number of semantic landmarks at time
t. A = 0.9 is the decay parameter, which implies that the
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Fig. 9.  Window optimization. MOFISg; oM is optimized by minimizing a
combination of an IMU error term, a visual error term and a surround-view
error term. In order to ensure the observability of the optimization, we opti-
mize key frames in the sliding window.

measurement at time ¢ is more reliable than that at time
t — 1. The reason that we choose to trust more on the current
measurement is that the current camera pose is more reliable
than previous camera poses with the optimization framework
MOFISsi aMm.-

C. Window Optimization

MOFISsp aMm is optimized by minimizing a combination of
an IMU error term, a visual error term and a surround-view
error term. The visual error term links map points and cam-
era poses, whereas the IMU error term links motion data
(pose, velocity and biases) between consecutive keyframes.
Additionally, the surround-view error term optimizes each
surround-view semantic feature and the camera pose at which
the semantic landmark is observed. In order to make a good
trade-off between the speed and the flexibility, the optimization
is performed within a sliding window. Frames with sufficient
features and large parallax are selected as keyframes and are
inserted into the sliding window. Since there are additional
states of semantic features in the surround-views, frames that
don’t hold enough features will, nevertheless, be regarded as
a new keyframe if semantic features are detected in the cor-
responding surround-view. When a new keyframe is inserted
into the sliding window, it optimizes the last N keyframes in
the local window and all points seen by those N keyframes.
Semantic features are also incorporated during optimization.
All other keyframes that share observations of map points and
semantic features contribute to the total cost but are fixed
in a fixed window during optimization in order to provide
a deterministic solution. Note that the keyframe N + 1 is
always included in the fixed window as it constrains the IMU
states. A suitable local window size is chosen for real-time
performance. If the total number of keyframes exceeds the
local window size, redundant keyframes are discarded. This
policy improves tracking robustness and enhances lifelong
operation.

V. SUITE CALIBRATION

All sensors in MOFISgpam are required to be spatially
and temporally registered for the best performance in sensor
fusion.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 32, NO. 7, JULY 2022

TABLE 11
SYSTEM COORDINATE DENOTATION

Sensor Denotation
IMU B
front camera F
front camera in the surround-view system C1
left camera in the surround-view system Co
back camera in the surround-view system Cs3
right camera in the surround-view system Cy

A. Sensor Calibration

The spatial registration of different sensors consists of
intrinsic calibration and extrinsic calibration. The intrinsic
calibration of all sensors can be achieved in advance by offline
calibration. Specifically, camera intrinsic parameters, the focal
length, the optical center and distortion parameters, can be
obtained by [27], [28], and with respect to the IMU, its
intrinsic parameters are determined by the Allan Variance [29].

According to different types of sensors, the extrinsic calibra-
tion can be categorized into three respects: camera-IMU cali-
bration, camera-ground calibration and surround-view camera
system calibration. The coordinate system corresponding to
each sensor is denoted as shown in Table II.

1) Camera-IMU Calibration: For camera-IMU calibration,
the front-view camera and IMU are considered rigidly attached
and the transformation between their coordinate systems can
be denoted by Trp. Specifically, we collect a set of data
typically over several minutes as the camera-IMU is waved
in front of a static calibration pattern. Following [30], Trp
can be then computed by optimizing the error term between
IMU and camera measurement.

2) Camera-Ground Calibration: By selecting four points
Pc = {P"G};‘:1 on a calibration site on the ground, the
transformation matrix Trg from the ground coordinate system
to the front-view camera coordinate system can be estimated
by solving a PnP problem formed by points in Pg and their
corresponding image pixels [31], [32].

3) Surround-View Camera System Calibration: Given a
surround-view system consisting of four fisheye cameras
{Ci}?:1 and the ground coordinate system Og, the poses
of cameras in Og are denoted by {chg}?zl, which can be
calibrated offline. For a point P = [Xg, Y5, Zg, 117 in
Og., its corresponding pixel coordinate pc, in the camera
coordinate system of C; is given by,

—K¢, Tc,6Pe,

i

Pc, = i=1,2,3,4, (24)
where Zc, is the depth of Pg in camera C;’s coordinate
system, and K¢, is the 3 x 3 intrinsic matrix of camera C;.
The bird’s-eye-view image can be generated by projecting
an image to the ground, namely the plane Zg = 0 in Og. Con-
sider a point pg = [ug, vG, 117 in the bird’s-eye-view image,
where u and v are the coordinate values of p; in the bird’s-
eye-view coordinate system, respectively. Its corresponding
point on the ground plane is Pg = [Xg, Y, Zg = 0]" with
respect to the ground coordinate system, where Xg, Yg, Z¢g
are the coordinate values of Pg, respectively. The relationship
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between p; and Pg can be represented as,

1 0 W
UG dXG 2dXG XG
— 1 H
l)l(; = 0 —E W YlG P (25)
0 0 1

where dy; and dy; are the size of each pixel, W and H are
the width and height of the scope covered by the surround-
view image. It is worth mentioning that because Zg =0, Zg
is ignored implicitly. Denote the transformation matrix from
P; to p; by Kg, and then Eq. (25) can be simplified as,

pc = KePe. (26)
By combining Eq. (24) and Eq. (26), we can get,
1 _
Pc, = Z—KciTciGKclpo 27)

Eq. (27) actually depicts the relationship of a point p, on
the image plane of camera C; and its projection ps in the
surround-view image.

B. Sensor Synchronization

Apart form spatial calibration, all sensors should also be
temporally calibrated in advance. Commonly, the approaches
to sensor synchronization can be of two modes, the “hard-
ware” mode and the “software” mode according to whether
customized hardware is required or not. With the “hardware”
mode, additional hardware is used to synchronize multiple
devices, whereas with the “software” mode, sensors are syn-
chronized merely by the programming control. Thus, the “soft-
ware” synchronization is relatively easy to achieve compared
with the “hardware”-based one which should rely on additional
hardware. However, different time delays of different sensors
in pre-processing, buffering or data transmission compromise
the performance of “software” synchronization in applica-
tions with high requirements for data acquisition frequency.
By contrast, the “hardware” synchronization performs better
at the cost of expensive customized hardware. At present, the
sensor synchronization strategy we chose is a combination
of the “hardware” synchronization mode and the “software”
synchronization mode as shown in Fig. 10. For the synchro-
nization of the IMU and the front-view camera, the “hardware”
mode is chosen by using the clock pulse of the IMU to
simultaneously trigger camera exposure. For fisheye cameras
in the surround-view system and the front-view camera, they
are ‘“software” synchronised by capturing images controlled
by a multi-thread data collection function. The ‘“software”
synchronization mode is valid for an autonomous indoor
parking system due to the fact that the vehicle typically runs
at a moderate speed when it drives in an indoor parking
environment.

VI. BENCHMARK DATASET ESTABLISHMENT

To facilitate SLAM studies for autonomous indoor parking,
we have established a large-scale dataset comprising syn-
chronous multi-sensor data when driving in a typical indoor
parking site. Apart from synchronous multi-sensor data, the
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Fig. 10. Sensor synchronization. For the synchronization of the IMU and the
front-view camera, the “hardware” mode is chosen by using the clock pulse
of the IMU to simultaneously trigger camera exposure. For the surround-view
system and the front-view camera, they are “software” synchronised by
capturing images controlled by a multi-thread data collection function.
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groundtruth trajectories are also provided in the dataset. In this
section, we will present overview of the dataset and the way
in which the groundtruth trajectories are acquired.

A. Dataset Overview

Totally, our dataset contains 12,407 front-view images,
12,407 IMU motion data segments with each segment record-
ing the vehicle motion between two consecutive front-view
frames, and 4,033 surround-view images (synthesized from
16,132 fisheye images). The collection frequencies of the
front-view camera, the IMU and the surround-view image
are 20Hz, 200Hz and 10Hz, respectively. The resolutions of
the fisheye camera and the front-view camera are 1280 x
1080 and 1280 x 720, respectively. The spatial resolution of
each surround-view image is 416 x 416, corresponding to a
10m x 10m flat physical region, i.e., the length of 1 pixel in the
surround-view image corresponds to 2.40cm on the physical
ground. Actually how to achieve a balance between the view
range of a surround-view image and its accuracy is a common
practical engineering problem. It actually depends on which
factor the end user attaches more importance to. The wider the
size of the surround-view image, the larger the localization
error of objects detected in regions closer to its boundary.
In our system, when a 416 x416 surround-view image covers a
ground area of 10m x 10m, the localization error can be as low
as 0.05m, which can meet the needs of autonomous parking
tasks. One advantage of our dataset is its diversity of the
conditions for data collection, ranging from static scenes with
bright illumination to dynamic scenes with poor illumination.
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Fig. 11.  Groundtruth trajectory acquisition. There are three steps involved,
(a) landmarks deployment, (b) artificial landmarks measurement, and (c) cam-
era pose acquisition.

Various dynamic objects, such as moving cars and pedestri-
ans were captured in the dataset. Moreover, the groundtruth
trajectories were also acquired by tracking artificial features
evenly scattered in the indoor parking environment.

B. Groundtruth Trajectory Acquisition

Actually, when establishing such a dataset, the groundtruth
trajectories are crucial for objective evaluation of different
SLAM systems. But they are generally unavailable due to
the fact that the current groundtruth trajectory acquisition
approaches are unsuitable in GPS-denied indoor parking envi-
ronments or fail to guarantee the integrity of the trajectory
due to the high cost of a motion capture system. To address
the problem, we provided an effective yet cost-efficient
groundtruth trajectory acquisition approach simply with a
mild intervention of the environment. In our approach, the
groundtruth trajectories were obtained with an ETS. As can
be seen in Fig. 11, three steps were involved, landmarks
deployment, artificial landmarks measurement and camera
pose acquisition.

1) Landmarks Deployment: Landmarks deployment ensures
a tailored indoor parking environment with artificial landmarks
that can be easily detected (Fig. 11 (a)). Specifically, by evenly
placing visual fiducial markers such as the popular printable
AprilTags [33]-[35] in an indoor parking environment, one
can create a set of artificial landmarks scattered throughout
the environment.

2) Artificial Landmarks Measurement: Accurate coordi-
nates of artificial landmarks are prerequisite for a high preci-
sion of motion tracking. In this step, the coordinates of above
artificial landmarks were measured with the benefit of an ETS
(Fig. 11 (b)), a compact and portable equipment commonly
used in the surveying field. With an ETS, an operator can
take measurement of the coordinates of all visible points with
accuracy within a couple of millimeters. Specifically, a survey
point O on the ground was first selected where points in all
directions can be observed as much as possible. And the survey
point was defined as the origin of the coordinate system.
By placing the ETS over the survey point and designating
a back-sight point X, X-axis was then built pointing from the
origin point O to the projection of the selected point X on
the ground. Then Y-axis and Z-axis were established based
on the orthogonal principle. By emitting laser to the target
point, its coordinate was obtained based on reflection duration.
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Fig. 12.  Qualitative results of MOFISgy oM. (a) A sketch of an indoor
parking site. (b) Mapping result by MOFISg; opm Wwithout a surround-view
error term. (c) Mapping result by MOFISg; apm with a surround-view error
term. (d) Difference between the estimated and the groundtruth trajectories.

By moving the ETS around, the coordinates of all artificial
landmarks throughout the environment were precisely obtained
by the resection method [36].

3) Camera Pose Acquisition: When driving the vehicle
in an indoor parking environment, its mounted front-view
camera could detect these artificial landmarks during navi-
gation. By aligning artificial landmarks Py with known 3D
coordinates and their 2D projections into the front camera with
known pixel coordinates p., the acquisition of camera pose
T was casted as solving a PnP problem (Fig. 11 (¢)), i.e.,

N N
. . . P2
T = argmin > i = argmn 21 11/ (T, Py, D) — pi-13,
1= 1=
(28)

where D is the set comprising the distortion coefficients of
the camera, and f (..., D) is the camera distortion model that
transforms each point Piw in the world coordinate system to
the point on the camera’s imaging plane. EPnP algorithm [31],
[32] was adopted to solve the problem and several variants
include DLT [37], P3P [38] and UPnP [39] can also be used to
solve this problem. The optimal camera pose T was acquired in
an iterative manner for robustness and accuracy. Specifically, T
was initially obtained using the RANSAC method and points
with large reprojection errors were removed. Afterwards, T
was further refined using the remaining points until the number
of the remaining points was stable.

VII. EXPERIMENTAL RESULTS
A. Qualitative Results of MOFISsiam

To qualitatively validate the effectiveness of the proposed
MOFISspam, we compared semantic maps obtained using
different optimization strategies on the collected dataset.
Fig. 12 (a) depicts the sketch of an indoor parking site from a
top-down viewpoint. The parking site consists of two rows of
parking-slots. Each row is composed of 12 parking-slots and
two consecutive parking-slots are adjacent with each other.
Each parking-slot is represented by a unique parking-slot ID.
Additionally, there are two speed bumps in this indoor parking
site. Fig. 12 (b) and Fig. 12 (c) demonstrate the results when
the vehicle was equipped with a surround-view camera system,
both of which not only construct 3D landmarks but also detect
parking-slots in surround-view images (geometric points are
omitted in Fig. 12 (b) for the comparison). Fig. 12 (b) shows
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TABLE III
QUALITATIVE COMPARISON WITH OTHER METHODS

Methods Properties Sensor Modality =~ Map Category  MSO
Bowman et al. [1] V (Visual) Semantic X
Civera et al. [2] \'% Semantic X
Tateno et al. [3] \"% Semantic X
Yang et al. [4] \% Semantic X
Yu et al. [5] \" Semantic X
Mur-Artal et al. [6] V+1 Geometric X
Campos et al. [7] V+1 Geometric X
Shao et al. [9] V+I1+S Semantic X
Schreiber et al. [13] V+1 Semantic X
Ranganathan et al. [14] V+1 Semantic X
Jeong et al. [15] V+1 Semantic X
Zhao et al. [18] V+I1+T Semantic X
MOFISs1 am V+I+S Semantic v

the result without incorporating the surround-view error term
during optimization. In Fig. 12 (b), it can be seen that even
though all surround-view landmarks are incorporated in the
map, the left speed bump is not spatially aligned with the
parking-slot; besides, since the scale estimated by IMU is
difficult to be absolutely accurate, there is an abnormally large
distance between two groups of adjacent parking-slots below.
Fig. 12 (c) shows the result with the surround-view error term
during optimization. When a surround-view error term is taken
into consideration in optimization, the overall scale gets rea-
sonable. Consequently, in Fig. 12 (c), the distance between two
groups of adjacent parking-slots below is more in line with the
spatial distribution of the real scene; moreover, the left speed
bump is now spatially aligned with the parking-slot. It implies
that when the surround-view error term is incorporated during
optimization, MOFISs; apm not only facilitates the vehicle to
understand the indoor parking environment by demonstrating
all important surround-view landmarks, but also minimizes
accumulated errors to provide a semantic map with higher
accuracy. Additionally, the difference between the estimated
trajectory by our MOFISsr oM and the groundtruth trajectory
is illustrated in Fig. 12 (d). It can be seen from Fig. 12 (d) that
the estimated and the groundtruth trajectories are roughly
coincident, demonstrating the high accuracy of the localization
result of MOFISsiam. A demo video of MOFISsiam i
available online at https://shaoxuan92.github.io/MOFIS.

B. Qualitative Comparison With Other SLAM Systems

Table III shows the qualitative comparison of MOFISgr am
with twelve existing representative SLAM systems from the
viewpoints of three aspects, sensor modalities used (‘S’ for
surround-view features, ‘I’ for inertial data and ‘T’ for fiducial
tags), the category of the map constructed, and whether
multiple surround-view objects (MSO) are incorporated in the
map. It can be seen from Table III that only Shao er al.’s
scheme [9] and MOFISspam incorporate the surround-view
as a data source, not only constructing semantic maps with
surround-view features in the environment, but leveraging no
other information like fiducial tags used in [18] in optimiza-
tion. Compared with Shao et al.’s scheme [9], MOFISsr am
is the first VI-SLAM system attempting to make full use
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Fig. 13. (a) Mapping result by Campos et al.’s scheme [7]. (b) Mapping result
by Zhao et al.’s scheme [18]. (c) Mapping result by Shao et al.’s scheme [9].
(d) Mapping result by MOFISgr am.- (6) Mapping result by MOFISgr Av in
an outdoor parking site with slanted parking-slots.

of various semantic objects detected in surround-views in
order to ensure tracking consistency over the long-term nav-
igation. More importantly, in MOFISspam, a unified form
of surround-view constraints is established to render the
system highly adaptive to various indoor parking scenarios.
Therefore, to be fair, Zhao et al.’s scheme and Shao et al.’s
scheme are chosen as the comparison targets. Apart from these
two schemes, Campos et al.’s scheme [7] is also included.
Fig. 13 (a) illustrates the result of Campos et al.’s scheme.
It records the driving path in the indoor parking site. How-
ever, semantic objects on the ground that are essential for
autonomous indoor parking are not incorporated in the map.
Fig. 13 (b) and Fig. 13 (c) demonstrate the results of
Zhao et al.’s scheme and Shao et al.’s scheme, both of which
not only construct 3D landmarks but also detect parking-slots
in surround-view images. It can be seen from Fig. 13 (b)
that not all parking-slots are detected and displayed in the
map. Fig. 13 (c) shows that all parking-slots are displayed
in the map. However, surround-view features selected in
Shao et al.’s scheme are parking-slot specific, resulting in
tracking inconsistency in circumstances where parking-slots
are occluded by a parked car. Fig. 13 (d) shows the mapping
result of MOFISgp am. It can be seen from this figure that all
surround-view landmarks (parking-slot IDs are omitted here
for display) are incorporated in the map. Moreover, the posi-
tions of the semantic landmarks in Fig. 13 (d) are more in line
with their real spatial distributions, implying that MOFISg am
has a better mapping capability than its counterparts. Addition-
ally, in Fig. 13 (e), the map of an outdoor parking site with
slanted parking-slots constructed by MOFISg1 oM is presented,
which demonstrates that MOFISgp oM is also applicable to
slanted parking-slots.

C. Quantitative Evaluation of MOFISsiapm

Four metrics are selected for quantitative evaluation of
MOFISspam’s performance on the collected dataset, the revis-
iting error (RE), the distance of adjacent parking-slots (DAP),
the absolute trajectory error (ATE) and the time cost (TC).

1) Revisiting Error: As seen in Fig. 14 (a), revisiting error
measures the difference between the localization results at
different times. When it is difficult to obtain the groundtruth
of the driving path, the revisiting error is valid for localization
evaluation since an autonomous parking system allows for
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Fig. 14. Evaluation metrics!. The performance of a SLAM system can be
measured by calculating (a) the revisiting error or (b) the distance of adjacent
parking-slots.

TABLE IV
REVISITING ERRORS OF SELECTED TEST POINTS. (UNIT: METER)

Round X Y Z AX AY AZ AD
Point 1 (-7.66 -0.15 5.03)

Rd. 1 <762 -0.15  5.01 -0.04 0 0.02  0.045

Rd. 2 -7.65  -0.15  5.05 0.01 0 -0.02  0.002

Rd. 3 <772 -0.16  5.04 0.04 -001 -0.01 0.042
Point 2 (-32.53 0.17,2.86)

Rd. 1 -32.52 0.8 291 -0.01  -0.01 -0.05 0.052

Rd. 2 -32.54  0.18 2.84 0.01 -001 0.02 0.024

Rd. 3 -32.54  0.18 2.82 0.01 -0.01  0.04  0.042

Point 3 (-20.60 -0.42 12.26)

Rd. 1 -20.60  -042 1231 0 0 -0.05  0.050

Rd. 2 -20.61 -041 1221 001 -0.01 0.05 0.052

Rd. 3 -20.64  -040 1227 004 -0.02 -0.01 0.046

an absolute localization error during navigation. As long as
the revisiting error is small enough, the vehicle will adopt
a consistent driving strategy when it drives to the same
position. Hence, the revisiting error is defined as the averaged
I distance of the localization results when passing the same
reference point twice, i.e.,

R P
1
— p P
eren = == lel LY =L 2,
r=I1 p=

(29)

where L? denotes the position of the reference point p at the
r-th round and Lf 41 18 p’s position at the (r + 1)-th round.

In actual operation, the driver first manually drove the vehi-
cle at around 10km/h and the map was then initialized. Three
map points at different locations (Points 1, 2, and 3) were
selected as reference points for the test (Refer to Fig. 12(a)).
Specifically, we chose two at the midpoints of both sides of
the indoor parking site and one at the corner. Revisiting errors
on these points are presented in Table IV. It can be seen from
Table IV that for MOFISsp aMm the revisiting error at each test
point is less than 0.06m.

2) Distance of Adjacent Parking-Slots: Apart from revisiting
error, distances of adjacent parking-slots are selected to evalu-
ate the mapping accuracy of SLAM system. Since the adjacent
parking-slots share a common marking-point, the distance of
two adjacent parking-slots is theoretically zero. So we can
measure the performance of MOFISspam by calculating the
averaged distance of all k groups of adjacent parking-slots.
The formula is as follows,

K
1
catj = = 2_IILE =L, (30)
k=1

I The right-side map shown in (a) is built by imposing the additional
constraints that the parking-slot lines are parallel or vertical to each other.
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where k is the adjacent parking slot of the k-th parking-
slot in the map. Li and LL are the positions of the com-
mon marking-points of the k-th parking-slot and its adja-
cent counterpart. We can see from Table V that the aver-
aged distance of adjacent parking-slots undergoes a dramatic
decrease by 0.087m, a 58% decrease, if surround-view error
terms are incorporated in optimization, corroborating the ben-
efits brought by the surround-view semantic constraints in
MOFISsLaMm.

3) Absolute Trajectory Error: Although both the revisiting
error and the distance of adjacent parking-slots are valid,
they have certain drawbacks. The former involves manual
intervention like parking the vehicle at a designated spot,
which is troublesome to achieve in real circumstances. And
the latter evaluates the adjacency property of two parking-slots,
which is actually integrated as a surround-view constraint dur-
ing optimization. Fortunately, with the groundtruth trajectory
acquired in Sect. VI-B, the absolute trajectory error can be
used to evaluate the SLAM system’s performance directly
by measuring the difference between the estimated and the
groundtruth trajectories, i.e.,

1 M
eare = (<= > llrans(Q; "PI?)?, Qi Pi € SEG), B1)

i=1

where {Q,-}f.‘i | and {P,-}f.‘i | are groundtruth and estimated
poses of all frames, respectively. The trans(.) represents the
translation part of the pose. M is the total number of frames.
It can be found from Table VI that the groundtruth trajectory
error is 0.27m on overage, a 22% decrease compared with the
navigation without a surround-view error term.

4) Time Cost: We recorded the average processing time
per frame of MOFISsy am using different number of features.
The result is presented in Fig. 15. It can be seen that when
1000 features are used, the average processing time per frame
within 500 frames is 0.054s. When the vehicle trajectory
loops at around 3000 frames, the average processing time
per frame is 0.063s, reaching 15fps, which is qualified when
driving in an indoor parking site at a low speed. In fact,
the frame rate of the system can be improved by reducing
the number of extracted feature points. When the number of
feature points is set as 500, the running speed undergoes a
considerable improvement. Therefore, if there is a requirement
for a higher frame rate, we can reduce the number of extracted
feature points. Moreover, we also evaluated the performance
of MOFISgs; am with the introduction of feature points from
surrounding images. We find that when additional 500 features
are introduced at each sampling point in MOFISsy am, the ATE
is reduced slightly from 0.272m to 0.268m. But the frame rate
decreases from 15fps to 7fps. According to our experience,
such a frame rate cannot meet the needs of autonomous
parking tasks.

D. Quantitative Comparison With Other SLAM Systems

To be fair, in this quantitative comparison experiment,
Campos et al.’s scheme [7], Zhao et al.’s scheme [18] and
Shao et al.’s scheme [9] are chosen as the comparison targets.
The performance of the competitors was evaluated in terms
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TABLE V
DISTANCES OF ALL GROUPS OF ADJACENT PARKING-SLOTS W/O SURROUND-VIEW ERROR TERMS. (UNIT: METER)

Groups 1 2 3 4 5 6 7 8 9 10 11 12 Mean
Without Es 0.079  0.095 0.220  0.045 0.110  0.090 0.126 0.097 0.602 0.124 0.114 0.092  0.150
With Eg 0.040 0.048 0.056 0.064 0 0.071  0.001 0.041 0.131 0.049 0.151 0.099  0.063
Decrease 0.039 0.047 0.164 -0.019 0.110 0.019 0.125 0.056 0471 0.075 -0.037 -0.007 0.087
TABLE VI 140 , , ,
I Campos et al.’s scheme
THE AVERAGE OF ABSOLUTE TRAJECTORY ERRORS OF TRAJECTORIES IN 120 | Zhao et al.’s scheme |
DIFFERENT DRIVES W/O SURROUND-VIEW ERROR TERMS. = Shao et al.’s scheme
(UNIT: METER) 100 | = MOFISg;
Trajectories 1 2 3 4 5 6 Mean z 8
Without Eg 038 023 0.19 049 0.21 0.49 0.33 -
With Eg 033 021 015 026 026 042 0.27 E
Decrease 0.05 0.02 0.04 023 -005 0.07 0.06 40
20
70 ) )
@500 number of features 0
60 BE750 number of features | 50 100 200 500 1000 2000 3000
01000 number of features Frame
i Fig. 16.  Average processing time per frame comparison across evaluated
schemes.

Time (ms)

100 200 500 3000

Frame

1000 2000

Fig. 15.
features.

Average processing time per frame using different number of

TABLE VII
QUANTITATIVE COMPARISON WITH OTHER SLAM SYSTEMS

Methods Metrics | ATE m) RE (m) DAP (m)
Campos ef al. [7] 0.297 0.187 -
Zhao et al. [18] R 0.280 -
Shao et al. [9] 0.496 0.125 0.106
MOFISs; Am 0272 0.068 0.063

of ATE, RE, DAP and TC. From Table VII, we can see that
the ATE of MOFISspam undergoes a dramatic decrease by
0.025m and 0.224m compared with Campos et al.’s scheme [7]
and Shao et al.’s scheme [9], confirming the superiority of
the localization accuracy of MOFISgi am. Meanwhile, with
respect to RE, MOFISgi am gains 63%, 75% and 46% of the
favor compared with Campos et al.’s scheme [7], Zhao et al.’s
scheme [18] and Shao er al’s scheme [9], respectively.
Besides, compared with Shao et al.’s scheme [9], the DAP of
MOFISspaMm enjoys a significant decrease. As for TC, Fig. 16
shows the comparison result of MOFISsy oM with other three
representative methods. It can be seen from Fig. 16 that the
average processing time per frame of Zhao et al.’s scheme [18]
is significantly larger than the others, which cannot reach
10fps. As for the other three schemes, their differences on
runtime efficiency are negligible.

TABLE VIII
OPTIMIZATION RESULTS USING VARIOUS ERROR TERMS

Strategies Metrics | ATE m) RE (m) DAPm) TC (s)
Vst am 0319 0.199 5 0.045
VIS-TsLam 0.332 0.253 0150  0.051
MOFISs; am 0272 0.068 0063  0.063

E. Ablation Study

We demonstrate how different error terms in our framework
affect the optimization results by comparing MOFISgr am
with two baselines using different optimization strategies.
The two baselines are 1) V-Ispam: a visual-inertial error
term based system without the incorporation of surround-view
semantic features; 2) VIS-Tspam: a system which incorporates
surround-view semantic features in optimization only during
the tracking phase. The results are presented in Table VIII. In
V-IsLaM, the visual error term links each geometric feature
point in the front-view image and its projecting map point
while the inertial error term constrains consecutive keyframes
by visual-inertial alignment, stably predicting reliable camera
poses and map points. It can be seen from Table VIII that
V-Ispam can reach satisfying performance in terms of three
evaluation metrics of ATE, RE and TC, which are 0.319m,
0.199m and 0.045s, respectively. But V-Ispam is not suitable
for autonomous indoor parking due to the fact that it provides
no semantic information during navigation. In order to enhance
the system’s robustness against varying illumination and low-
texture conditions, semantic objects on the ground should be
incorporated. As for the performance of VIS-Tspam, we can
find that if we incorporate semantic features extracted from
surround-views in optimization only during the tracking phase,
the optimization results are compromised and large ATE
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and RE occur. But if the surround-view semantic features
are incorporated in optimization during all the phases of
tracking, local mapping and loop closing just as MOFISgr am
does, three evaluation metrics of ATE, RE and DAP can be
all considerably diminished, confirming the effectiveness of
MOFISspam. In addition, the average processing time per
frame of MOFISgi am is about 0.063s (over 15/ps), which can
be acceptable for an autonomous parking system running at a
moderate speed.

F. Discussions on the Extension of MOFISsiam

MOFISspam could be extended to support multiple
front-view cameras through the following steps. Firstly, dif-
ferent types of front-view cameras need to be mounted in the
appropriate positions of the vehicle. Then, all these cameras
should be calibrated in advance to determine their relative
poses. And all camera poses can be consequently transformed
into the same coordinate system. When these cameras track
the feature points in the parking environment, all front-view
visual error terms can be introduced in the tightly-coupled
optimization framework MOFISsr oM to obtain the optimal
camera poses.

G. About Additional Weak Constraints

In some parking sites, the entrance-lines and separating-
lines of the parking-slots are vertical or parallel to each other.
By imposing such constraints, the visual effect of the distrib-
utions of parking-slots in the built map would look better. But
in some large-scale parking sites, not all parking-slots lines are
vertical or parallel to each other. Therefore, such constraints
are not general and they are currently not considered by
MOFISsLaMm.

VIII. CONCLUSION

In this paper, for the task of fully autonomous indoor
parking, we proposed a tightly-coupled semantic SLAM sys-
tem, MOFISsp oM, that integrates salient semantic features in
surround-views, with the configuration of a front-view camera,
an IMU and a surround-view camera system composed of
four cameras mounted around the vehicle. Specifically, each
surround-view feature can impose a surround-view constraint
that can be split into a contact error term and a registration
error term. Three contact modes, defined as complementary,
adjacent and coincident, are identified to guarantee a unified
form of the contact error terms for all surround-view features.
In order to provide an objective evaluation of SLAM sys-
tems for autonomous indoor parking, a large-scale benchmark
dataset with groundtruth trajectories consisting of synchronous
multi-sensor data was collected, which is the first of its kind.
The superiority of MOFISgsi am over its counterparts has been
verified by extensive qualitative and quantitative experiments.
In addition, the collected benchmark dataset is now publicly
released to the community to benefit other researchers in this
area. In the future, we will continue enlarging our dataset to
make it a better benchmark in this field. Additionally, semantic
landmarks will be considered for loop closing, since in this
way, the whole system would probably be more robust and
stable.
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