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Abstract—Emotion causes constitute a pivotal component in the comprehension of emotional conversations. Recently, a new task
named Causal Emotion Entailment (CEE) has been proposed to identify the causal utterances for the target emotional utterance in a
conversation. Although researchers have achieved some progress in solving this problem, they failed to adequately incorporate
speaker characteristics and overlooked the effects of temporal relations in conversation structures. To fill such a research gap to some
extent, we propose a novel causal emotion entailment framework, namely MPEG (Multi-Perspective Enhanced Graph attention
network). The training of MPEG consists of three stages. Firstly, we utilize a speaker-aware pre-trained model and two attention
mechanisms to obtain the utterance representations that incorporate local contexts as well as the speaker and emotional information.
Then, these representations are fed into a graph attention network to model the conversation structures and emotional dynamics from
both local and global perspectives. Finally, a fully-connected network is implemented to predict the relationships between emotional
utterances and causal utterances. Experimental results show that MPEG achieves state-of-the-art performance. The source code is
available at https://github.com/slptongji/MPEG.

Index Terms—Conversational Sentiment Analysis, Causal Emotion Entailment, Graph Neural Network, Dialogue System.
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1 INTRODUCTION

EMOTIONS play a significant role in human commu-
nication and understanding [1], [2], [3]. To facilitate

emotional communications, current research primarily fo-
cuses on two tasks: emotion recognition and emotional response
generation. Emotion recognition refers to identifying emo-
tions conveyed through utterances in a conversation [4],
[5], [6], [7], [8], [9], while emotional response generation
aims to generate appropriate emotional responses during
conversations [10], [11], [12], [13], [14], [15].

Emotion causes, which refer to the events or situations
that trigger or elicit emotions, are essential in both emotion
recognition and emotional response generation tasks. They
help to infer the speaker’s situation, thoughts and emotional
states, and thereby facilitate recognizing speaker’s emotions
and generating responses to the speaker’s emotions. How-
ever, despite their importance in emotional conversation
tasks, there has been a lack of research focused on the
extraction of emotion causes. In many studies, emotion
cause extraction is often only considered as a supplement
to other emotion-related tasks [16], [17], [18], [19], [20], [21].
For example, Zhao et al. [17] utilized the internal and exter-
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nal emotion causes extracted from conversations to predict
the emotions of target utterances. If the emotion cause
extraction problem cannot be specifically studied, emotional
dialogue systems may incorrectly identify the underlying
causes of the user’s emotions and generate inappropriate
responses. To address this research gap, Poria et al. [22]
introduced a new task called Recognizing Emotion Cause in
Conversations (RECCON) in 2021, which aims to extract emo-
tion stimuli during conversations. To support the RECCON
task, they created an annotated dataset named RECCON-
DD and developed two transformer-based baseline models.
According to the granularity of the identified causes, the
RECCON task can be further divided into the Causal Emotion
Entailment (CEE) task and the Causal Span Extraction (CSE)
task. CEE aims to identify which causal utterances trigger
the non-neutral emotions in the target utterances, whereas
CSE aims to extract causal spans, i.e., specific events in the
form of phrases, from the identified causal utterances. An
example of the RECCON task has been shown in Fig. 1.

As depicted in Fig. 1, Speaker A initiates the conversa-
tion by felicitating Speaker B’s engagement in utterance 1,
and triggers the happy emotion in the following utterances.
Therefore, utterance 1 can be regarded as one of the causal
utterances for emotions in utterances 1 to 4. The goal of CEE
is to identify all the causal utterances that trigger the happy
emotions in utterances 1 to 4 respectively. More precisely,
the happy emotion in utterance 2 is caused by both facts of
“engagement” mentioned in utterance 1 and “love at first
sight” mentioned in utterance 2 itself. These facts are casual
events for the happy emotion in utterance 2. CSE aims to
identify all these causal events for the target utterances.

Identifying emotion causes in conversations is a chal-

https://orcid.org/0000-0001-7346-7670
https://orcid.org/0000-0002-2966-7955
https://orcid.org/0009-0000-9426-2703
https://orcid.org/0000-0002-4360-5523
https://orcid.org/0000-0002-4301-394X
https://github.com/slptongji/MPEG


IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, MANUSCRIPT ID 2

Oh! You’re engaged! What a beautiful 
engagement ring! Who to?

Of course Mike. Who else? We fell in 
love at first sight.

When’s the wedding going to be?

😄
1) SA : happy

😄
3) SA : happy

We haven’t decided yet. There are a 
lot of things to sort out.

😊
2) SB : happy

😊
4) SB : happy

Fig. 1. A conversation example retrieved from the RECCON-DD dataset
[22].

lenging task due to the complexity of conversation struc-
tures and emotional dynamics. Conversation structures
should consider not only the content of utterances but also
their temporal relations and speaker characteristics. Emo-
tional dynamics need to consider two crucial dependencies:
self- and interpersonal-dependencies. These dependencies
reveal that an individual’s emotions arise from their own
influence as well as from the influence brought by their
counterparts during conversations [5], [23]. Existing CEE
models focus on modeling the dependencies of emotional
dynamics or bringing in external knowledge to enhance
model performance [24], [25], [26]. However, these models
do not adequately incorporate speaker characteristics and
overlook the effects of temporal relations.

To address the research gap to some extent, we propose a
new framework to solve the CEE problem, namely “a Multi-
Perspective Enhanced Graph attention network (MPEG)”.
Our contributions are summarized as follows.

• We propose a novel causal emotion entailment
framework using a heterogeneous graph attention
network architecture. It consists of two different lev-
els, i.e., the utterance-level and the conversation-level
encoders and a predictor, which work together to
capture the causal relationships between utterances.

• Specifically, at the utterance level, MPEG incorpo-
rates speaker characteristics through a speaker-aware
pre-trained model. It then leverages attention mech-
anisms to capture temporal and emotional informa-
tion embedded in local contexts, enabling an in-
depth analysis of utterance contexts.

• At the conversation level, MPEG utilizes a hetero-
geneous graph attention network for propagating
messages, followed by a position-wise feed-forward
layer after each graph attention layer, aiming to
model the intricate interactions in global contexts.

• To validate the effectiveness of MPEG, extensive
experiments are conducted on two publicly available
datasets. Results have shown that MPEG yields the
best performance, outperforming the SOTA methods
for the CEE task and other related tasks by a large
margin (at least +1.02% in macro F1 measure).

The remainder of this paper is organized as follows.
Sect. 2 introduces the existing work on CEE and two related
tasks. Sect. 3 describes the proposed architecture of MPEG

with details. Sect. 4 outlines the datasets and metrics used
in the experiments as well as the implementation details,
and demonstrates the experimental results of the evaluated
methods. Sect. 5 discusses the results of the ablation study
and the case study and the impacts of hyperparameters to
validate the effectiveness of MPEG. Finally, Sect. 6 concludes
the paper.

2 RELATED WORK

2.1 Causal Emotion Entailment
Poria et al. [22] introduced the RECCON task to identify
the causes that trigger the speaker’s emotions in the whole
conversation. According to the granularity of the identified
causes, the RECCON task can be further classified into the
CEE task which identifies causes at the utterance level and
the CSE task which identifies causes at the phrase level.
To address these challenges, Poria et al. [22] formulated
CEE as a text classification problem and CSE as a reading
comprehension problem, and utilized RoBERTa base/large
models [27] to solve both tasks. To facilitate the research on
the RECCON problem, the emotion for each utterance and
the locations of emotion causes in terms of utterance indices
were annotated in the DialyDialog dataset [28], thereby a
new dataset named RECCON-DD was created.

The CSE task can be solved by extracting causal phrases
from the identified causal utterances obtained by CEE
methods. Therefore, the CEE task receives more attention
currently. Zhang et al. [24] proposed a two-stream attention
model that can interchange emotion and speaker informa-
tion to model the speaker’s emotional dynamics during
conversations. Li et al. [25] introduced a knowledge en-
hanced conversation graph (KEC) and proposed a knowl-
edge enhanced directed acyclic graph network to process
the graph. Zhao et al. [26] implemented a knowledge-
bridged causal interaction network which utilized common
sense knowledge (CSK) as three bridges, including the
semantics-level bridge, the emotion-level bridge, and the
action-level bridge, to capture the inter-utterance depen-
dencies. Bhat and Modi [29] proposed an end-to-end multi-
task learning framework for parallel extraction of emotions,
causal spans, and causal utterances during conversations,
where the emotions of utterances should be predicted be-
forehand.

Inspired by the RECCON task, Li et al. [30] proposed
a new task named Emotion-Cause Pair Extraction in Con-
versations (ECPEC). They annotated a dataset named Con-
vECPE based on the IEMOCAP dataset [31] and proposed a
two-step framework for the new ECPEC task.

2.2 Emotion Recognition in Conversations
Emotion recognition in conversations (ERC) is a highly
relevant task to CEE, the problem of which has been defined
much earlier. Both tasks involve modeling conversation
structures and uncovering emotional dynamics. Despite the
relevance of their solutions, ERC aims to identify the emo-
tion types for the target utterance instead of the emotion
causes for the target utterance, which is the main difference
between the two tasks. Besides, there is a notable difference
between their solutions. ERC methods have to infer un-
known emotions for the target utterance. As a comparison,
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Fig. 2. The overall architecture of MPEG, which consists of three components: the utterance encoder, the conversation encoder and the cause
predictor.

CEE methods directly utilize the emotional information of
each utterance which is already known in the CEE task.

ERC methods can be generally categorized into two
types, i.e., RNN-based and GNN-based methods, based
on their way of conversational context construction. Early
studies on the ERC problem utilized recurrent neural net-
works (RNNs) to model conversation sequence informa-
tion. Among these methods, CMN [32] was one of the
pioneers, which constructed distinct memory networks to
store speaker information for speaker modeling. Subse-
quently, ICON [33] improved upon CMN by interconnect-
ing memory networks to simulate interpersonal- and self-
dependencies. DialogueRNN [34] incorporated speaker in-
formation and simulated the two dependencies through a
hierarchical RNN network with an attention mechanism.
COSMIC [35] enhanced DialogueRNN’s performance by
integrating CSK into the model. While RNN-based ap-
proaches can effectively capture the temporal information
of conversations, they pay more attention to the closest
contextual utterances to the targeted ones. Such tendencies
can make it difficult to model long-distance contexts and
may compromise their performance.

DialogueGCN [36] is the first algorithm that models
conversations as graph structures by using a graph con-
volutional neural network (GCN) to propagate contextual
messages among utterances. To preserve temporal informa-
tion in graph structures, Ishiwatari et al. [37] proposed a
relational-aware graph attention network which adopted a
relative position encoding scheme. Lee et al. [38] regarded
ERC as a dialogue-based relation extraction (RE) task and
proposed a heterogeneous GCN network called TUCORE-
GCN. Meanwhile, SKAIG [39] introduced CSK into the

GNN model, employing four types of relationships to model
the emotional states of speakers. These GNN-based ap-
proaches offer a solution to the disability of conveying long-
distance contextual information that exists in RNNs. Ad-
ditionally, they can explicitly model the interpersonal- and
self-dependencies of emotions, thereby revealing speaker
characteristics and emotional triggers.

2.3 Emotion Cause Extraction

Emotion cause extraction (ECE) aims to identify the causes
or stimuli which trigger the emotions in each sentence in
a long document. In early studies, researchers attempted
to extract causal words or clauses for specific emotional
expressions through handcrafted rules or features [40], [41],
[42], [43], [44]. However, recent studies have employed deep
neural networks to solve this problem [45], [46], [47], [48].
For example, Gui et al. [49] viewed the ECE task as a ques-
tion and answering (Q&A) problem and designed an ECE
model based on a Q&A system. Xu et al. [50] approached
the ECE problem from an information retrieval perspective
and identified emotion causes through learning to rank.
Fan et al. [51] utilized a hierarchical neural network and
knowledge-based regularizations to extract emotion causes,
aiming to incorporate discourse context information and
constrain the parameters.

Xia and Ding [52] further introduced the task of
Emotion-Cause Pair Extraction (ECPE) which identifies
emotion clauses and their causes in a discourse jointly. They
also proposed a two-step framework to perform individ-
ual emotion extraction and cause extraction using multi-
task learning [52]. However, this framework has an error
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accumulation problem and struggles with learning the in-
teraction between emotion extraction and cause extraction.
To overcome these limitations, Ding et al. [53] developed a
novel ECPE-2D framework that utilizes a 2D Transformer to
directly model clause pairs. Another recent development in
this area is RankCP [54]. This model used graph attention
networks to capture the content and structure of documents,
which enables it to extract emotion-cause pairs from a
ranking perspective.

3 METHOD

3.1 Task Definition

The objective of CEE models is to identify all the causal
utterances within the conversational context for a specific
target utterance. A conversation C can be denoted as
C = {(u1, e1, s1), · · · , (ui, ei, si), · · · , (un, en, sn)}, where
n is the number of utterances in C , ui, ei and si are the
content, emotion, and speaker of the i-th utterance respec-
tively. The contextual sequence of ui can be represented as
Ci = {(u1, e1, s1), · · · , (uj , ej , sj), · · · , (ui, ei, si)}, j <= i.
If ui corresponds to a non-neutral emotional utterance, a
CEE model has to identify whether each uj in Ci is the
emotion cause of ui. If yes, the pair (ui, uj) is labeled with
1; otherwise, it is labeled with 0.

3.2 Model Overview

The framework of MPEG has been shown in Fig. 2. It
consists of three main components: the utterance encoder, the
conversation encoder, and the cause predictor. The utterance
encoder utilizes a speaker-aware pre-trained model and
attention mechanisms to extract the feature representation
for each utterance. A heterogeneous conversation graph
is then created to model the conversation structure and
the emotion dynamics, with each node associated with the
feature representation of the corresponding utterance. Based
on the heterogeneous conversation graph, the conversation
encoder utilizes a combination of graph attention layers and
feed-forward layers to propagate conversational messages
from both local and global perspectives, resulting in a com-
prehensive feature representation of each node. This repre-
sentation is then used to predict the emotional causality. The
final component, the cause predictor is implemented as a
fully-connected network to predict causal utterances which
trigger the emotion in the target utterance.

3.3 Utterance Encoder

3.3.1 Input Embedding Layer
Firstly, a sequence I is constructed by concatenating the
contextual sequence Ci, target utterance Ui, and poten-
tial causal utterance Uj . It can be represented as I =
{[CLS], Ci, [SEP ], Ui, [SEP ], Uj , [SEP ]}, where Ui = si⊕
ei ⊕ ui, and ⊕ denotes the concatenation operation. [CLS]
and [SEP ] are the special tokens in the pre-trained model
which mark the beginning of the sequence and the sepa-
ration of the utterances, respectively. The definition of Ci

has been given in Sect. 3.1, which can also be denoted
as Ci = {U1, U2, · · · , Uk, · · · , Ui}, where Uk is the k-th
contextual utterance, k ≤ i. If Ci exceeds the maximum

[CLS] [S1] … [S2] … [SEP] [S1] … [SEP] [S2] … [SEP]

E[CLS] E[S1] … E[S2] … E[SEP] E[S1] … E[SEP] E[S2] … E[SEP]

EA EA … EA … EA EB … EB Ec … Ec

E0 E1 … E3 … E5 E6 … E8 E9 … E11

E# E[S1] … E[S2] … E# E[S1] … E# E[S2] … E#

Input 
Sequence

Token
Embedding

Segment
Embedding

Position
Embedding

Speaker
Embedding

Fig. 3. The embedding layers of SA-RoBERTa [55]. The final input
embedding is the sum of the token embedding, the segment embedding,
the position embedding, and the speaker embedding. Note that “S1” is
a special token which signifies an utterance spoken by Speaker 1.

input sequence length for the pre-trained model, the most
distant utterances or tokens will be removed.

Then, I is fed into Speaker-Aware RoBERTa (SA-
RoBERTa) [55] to obtain the corresponding sequence rep-
resentation E which integrates contextual information and
speaker information. The embedding layers of SA-RoBERTa
are shown in Fig. 3. It adds a speaker embedding layer to the
traditional embedding layers for the sake of distinguishing
different speakers’ utterances and modeling speaker transi-
tions during conversations.

3.3.2 Window-Limited Attention Layer
Local contexts play a crucial role in identifying emotion
causes. As shown in Fig. 4, in the RECCON-DD dataset, up
to 90% emotion causes are located within four utterances
previous to the target, and around 60%-70% of the causes
appear in the current and the last utterance. To capture the
influence of local contexts, we employ a Masked Multi-Head
Self-Attention (MHSA) mechanism [56] to the sequence
representation E. The mask M in MHSA is set to be zero
inside an utterance window and negative infinity outside
the window, aiming to capture the influence of contextual
utterances within the window size w on the current utter-
ance. It can be expressed as

M [i, j] =

{
0, if |Ti − Tj | ≤ w,

−∞, otherwise,
(1)

where i and j are the token positions in the input sequence
I , Ti and Tj are the indices of the utterances where i-th and
j-th tokens are located. w is a hyperparameter, indicating
that only the local utterances within the window size w are
concerned.

Then the window-limited mask M is applied to the dot
product results between queries and keywords in MHSA,
enhancing the capture of local contexts. This process can be
computed as

Attention(Q,K,V ,M) = softmax(
QKT

√
dk

+M)V ,

headi = Attention(EWQ
i ,EWK

i ,EW V
i ,M),

Hw = MHSA(E,M) = concat(head1, · · · ,headh),

(2)

where WQ
i ∈ Rdmodel×dq , WK

i ∈ Rdmodel×dk , W V
i ∈

Rdmodel×dv are parameter matrices, dq , dk, dv denote the
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Fig. 4. The distance distribution of causal utterances in the RECCON-
DD dataset [22]. “Distance” refers to the distance between the causal
and emotional utterance. If the causal and emotional utterances are
the same utterance, the distance is zero. “Distribution” reflects the
proportion of a specific distance.

dimensions of query vectors (Q), key vectors (K), and value
vectors (V ), dmodel denotes the hidden layer size of SA-
RoBERTa, and h denotes the number of heads. Hw is the
output of the window-limited attention layer, denoted as
Hw = {hw

1 ,h
w
2 , · · · ,h

w
n }, n is the sequence length of E,

hw
i is the feature embedding of utterance ui.

3.3.3 Emotional Fusion Layer
To simulate the emotional dynamics during conversations,
Ci, Ui and Uj are further integrated with their correspond-
ing emotions. Each utterance ui (ui ∈ Ci ∪ Ui ∪ Uj) has
been associated with an emotion label ei ∈ L, where L is
an emotion label set, denoted as L = {l1, · · · , l|L|}. Each
ei can be represented as a trainable embedding Emb(ei),
which is initialized by the weight vectors of SA-RoBERTa.
Then the feature embedding of ui is concatenated with
its corresponding emotion embedding, and the emotional
context He is therefore represented as

He = {hw
[cls]; [h

w
u1
,Emb(e1)]; · · · ; [hw

uk
,Emb(ek)];

hw
[sep]; [h

w
tu,Emb(etu)];h

w
[sep]; [h

w
cu,Emb(ecu)]}.

(3)
Finally, He is fed into the MHSA network with a linear
transformation to learn the mapping relationships, which
can be computed as

Hutt = MHSA(He)W e + b (4)

where W e is a parameter matrix and b is a bias. Hutt is
the computed utterance-level feature representation of I . It
consists of the feature embeddings of different utterances,
i.e.,

Hutt = {h[cls];hu1 ;hu2 ; · · · ;huk
;

h[sep];htu;h[sep];hcu}
(5)

where huk
, htu and hcu are the feature embeddings of

the k-th contextual utterance, the target utterance tu, and
the causal utterance cu.

By following the aforementioned process, MPEG is ca-
pable of deriving utterance representations that integrate

both speaker features and emotional information. It also
reinforces the influence of local contexts.

3.4 Conversation Encoder
3.4.1 Graph Construction
To integrate both global and local contextual information,
we construct a heterogeneous conversation graph for each
pair of emotion-cause utterances (tu, cu). The heteroge-
neous graph can be represented as G = (V, E ,R), where
V is the node set consisting of all the graph nodes vi, E is
the edge set which comprises labeled edges (vi, r, vj) ∈ E ,
and r ∈ R is a relation between two nodes. The graph G can
be constructed from the conversation history as follows.

Nodes There are three types of nodes in graph G: the
conversation node, the utterance node, and the classification
node. There is only one conversation node which is initialized
with the feature embedding of token [CLS], i.e., h[cls]

and captures the global semantics of the conversation. On
the other hand, the utterance node is initialized with the
feature embedding hi and represents utterance ui in the
conversation. There are two special classification nodes in
graph G, i.e., the target node and the cause node, represent-
ing the target utterance tu and causal utterance cu. They
are initialized with htu and hcu, respectively. These two
classification nodes are deliberately proposed to preserve
the representations of tu and cu, such that later the cause
predictor can predict whether cu is the cause of tu based on
their final representations. In addition, as an utterance node,
cu may be truncated if it is too far away from tu. In such
a situation, the introduction of classification nodes guarantees
that both the target and causal utterances are included in
graph G.

Edges and Relations There are three types of edges in
graph G: the global edge, the speaker edge, and the context edge.
The global edge serves to establish a two-way relationship
between the conversation node and all the other nodes, fa-
cilitating the propagation of global contextual semantics.
In contrast, the speaker edge connects nodes corresponding
to the same speaker by pointing from historical nodes to
future nodes. By doing so, it models speakers’ emotional
dynamics and aggregates information from both nearby and
faraway sources. The context edge is designed to capture local
contextual information about the target utterance tu and
the causal utterance cu. It establishes a connection between
the target/causal utterances and their preceding utterances,
aiming to capture the influence of these utterances on tu
and cu. Initially, the classification nodes are connected to their
corresponding utterance nodes through the context edge. As
the corresponding utterance nodes have preceding utterance
nodes, the classification nodes are then connected to these
nodes within a given window size w′, where w′ is a hy-
perparameter. Note that the direction of the context edges is
from utterance nodes to classification nodes.

3.4.2 Heterogeneous Graph Attention Layer
The Heterogeneous Graph Attention Network (HAN) [57] is
utilized to aggregate messages from each node. The network
comprises two sub-layers: node-level and semantic-level
attention layers. In the following, some concepts about HAN
will be introduced.
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In a heterogeneous graph G, two nodes can be connected
by several semantic paths (relations) which are referred to as
meta-paths [58]. A meta-path Φ is defined as v1

R1−→ v2
R2−→

· · · Rl−→ vl+1 (abbreviated as v1v2 · · · vl+1), which reveals a
composite relation R = R1 ◦R2 ◦ · · · ◦Rl between nodes v1
and vl+1, where ◦ denotes the composition operator on re-
lations. Given a meta-path Φ, each node vi can be connected
to a set of nodes via Φ, which are termed as meta-path based
neighbors of vi. To model the speaker’s self-dependency and
the conversation’s local and global information, three types
of meta-paths are set up: speaker-speaker, context-context,
and global-global. The meta-path set which consists of the
three types of meta-paths is denoted as P = {Φsp,Φct,Φgl}.
These meta-paths propagate information in graph G which
includes speaker characteristics, local context, and global
context.

Node-Level Attention Layer Similar to the graph atten-
tion mechanism [59], node-level attention is used to evaluate
the significance of the relationship between the target node
and its meta-path based neighbors. In the node-level atten-
tion layer, information is gathered from the target node’s
neighbors on each meta-path and the meta-path based fea-
ture representations of the target node are obtained. Given
a node pair (i, j) which is connected via a meta-path Φ, the
importance of the neighbor j to the target node i can be
computed as

eΦij = attutt(hi,hj ; Φ) (6)

where attutt represents the node-level self-attention net-
work [56], hi,hj ∈ Hutt are the feature embeddings of
node i and node j as described in Sect. 3.4.1. It should
be noted that all the node pairs (i, j) on the given meta-
path Φ share the same attention network attutt. Then, the
meta-path based attention coefficients eΦij are normalized by
the softmax function to make them more comparable across
different nodes:

αΦ
ij = softmaxj(e

Φ
ij)

=
exp(LeakyReLU(aT

Φ · [hi∥hj ]))∑
k∈NΦ

i

exp(LeakyReLU(aT
Φ · [hi∥hk]))

(7)

where aΦ is the node-level attention vector for meta-path Φ,
NΦ

i is the meta-path based neighbors of node i (including
itself), (·)T denotes the transpose operation, and ∥ denotes
concatenation. Finally, the meta-path based feature repre-
sentation of node i can be computed as

zΦ
i = σ(

∑
j∈NΦ

i

αΦ
ij · hj) (8)

where σ denotes the activation function. The above mecha-
nism can be extended to a multi-head attention mechanism
to enhance the stability of the learning process in self-
attention. Specifically, the node-level attention module is
iterated K times, and the resulting output features are
concatenated, thereby generating the final feature represen-
tation for each node i:

zΦ
i =

K

∥
k=1

σ(
∑

j∈NΦ
i

αΦ
ij · hj) (9)

In the end, |P| groups of meta-path based node em-
beddings are obtained, denoted as {ZΦ0

,ZΦ1
, · · · ,ZΦ|P|},

where ZΦk
= {zΦk

1 , · · · , zΦk
n }, Φk ∈ P , n is the number of

nodes.
Semantic-Level Attention Layer Semantic-level atten-

tion aims to fuse the semantic information from different
meta-paths and computes a more comprehensive feature
representation for each node i. Given |P| groups of node
embeddings obtained from the node-level attention layer,
the weights for each meta-path (βΦ0 , βΦ1 , · · · , βΦ|P| ) can be
computed as

(βΦ0
, βΦ1

, · · · , βΦ|P|) = attsem(ZΦ0
,ZΦ1

, · · · ,ZΦ|P|)
(10)

attsem denotes the semantic-level self-attention network
and its computation will be illustrated in the following.

To learn the importance of different meta-paths, the
meta-path based node embeddings are firstly transformed
by a single-layer MLP and then multiplied by a learn-
able semantic-level attention vector q. Consequently, the
importance weights for each meta-path at each node can
be learned. These weights are then averaged across all the
nodes to obtain the overall importance of each meta-path,
wΦl

using Eq. 11,

wΦl
=

1

|V|
∑
i∈V

qT · tanh(W · zΦl
i + b) (11)

where W is a parameter matrix, b is a bias. Then the im-
portance of each meta-path Φl is normalized by the softmax
function to obtain its weight, which is denoted as βΦl

:

βΦl
= softmax(wΦl

) =
exp(wΦl

)∑
Φk∈P

exp(wΦk
)

(12)

Finally, the meta-path based node embeddings are
weighted by the computed weights to derive the final
representation for each node i as

zi =

|P|∑
k=1

βΦk
· zΦk

i (13)

3.4.3 Position-wise Feed-forward Layer

Inspired by the work [60], a position-wise feed-forward
network (PFFN) [56] is established for the utterance nodes
after each round of graph message passing. The PFFN layer
provides a non-linear transformation for the hidden states of
each location, thereby enhancing the representation of local
contexts. Specifically, the representation of node i is updated
using the aforementioned HAN and PFFN layers, which
incorporate information from meta-path based neighbors:

ht+1
i = PFFN(HAN(ht

i)) (14)

where ht
i and ht+1

i are the node embeddings of node i at
time t and t+ 1, i.e., ht

i = zt
i, h

t+1
i = zt+1

i .

3.5 Causal Utterance Predictor

To determine whether causal utterance cu is the emotion
cause of target utterance tu, the complete representation H̃
of two classification nodes, i.e., the target and the causal
node, should be obtained first. Specifically, H̃ is computed
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by concatenating the hidden states of the classification
nodes in each HAN layer:

H̃ = [h
(0)
tu ;h(0)

cu ; · · ·h(G)
tu ;h(G)

cu ; ] (15)

where h
(i)
tu and h(i)

cu are the hidden states of tu and cu at i-th
HAN layer, respectively, G is the number of HAN layers.

Finally, H̃ is fed into a fully-connected network with
sigmoid activation to predict whether cu is the emotion
cause of tu. And the cross-entropy loss is utilized as the
objective function during the training process.

4 EVALUATION

4.1 Experimental Settings

4.1.1 Datasets
Two datasets, namely RECCON-DD and ConvECPE, which
were released by Poria et al. [22] and Li et al. [30] respec-
tively, were adopted for conducting the experiments. The
data samples used for the experiments were constructed by
pairing each non-neutral emotional utterance with its his-
torical utterances, including itself, one by one. If a historical
utterance was found to be the cause of an emotional utter-
ance, the historical-emotional utterance pair was labeled as
positive; otherwise, the pair was labeled as negative.

However, in the RECCON-DD dataset, several future
utterances were marked as emotion causes by the authors.
Such causes were removed in our experiments because in-
tuitively only historical utterances can trigger the speaker’s
emotion in the target utterance. In addition, the conver-
sations in the ConvECPE dataset consist of too many ut-
terances, and pairing historical utterances with each target
utterance would lead to a class imbalance problem with a
positive-to-negative ratio of 1:7.8. To overcome this issue,
negative sampling is performed on ConvECPE to ensure
that the numbers of negative and positive samples are
equivalent. The statistics of two processed datasets are
shown in Table 1.

TABLE 1
Statistics of the RECCON-DD and ConvECPE datasets after

preprocessing. Pos. and neg. refer to the number of positive and
negative causal-target utterance pairs, respectively. Conv. and utt. are

short for conversation and utterance, respectively.

Statistics RECCON-DD ConvECPE

Train
Pos. 7269 5279
Neg. 20646 5279

Valid
Pos. 347 1335
Neg. 838 1335

Test
Pos. 1894 1824
Neg. 5330 1824

Num.
Conv. 1106 151
Utt. 11104 7433

Avg. Len.
Conv. 11 (utt.) 49 (utt.)
Utt. 60 (words) 61 (words)

4.1.2 Evaluation Metrics
Referring to Poria et al. [22], macro-averaged F1 (macro F1)
score, positive F1 (pos. F1) score, and negative F1 (neg. F1)

score were used as the evaluation metrics in this work. Pos.
F1 and neg. F1 are two evaluation metrics that measure
the accuracy of binary classification models with respect
to predicting the positive and negative classes, respectively
[61]. Specifically, pos. F1 and neg. F1 are harmonic means of
precision and recall for the positive class and negative class,
which are computed as

pos. F1 =
2× Ppos ×Rpos

Ppos +Rpos
,

neg. F1 =
2× Pneg ×Rneg

Pneg +Rneg

(16)

where Ppos/neg and Rpos/neg are the precision and the
recall values computed for the positive and negative classes.
Macro F1 is an evaluation metric for the binary classification
task which is defined as the average of the positive and
negative F1 scores. It is computed as

macro F1 =
pos. F1 + neg. F1

2
(17)

Macro F1 ranges from 0 to 1. A higher macro F1 score
indicates a better overall performance in predicting both
positive and negative classes.

4.1.3 Baselines

To demonstrate its effectiveness, MEPG was compared with
13 competitive baseline models in the experiments. The
baseline models can be categorized into 4 groups. Fol-
lowing Poria et al. [22], the first group consists of three
SOTA methods for the ECPE task, which include ECPE-
2D [53], ECPE-MLL [30], and RankCP [54]. Considering
the similarity between the CEE and ERC tasks, the second
group consists of three SOTA methods for the ERC task,
which include TUCORE-BERT/RoBERTa [38] and DAG-
ERC [62]. The third group consists of the baseline model
for the ECPEC task, i.e. Joint-EC [30]. Finally, the last group
consists of six SOTA methods for the CEE task, which in-
clude RoBERTa-base/large [22], KEC [25], MuTECCEE [29],
KBCIN [26] and PAGE [63].

• ECPE-2D An end-to-end framework for the ECPE
task that utilizes a 2D representation scheme to en-
code emotion-cause pairs and simulates their inter-
actions through a 2D transformer module.

• ECPE-MLL An improved version of ECPE-2D that
incorporates multi-label learning to extract emotion
clauses and cause clauses, and combines them to
predict the final results.

• RankCP A method that treats the ECPE task as a
ranking problem and proposes a neural approach
that focuses on inter-clause modeling to achieve end-
to-end extraction in a single step.

• TUCORE-BERT/RoBERTa A method that regards
the ERC task as a dialogue-based relation extraction
problem and learns contextual representations of ut-
terances through graph convolutional networks [64].

• DAG-ERC A SOTA method for the ERC task that
treats conversations as directed acyclic graphs and
employs a directed acyclic neural network to learn
the intrinsic structures within conversations.
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TABLE 2
Experimental results of all models on the RECCON-DD and ConvECPE datasets. △ and ▲ denote the results are referred from [22] and [25],

respectively. Note that the results are the means of five runs and (·) denotes the standard deviation of models.

Model
RECCON-DD ConvECPE

Pos. F1 Neg. F1 macro F1 Pos. F1 Neg. F1 macro F1

1
ECPE-2D△ 55.50 94.96 75.23 - - -

ECPE-MLL△ 48.48 94.68 71.58 - - -
RankCP△ 33.00 97.30 65.15 - - -

2
TUCORE-BERT 67.08 88.53 76.90 - - -

TUCORE-RoBERTa 68.59 90.12 79.35 - - -
DAG-ERC▲ 63.56 95.33 79.44 - - -

3 Joint-EC 43.75(0.44) 83.61(0.26) 63.68(0.33) 41.34(0.49) 94.27(0.15) 67.80(0.32)

4

RoBERTa-base 63.31(3.02) 87.99(0.47) 75.65(1.52) 72.48(2.60) 72.49(1.23) 72.49(1.45)
RoBERTa-large 66.12(5.16) 88.76(0.60) 77.44(1.05) 69.85(3.74) 71.43(3.45) 70.64(3.53)

KEC 63.85(0.80) 95.63(0.08) 79.74(0.44) 78.00(0.93) 75.10(1.32) 76.55(1.00)
MuTECCEE 61.62(1.14) 83.46(0.46) 72.54(0.50) 76.46(0.57) 78.24(0.33) 77.35(0.15)

KBCIN 69.06(0.23) 88.84(0.57) 79.21(0.15) 89.08(0.35) 90.29(0.11) 89.68(0.23)
PAGE 65.20(0.63) 89.42(0.38) 77.02(0.50) 90.10(0.55) 89.32(0.41) 89.70(0.43)

5 Ours 71.18(0.50) 90.35(0.12) 80.76(0.22) 90.80(0.38) 90.72(0.35) 90.76(0.36)

• Joint-EC A two-step framework for the ECPEC task,
which consists of two multi-task models to extract
the emotion-cause pairs in conversations.

• RoBERTa-base/large A baseline for the CEE task,
utilizing the classification model of RoBERTa-
base/large to process concatenated pairs of utter-
ances and their corresponding contexts.

• KEC A SOTA method for the CEE task, which builds
a knowledge-enhanced dialogue graph and enhances
the background knowledge of utterances using a
sentiment-realized knowledge selection strategy.

• MuTECCEE An end-to-end multi-task learning
framework for extracting emotions, emotion cause,
and entailment in conversations.

• KBCIN A knowledge-bridged causal interaction net-
work that leverages commonsense knowledge as
three bridges.

• PAGE A position-aware graph-based model that dis-
tinguish utterances of different speakers for better
causal reasoning.

4.2 Implementation Details

The hyperparameter configurations used by MPEG are as
follows. In the utterance encoder, we utilized the pre-trained
RoBERTa-large uncased model [27] with default hidden
layer size of 1024, and the parameters of RoBERTa-large are
not frozen in our experiments. We employed two multi-
head self-attention modules, each with 16 heads, and a
window size of 1 for the window-limited attention layer.
In the conversation encoder, we used two layers of HAN,
each with a single head, a dropout rate of 0.2, and the
same hidden layer size as the pre-trained model. ELU was
adopted as the activation function for HAN. The PFFN layer
after each HAN layer was implemented by a two-layer CNN
network with a dropout rate of 0.1, kernel size of 1, input
channel size of 1 for the first layer, and a hidden layer size
consistent with that of the HAN layer for the second layer.

In addition, the window size of the context edges was set to
2 in the graph construction process.

AdamW [65] was used as the optimizer with a learn-
ing rate of 3.6384e-6, which is derived by the wandb 1

package using a Bayesian search algorithm for automatic
parameter tuning. The model was trained for 10 epochs on
the RECCON-DD dataset and 5 epochs on the ConvCEPE
dataset with a batch size of 12. All the experiments were
conducted on an NVIDIA TITAN RTX GPU with 24GB
memory. Reported results are the average scores of 5 runs
with fixed random seeds on the test sets obtained from 14
evaluated models.

4.3 Experimental Results

Table 2 demonstrates the experimental results of MPEG as
well as other 13 baseline models. The evaluated models are
presented in groups based on their categories illustrated in
section 4.1.3. The baseline models of ECPE, ERC, ECPEC,
and CEE categories are listed in the first four rows, respec-
tively. The proposed MPEG model is listed in the last row
to highlight its superiority over all the other competitors.

4.3.1 RECCON-DD dataset
From the first row of Table 2, it is evidenced that ECPE
models perform greatly worse than the models from the
ERC and CEE categories. For example, the best-performing
ECPE model, i.e., ECPE-2D, only obtains a macro F1 score
of 75.23%. As a comparison, the macro F1 scores of the
best-performing models in ERC and CEE categories are
79.44% and 79.74%, respectively. These results suggest that
the existing models for the ECPE task may not be suitable
for solving the CEE task.

The worse performance of ECPE models can be at-
tributed to the methods of pairing clauses in the document
one by one. This often leads to a relatively small proportion
of positive samples. Consequently, the models’ positive F1

1. https://wandb.ai/

https://wandb.ai/
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scores become very low. Moreover, ECPE models fail to
leverage the available emotion labels of utterances and they
don’t explicitly model conversation structures, such as the
speaker information, interpersonal- and self-dependencies
of emotions. The results of ECPE models indicate that
utilizing known emotional information and modeling the
conversation structures are essential for the CEE task.

In the second row of Table 2, TUCORE-RoBERTa and
DAG-ERC achieve better performances with their macro
F1 scores of 79.35% and 79.44%. TUCORE-BERT performs
the worst among the three models in the ERC category.
Compared with the CEE baseline model, i.e., RoBERTa-
large, which is proposed by the authors of RECCON-DD,
TUCORE-RoBERTa, and DAG-ERC still achieve improve-
ments in macro F1 of 1.91% and 2.0%, respectively. The
better performances of TUCORE-RoBERTa and DAG-ERC
can be attributed to the similarity between the tasks of ERC
and RECCON. Both tasks require modeling conversation
structures and identifying speakers’ emotional dynamics.

In the third row of Table 2, Joint-EC only achieves a
macro F1 score of 63.68%, although it takes into account
the conversational characteristics compared to other ECPE
models. This may due to the fact that Joint-EC needs to first
detect the emotional and causal utterances in conversations,
and then perform a Cartesian product on them before pre-
dicting the emotion-cause pairs.

The last two rows of Table 2 present the experimental
results of SOTA models for the CEE task and the proposed
MPEG model. As baselines for RECCON-DD, macro F1
scores of RoBERTa-base and RoBERTa-large are 75.65% and
77.44%, respectively. KEC outperforms RoBERTa-base and
RoBERTa-large by 4.09% and 2.3%, respectively, making it
the second-best model in the CEE category. Its better perfor-
mance is due to the introduction of sentiment-realized CSK
to DAG-ERC. KBCIN delivers a commendable performance,
surpassing RoBERTa-base and RoBERTa-large by 3.56% and
1.77% in terms of macro F1, respectively, and falling short
of KEC by only 0.53%. Both KBCIN and KEC incorporate
CSK and achieve a satisfactory performance, indicating the
significance of incorporating external knowledge in causal
reasoning tasks. PAGE achieves a macro F1 score of 77.02%,
1.37% higher than RoBERTa-base but 0.42% lower than
RoBERTa-large. MuTECCEE performs suboptimally com-
pared to other CEE models, obtaining a macro F1 score of
72.54%, which is 3.11% and 4.9% lower than RoBERTa-base
and RoBERTa-large, respectively. This can be attributed to
the fact that MuTECCEE treats the emotions of utterances as
unknown information and does not make use of them.

Notably, the proposed MPEG model obtains a macro F1
score of 80.76%, surpassing RoBERTa-base and RoBERTa-
large by 5.11% and 3.32%, respectively. Despite not incorpo-
rating external knowledge like KEC and KBCIN, MPEG out-
performs them by 1.02% and 1.55%, respectively. MPEG also
outperforms PAGE and MuTECCEE by 3.74% and 8.22% in
macro F1, respectively.

4.3.2 ConvECPE dataset
Six CEE models and one ECPEC baseline were implemented
and tested on the ConvECPE dataset, the results of which
have been listed in Table 2. Among these baseline mod-
els, PAGE achieves the best performance with a macro F1

score of 89.70%. KBCIN closely follows with a marginally
lower score, trailing by only 0.02%. However, KEC, which
is the second-best model on RECCON-DD, only achieves
a macro F1 score of 76.55% this time. Its performance is
13.15% lower than that of PAGE. The underperformance
of KEC on ConvCEPE indicates that it may not be well-
suited for long conversation scenarios. This could be at-
tributed to its incorporation of excessive external knowledge
that may not be suitable for the conversation environment.
MuTECCEE achieves a respectable macro F1 score of 77.35%
on ConvCEPE, without the help of additional emotional
information. While this score is 12.33% lower than that of
KBCIN, MuTECCEE outperforms RoBERTa-base, RoBERTa-
large, and KEC by 4.86%, 6.95%, and 0.8%, respectively.
RoBERTa-base/large exhibits the worst performance among
the CEE models, possibly due to its simplistic approach of
concatenating contextual information. When the conversa-
tions become too long, RoBERTa-base/large may truncate
some contextual information, resulting in an information
loss which leads to a poor performance. Joint-EC achieves
a macro F1 score of 67.80%, with a smaller gap compared
to RoBERTa-base/large on RECCON-DD, but is still much
inferior to the SOTA models in the CEE task. In general,
Joint-EC exhibits poor performance on both datasets of the
CEE task.

Our proposed MPEG model still achieves the best per-
formance on the ConvECPE dataset with its pos. F1, neg.
F1, and macro F1 scores of 90.80%, 90.72%, and 90.76%,
respectively. It overwhelms all the CEE models on all three
metrics. In particular, MPEG outperforms RoBERTa-base
and RoBERTa-large by 18.27% and 20.12% in macro F1, re-
spectively, and even surpasses the second-best PAGE model
by 1.06% in macro F1. Furthermore, MPEG outperforms
KEC with a notable margin, which ranks second on the
RECCON-DD dataset, exhibiting a 14.21% higher macro
F1 score. The experimental results indicate that MPEG ex-
hibits outstanding performance not only on RECCON-DD
consisting of short conversations but also on ConvCEPE
consisting of long conversations. Such results demonstrate
the outstanding performance and generalization ability of
MPEG, making it a highly effective model for handling
different conversation scenarios.

5 ANALYSIS

5.1 Ablation Study
To verify the effectiveness of different modules in MPEG, ab-
lation studies were performed on the RECCON-DD dataset.
Different modules which include SA-RoBERTa, window-
limited attention layer, emotional fusion layer, PFFN layer,
emotional information, and speaker characteristics were re-
moved from MPEG respectively and the performances were
evaluated thereafter. The experimental results are presented
in Table 3.

• ˜SA-RoBERTa indicates that the SA-RoBERTa model
in the input embedding layer of MPEG is substituted
with the regular RoBERTa model.

• ˜Attention indicates that the window-limited atten-
tion layer is removed from MPEG.

• ˜Fusion indicates that the emotional fusion layer is
removed from MPEG.
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TABLE 3
Results of the ablation study on the RECCON-DD dataset.

Model
RECCON-DD

Pos. F1 Neg. F1 macro F1

˜SA-RoBERTa 70.56(1.37) 90.21(0.28) 80.38(0.67)
˜Attention 69.54(0.43) 90.63(0.07) 80.09(0.09)

˜Fusion 69.31(0.87) 90.14(0.23) 79.73(0.20)
˜PFFN 69.13(0.64) 90.50(0.18) 79.82(0.38)

˜Emotion 68.07(1.10) 89.91(0.18) 78.99(0.49)
˜Speaker 68.97(0.43) 89.90(0.27) 79.43(0.34)
MPEG 71.18(0.50) 90.35(0.12) 80.76(0.22)

• ˜PFFN indicates that the position-wise feed-forward
layer is removed from MPEG.

• ˜Emotion indicates that emotion tokens originally
concatenated in the input embedding layer are re-
moved and the emotional fusion layer is eliminated
simultaneously.

• ˜Speaker indicates that the speaker embedding layer
in SA-RoBERTa and the speaker edges in graph con-
struction are eliminated simultaneously.

From Table 3, the contributions of different modules in
MPEG can be summarized as follows:

• Efficacy of SA-RoBERTa: In comparison to MPEG,
˜SA-RoBERTa drops by 0.38% on macro F1, indicat-
ing that the addition of the speaker embedding layer
helps reveal speaker characteristics but to a lesser
extent. This may be due to the subsequent modules
being more complex, causing the already small con-
tribution of SA-RoBERTa to be further diluted over a
prolonged training period.

• Efficacy of window-limited attention layer: In com-
parison to MPEG, ˜Attention drops by 0.67% on
macro F1, indicating that the window-limited atten-
tion layer can incorporate local contextual semantics
effectively. However, the impact of attention is not as
pronounced as that of the fusion layer, despite both
utilizing MHSA for information fusion. We believe
that contextual information is more complex and
changeable than emotional information, and thus,
the effect of attention may not be as significant as
that of the fusion layer.

• Efficacy of emotional fusion layer: In comparison to
MPEG, ˜Fusion drops by 1.03% on macro F1, indicat-
ing that our emotional fusion layer can effectively
integrate emotional information into the utterance
representation, thereby enhancing the accuracy of
emotion cause prediction.

• Efficacy of PFFN: Compared to MPEG, ˜PFFN drops
by 0.94% on macro F1, indicating that PFFN con-
tributes to information fusion to some extent and can
help discover deep semantic information.

• Efficacy of emotion: After removing the emotional
information, MPEG’s model performance drops by
1.77% on macro F1, indicating that the inclusion of
emotion labels plays a significant role in the CEE
task. However, it is worth noting that MPEG still out-
performs the CEE baselines without the use of emo-

tion labels and only slightly underperforms KBCIN
and KEC. Moreover, its performance is 6.45% higher
than MuTECCEE, which also doesn’t utilize emotion
labels. These experimental results demonstrate that
MPEG can still perform well in situations where the
emotions of utterances are unknown, which is in line
with real-life conversational scenarios.

• Efficacy of speaker: Compared to MPEG, ˜Speaker
exhibits a decrease of 1.33% in terms of macro F1,
indicating that our SA-RoBERTa and speaker edges
can effectively model the intra-speaker emotional dy-
namics and further enhance the model performance.

5.2 Impacts of Hyperparameters
Our model utilizes two window sizes: the window-limited
size w in Sect. 3.3.2 and the window size w′ in Sect. 3.4.1. To
gain a better understanding of our model, we conducted
the following experiments to investigate the impacts of
these two hyperparameters on the model performance: (a)
varying sizes of w, and (b) varying sizes of w′. The impacts
of the two window sizes on the performance of MPEG are
shown in Fig. 5.
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(b) Results with varying w′.

Fig. 5. Experimental results with varying hyperparameters on the
RECCON-DD dataset.

• Impact of the value of w: The window-limited size
w in the MHSA layer determines the range of local
contexts with which the current utterance should be
fused, with the aim of modeling local utterance-level
features. We set the value of w from 1 to 5 for analyz-
ing the results using different values of w, as shown
in Fig. 5(a). It can be observed that when w is set to
1, the model achieves the highest performance. As
w increases, the macro F1 value decreases, indicating
that incorporating too many local contexts makes the
model fail to capture the key information effectively.
When w is set to 5, the model’s performance shows
a slight improvement compared to w = 4, but it is
still not optimal. Therefore, we set w as 1 in the final
version of our model, as it corresponds to the best
performance.

• Impact of the value of w′: The window size w′ in
the graph construction process determines which
preceding nodes should be connected to the current
node. We set the value of w′ from 1 to 5, as shown
in Fig. 5(b). It can be observed that when w′ is set
to 1, the model’s macro F1 is below 78.5%, indicat-
ing insufficient learning of the conversational graph
structures. When w′ is set to 2, the model achieves the
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best performance with a macro F1 value exceeding
81.0%. As w′ is increased from 2, the model’s perfor-
mance decreases until it rises again at the value of 5.
The experimental results demonstrate that when w′

is set to 2, it is sufficient to propagate the contextual
passages in graphs effectively. Therefore, we choose
2 as the final value of w′, as it corresponds to the
highest macro F1 value.

5.3 Case Study

To intuitively demonstrate the performance of MPEG, two
representative examples are selected from the RECCON-DD
test set for the case study. The conversation contents, the
emotion label of each utterance, and the truth and predicted
indices of causal utterances are presented in Table 4.

In the first example (i.e., Case 1 in Table 4), a conver-
sation about a mischarge is presented, in which Speaker
A speaks with an anger emotion most of the time while
Speaker B remains in a neutral mood. In utterance 1, Speaker
A emphasizes that he had been mischarged $10 for a movie
that he did not order. The anger emotion is obviously trig-
gered by the mischarge event illustrated in utterance 1. In
utterance 3, Speaker A has to correct another mistake made
by Speaker B with mischarge unsolved, which intensifies his
anger emotion in the current utterance. Therefore, Speaker
A’s anger emotion in utterance 3 is caused by both events
described in utterances 1 and 3. Similarly, in utterances 7
and 9, Speaker A is annoyed by the extra fee to solve the
mischarge problem described in utterance 6. Therefore, the
cause of the anger emotion in utterances 7 and 9 should be
utterances 6 and 7.

In this example, MPEG successfully identified the correct
causal utterance indices for utterances 1 and 3. However, for
utterances 7 and 9, MPEG erroneously treated utterance 1
as an emotion cause, although it also identified the correct
causal utterances. The extra incorrect prediction can be
attributed to the phrase “you’re charging me for a movie” in
utterance 6, which confuses MPEG and leads to the incorrect
assumption that the event in utterance 6 is highly correlated
with the mischarge mentioned in utterance 1. Similarly,
MPEG mistakenly treated the mischarge mentioned in ut-
terance 1 as a cause of utterance 9.

As demonstrated by Case 1, MPEG can identify the
central event running through the conversation and find
all the correct causal utterances. However, it cannot always
capture the subtle shifts of the main contradictions and may
mistakenly treat the original event as the emotion cause.

In Case 2, a couple’s discussion about an extramarital
affair is presented. In this example, speakers’ emotions are
complex and varied, involving surprise, anger, and disgust.
In utterance 4, Speaker B is in surprise when learning
that Mr. Blake, who looks decent, is cheating on his wife.
The surprise emotion is triggered by the cheating event
mentioned in utterance 3 and Speaker B’s own perceptions
revealed in utterance 4. However, in utterance 6, Speaker
B abruptly questions Speaker A about whether he has ever
cheated on her. This marks a significant contextual shift in
the discussion, and only utterance 6 should be regarded as
the emotion cause of utterance 6. In utterance 8, Speaker
B is disgusted by Speaker A’s humor, and this emotion

is triggered by the utterance itself. Similarly, in utterance
9, Speaker A feels disgusted that Speaker B is not funny.
Therefore, only utterance 9 should be considered as the
emotion cause of itself.

In this example, MPEG again identifies all the correct
emotion causes but tends to include more unrelated ut-
terances as causes. For utterance 4, MPEG successfully
identified the correct causal utterances. But for utterance 6,
MPEG did not recognize the contextual shift, and mistak-
enly attributed Speaker A’s anger to the affair mentioned in
utterances 4 and 5. For utterance 8, MPEG also misidentified
the joke made by Speaker A in utterance 7 as the cause of
Speaker B’s disgust. However, we think that this inference is
reasonable since Speaker B does scold Speaker A due to the
ill-timed joke. For utterance 9, MPEG incorrectly identified
utterances 7 and 8 as causes. Although we believe that
utterance 8 can be seen as the emotional cause of utterance
9, there is no direct relationship between utterances 7 and 9.
These results suggest that MPEG has room for improvement
in accurately identifying emotion causes.

Overall, the performance of MPEG is satisfactory as it
can identify all the correct causal utterances while eliminat-
ing most unrelated utterances, as observed in the two exam-
ples. However, MPEG tends to consider certain semantic-
relevant utterances as emotion causes and, as a result, tends
to associate emotion trigger events with more conversation
contexts. Especially for the target utterance with only one
causal utterance, this approach tends to perform worse.
There is still room for improvement, particularly in exclud-
ing relevant but non-critical utterances from prediction.

6 CONCLUSION

In this paper, we proposed a novel multi-perspective en-
hanced graph attention network, namely MPEG, which
has been demonstrated to be highly effective in the task
of causal emotion entailment in conversations. Our model
effectively integrates local and global causal associations
through utterance-level and conversation-level encoders,
and leverages a fully-connected network to learn the rel-
evance between utterances. The incorporation of speaker
information with an improved pre-trained model, as well
as the employment of two attention mechanisms to ag-
gregate local contexts and emotion dynamics, have fur-
ther enhanced the model’s performance. Moreover, the
heterogeneous graph attention network and the position-
wise feed-forward network facilitate the fusion of multi-
perspective conversational information, enabling MPEG to
achieve state-of-the-art performance in the field. Extensive
experiments and studies have corroborated the superior
performance of MPEG, which outperforms existing models
by a significant margin.
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