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The surround-view module is an indispensable component of a modern advanced driving assistance system.

By calibrating the intrinsics and extrinsics of the surround-view cameras accurately, a top-down surround-

view can be generated from raw fisheye images. However, poses of these cameras sometimes may change. At

present, how to correct poses of cameras in a surround-view system online without re-calibration is still an

open issue. To settle this problem, we introduce the sparse direct framework and propose a novel optimiza-

tion scheme of a cascade structure. This scheme is actually composed of two levels of optimization and two

corresponding photometric error based models are proposed. The model for the first-level optimization is

called the ground model, as its photometric errors are measured on the ground plane. For the second level of

the optimization, it’s based on the so-called ground-camera model, in which photometric errors are computed

on the imaging planes. With these models, the pose correction task is formulated as a nonlinear least-squares

problem to minimize photometric errors in overlapping regions of adjacent bird’s-eye-view images. With a

cascade structure of these two levels of optimization, an appropriate balance between the speed and the accu-

racy can be achieved. Experiments show that our method can effectively eliminate the misalignment caused

by cameras’ moderate pose changes in the surround-view system. Source code and test cases are available

online at https://cslinzhang.github.io/CamPoseCorrection/.
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1 INTRODUCTION

Typically, a surround-view system consists of four to six fisheye cameras. By calibrating its intrin-
sics and extrinsics accurately, we can synthesize high-quality surround-view images at runtime
from fisheye images by multiview geometry knowledge [13]. A surround-view system can help re-
duce a driver’s blind spots and make driving safer and more convenient. In addition, in recent years,
surround-views have been widely used in driving assistance tasks, such as parking-slot detection
[23, 42], autonomous parking [24, 41] and pedestrian detection [11, 18]. These tasks usually play
important roles in driving assistance and their performance can be affected much by the quality
of surround-view images.

When cameras in a surround-view system are offline calibrated [22, 34], they are supposed to
be fixed to keep their relative poses unchanged. However, due to collisions, bumps, tire pressure
changes and other factors, camera poses may alter indeed afterwards. If we do not adjust cam-
eras’ extrinsics accordingly, there will be observable geometric misalignment in the generated
surround-view. In most commercial solutions, to eliminate such geometric misalignment, drivers
have to drive to the auto service stores and to re-calibrate the vehicles by professionals. This is
undoubtedly quite troublesome for both customers and automobile manufacturers. Thus, many au-
tomobile manufacturers now are looking for online methods to correct a surround-view system’s
extrinsics. Unfortunately, at present, relevant studies are quite few in this field. In this paper, we at-
tempt to tackle this problem to some extent by proposing an online scheme for correcting camera
poses of a surround-view system without resorting to re-calibration. More importantly, our online
camera pose correction scheme relies totally on minimizing photometric errors without the need
for additional physical equipment or calibration sites. Therefore, it can be easily integrated into
pipelines of existing surround-view systems to improve their robustness and stability.

The remainder of this paper is organized as follows. Section 2 introduces the related work
and our contributions. Section 3 makes an overview of the surround-view calibration pipeline.
Section 4 presents our proposed approach in details. Experimental results are reported in Section 5.
Finally, Section 6 concludes the paper.

2 RELATED WORK AND OUR CONTRIBUTIONS

2.1 Online Pose Correction for the Multi-camera System

The surround-view system is a special kind of multi-camera system. A multi-camera system con-
sists of at least two cameras. Before using such a system, we often need to calibrate the intrinsics
of its cameras. In addition, most of the multi-camera systems require extrinsics calibration to es-
timate the relative poses among cameras [20]. When one or more cameras move after calibration,
the extrinsics of the multi-camera system will definitely change and we need to correct them. Ex-
isting online camera pose correction schemes for multi-camera systems roughly fall into three
categories, odometry based ones, lane-line based ones and bundle adjustment based ones.1

Odometry based methods. The odometry based methods resort to a visual odometry or a com-
plete SLAM system to correct the poses of the camera system. In [38], Schneider et al. proposed a

1The traits of the methods reviewed in this subsection along with the one proposed in this article are given in Table 2.
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method of resolving cameras’ extrinsics based on localization results of a visual odometry. It has
a merit that it can be applicable to not only cameras but also lidars. However, it takes about 500
frames for the system to converge. Heng et al. [14, 15] proposed an infrastructure-based calibra-
tion pipeline. With their scheme, a vehicle equipped with a surround-view system needs to travel
in the calibration area for a while to establish the map.

In fact, the online camera pose correction problem can be regarded as a variant of the SLAM
problem, so these methods are theoretically feasible. However, since the operation of the SLAM
system will occupy a significant amount of computation resources, these methods somewhat do
not have the necessary portability. In addition, in the SLAM system, the construction of stable
maps usually takes much time. Therefore, in real application scenarios, such methods are usually
unlikely to meet the industrial portability requirements.

Lane-line based methods. The lane-line based methods rely on a strong assumption, that is two
parallel lane-lines on the ground can be captured by the cameras. One of the earliest works in
this field is Collado et al.’s in [4]. Collado et al. used the Sobel operator and the Hough transform
to extract the calibration pattern from two parallel ground lanes, and then with the pattern, they
estimated the extrinsics of the stereo-vision cameras. The solution proposed in [32] first estimates
the vanishing point based on two lanes parallel to each other on the flat ground, and then with the
estimated vanishing point, the pose of the multi-camera system relative to the world coordinate
system is solved. In Hold et al.’s work [17], a method of online extrinsics calibration also using
ground lanes was proposed. To begin with, they detected the lane and obtained a series of feature
points by sampling the lane with the scanning line. Then, fast Fourier transform was adopted to
measure the distance of lane points, and finally, they made use of lane points to solve the cam-
eras’ extrinsics. In [44], Zhao et al. proposed to utilize multiple vanishing points of lane markings
for calibrating cameras’ orientations. Their approach performs better in accuracy compared with
the previous competitors, but just as the aforementioned lane-line based solutions, it’s still not
applicable to the surround-view system. In [3], Choi et al. designed an online extrinsics calibra-
tion pipeline for the surround-view case, in which the surround-view system was calibrated by
aligning lane markings across images of adjacent cameras.

As we mentioned earlier, this type of lane-line based solutions make an assumption for the
working environment, that is, there must be two parallel lane-lines clearly observed in the field
of view. However, this is an assumption that cannot usually be satisfied. For example, when a car
is running on a road without lane-lines or in an underground parking lot, this assumption will be
broken. Therefore, the application scope of these lane-line based frameworks is quite limited.

Bundle adjustment based methods. The existing bundle adjustment based methods all follow a
similar basic pipeline. First, feature extraction and matching are performed on images collected by
different cameras. Then 3D positions of the points are determined by triangulating the paired 2D
features. Finally, by bundle adjustment, the reprojection error is minimized, thereby optimizing
the camera poses. It is worth mentioning that the bundle adjustment is not unique to this kind of
scheme, and is also often used in the odometry based ones. The bundle adjustment based methods
discussed here refer to those ones that do not include the complete front-end and back-end but
instead only use the bundle adjustment technology to achieve pose correction.

Dang et al. [5] presented an approach for continuous self-calibration of the stereo-vision
cameras. Three different categories of constraint equations were formulated as a Gauss-Helmert
model for the self-recalibration task, bundle adjustment with reduced parameter vector, the
epipolar constraint, and the trilinear constraints. In [12], Hansen et al. proposed an online
extrinsics calibration method based on sparse feature matching using a sequence of frames. They
first acquired the initial estimation of extrinsics by minimizing the epipolar error in a single
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frame. Then, they optimized the states of the following multi-frames by the Extended Kalman
Filter. Knorr et al. [21] established a recursive optimization algorithm, in which relative camera
poses were corrected by the Extended Kalman Filter, and the relationship between the camera
system and the ground was determined via homography estimation. Both Hansen et al.’s and
Knorr et al.’s methods resort to the Extended Kalman Filter, so a sequence of frames are required
for them to converge. In Ling and Shen’s approach [25], the initial calibration result was taken
as the starting point, the epipolar error was minimized by non-linear optimization, and the
accuracy of calibration was evaluated by the minimum eigenvalue of the covariance matrix. It is
worth mentioning that their method takes cameras in the system as a whole and supposes that
relative poses among the cameras are fixed and will not change. Consequently, it actually does
not consider the relative pose optimization between cameras.

Aforementioned bundle adjustment based schemes are all online approaches to re-calibrate or
to optimize the extrinsics of a multi-camera system via “bundle adjustment”. However, they are all
designed for common multi-camera systems. Although the surround-view system is also a multi-
camera system, unfortunately, these schemes are usually not directly applicable to it due to its
following characteristics compared with conventional multi-camera systems:

(1) The wide-angle fisheye camera is often used in the surround-view system. Compared with
ordinary cameras, the distortion of fisheye cameras is much more serious and more difficult
to be eliminated completely. This phenomenon is particularly noticeable at the boundary of
the image.

(2) In vehicle-mounted surround-view systems, cameras are usually mounted facing four dif-
ferent directions around the vehicle, while for an ordinary binocular camera system, the
base-line length is only tens of centimeters at most. Therefore, poses of cameras in a
surround-view system differ greatly and the common-view area between adjacent cameras is
smaller.

2.2 Direct Method

Our proposed cameras’ extrinsics optimization approach for the surround-view system follows a
sparse direct framework. Therefore, here we make a brief review of the studies of direct methods.

The direct methods, which are evolved from optical flow [29] approaches, are modern techniques
for camera pose estimation. In direct methods, the local intensity gradient is utilized to determine
the step of the optimization [10]. All image pixels can be utilized by direct methods and hence they
usually demonstrate better robustness in scenes with sparse textures.

Nowadays, more and more researchers are willing to adopt direct methods rather than feature-
point based ones to recover camera poses from images, especially in the field of SLAM. The direct
method was first proposed by Irani and Anandan [19]. They explained the brightness constancy
constraint and properties of direct methods in detail. In [33], Newcombe et al. built the DTAM

(Dense Tracking And Mapping) system, in which the direct method was applied to generate the
dense map. Engel et al. proposed LSD-SLAM (Large-Scale Direct monocular SLAM) in 2014 [9]
while another influential SLAM system called SVO (Semi-direct monocular Visual Odometry)

was proposed in the same year by Forster et al. [10]. LSD-SLAM was one of the most advanced
monocular SLAM systems at that time and SVO exhibits distinguished processing speed. Both LSD
and SVO are based on the semi-dense direct framework. In 2017, Engel et al. [8] proposed DSO

(Direct Sparse Odometry), which is one of the most advanced SLAM systems nowadays. The
sparse direct method makes DSO much more efficient than its counterparts. Engel et al. claimed
that DSO is five times faster than ORB-SLAM [31, 36], a representative feature-point based SLAM
system.
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Fig. 1. The surround-view images before (a) and after (b) performing our camera pose correction algorithm.

2.3 Our Motivations and Contributions

Through literature review, we find that the existing online extrinsics correction methods for the
surround-view systems have the following limitations.

(1) To the best of our knowledge, there is currently no effective online extrinsics correction
scheme specifically designed for the vehicle-mounted surround-view system. On one hand,
most bundle adjustment based online extrinsics correction solutions are designed for com-
mon multi-camera systems and they are not suitable for the vehicle-mounted surround-view
systems. On the other hand, existing online extrinsics correction approaches specially de-
signed for the surround-view camera system mostly belong to odometry based or lane-line
based ones. Since odometry based methods are usually more or less cumbersome and the
lane-line based methods have strict requirements on the environmental conditions, they of-
ten have obvious deficiencies in usability.

(2) The majority of existing methods in this area are based on matching interest-points or line
features extracted from common-view areas of adjacent cameras. The interest-point based
ones require a large number of feature points while the line based ones usually require two
parallel lanes, implying that these methods have special requirements for the environment.
Besides, features of common-view areas are highly probable near boundaries of fisheye im-
ages and thus they are prone to mismatch due to large distortion.

In this paper, we aim to fill the aforementioned research gap and have proposed an online cam-
eras’ extrinsics correction scheme for the surround-view system. Using our scheme, if camera
poses of a calibrated surround-view system change moderately, the associated extrinsics can be
corrected online. Figure 1 shows the results of the surround-view images before and after camera
poses’ correction with our algorithm. The characteristics of the proposed scheme are summarized
as follows.

(1) The optimization objective of the proposed scheme is to minimize the photometric errors
of the common-view areas between adjacent bird’s-eye-views. In order to make it work,
the user only needs to park the vehicle in a normal flat field with relatively rich textures.
Except for this requirement, it does not require any other additional physical tools or special
calibration sites. Hence, it can be seen that the proposed scheme has the advantage of being
easy to use and having fewer requirements on the conditions of the operating site. Therefore,
it is suitable for ordinary non-professional end-users.

(2) Our scheme follows a sparse direct framework, implying that it does not depend on visual
feature points and thus requires less on its working conditions. Within the sparse direct
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framework, a novel pixel selection strategy is proposed, with which noise and mismatched
objects between images captured by adjacent cameras can be eliminated effectively. Pho-
tometric errors are then only computed on the selected positions. Such a pixel selection
strategy can effectively improve the whole pipeline’s speed and robustness.

(3) The proposed scheme actually is of a cascade structure, comprising two different models,
the “ground model” and the “ground-camera model”. The ground model is simpler and more
efficient than the ground-camera model, but it suffers from the loss of degree-of-freedom,
while the ground-camera model does not have such a shortcoming. In actual use, our scheme
first tries to use the ground model. If it does not work satisfactorily, the scheme switches to
the ground-camera model, which is theoretically more sophisticated and effective.

A preliminary version of this manuscript has been accepted by ACM MM 2019 [26]. The follow-
ing improvements are made in this version. (1) The whole pipeline is formulated in a sparse direct
framework with a new pixel selection strategy introduced. (2) The ground model and the ground-
camera model are organized in a cascade structure; in addition, more details and illustrations for
the derivation of the two models are provided. (3) More experimental results and discussions, in-
cluding the robustness analysis, the additional failure case analysis and the comparison with the
other existing counterparts, are provided. (4) A more thorough survey of related studies is given.

3 OVERVIEW OF THE SURROUND-VIEW SYSTEM

This section describes the pipeline about how to generate a surround-view from images captured
by the cameras mounted around the vehicle.

Given the ground coordinate systemOG and a surround-view system consisting of four cameras
C1,C2,C3 andC4, the poses of cameras inOG are denoted byTC1G ,TC2G ,TC3G andTC4G , respectively.
For a point PG = [XG ,YG ,ZG , 1]T in OG , its corresponding pixel coordinate pCi

in the camera
coordinate system of Ci is given by,

pCi
=

1

ZCi

KCi
TCi GPG , i = 1, 2, 3, 4 (1)

where ZCi
is the depth of PG in cameraCi ’s coordinate system, and KCi

is the 3×3 intrinsic matrix
of camera Ci , which can be estimated by Zhang’s salient work [43] and some subsequent work
of others [7, 45]. Poses of the four cameras with respect to OG can be calibrated offline by Shao
et al.’s method [39]. It’s worth mentioning that pCi

is an undistorted point.
The bird’s-eye-view image can be generated by projecting a camera image to the ground, namely

the planeZG = 0 inOG . Consider a pointpG = [uG ,vG , 1]T in the bird’s-eye-view image, whereuG

and vG are the coordinate values of pG in the bird’s-eye-view coordinate system, respectively. Its

corresponding point on the ground plane is PG = [XG ,YG ,ZG = 0, 1]T with respect to the ground
coordinate system, whereXG ,YG andZG are the coordinate values of PG . The relationship between
pG and PG can be represented as,

⎡⎢⎢⎢⎢⎢⎣
uG

vG

1

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣

1
dXG

0 W
2dXG

0 − 1
dYG

H
2dYG

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
XG

YG

1

⎤⎥⎥⎥⎥⎥⎦
(2)

where dXG
and dYG

are the size of each pixel2, andW and H are the width and height of the scope
covered by the surround-view image. It is worth mentioning that because ZG = 0, ZG is ignored
implicitly here. Denote the transformation matrix from PG to pG by KG , and Equation (2) can be

2More accurately, each pixel in the surround-view image corresponds to a dXG
× dYG

physical area on the ground plane.
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accordingly simplified as,

pG = KGPG . (3)

By combining Equation (1) and Equation (3), we can get,

pCi
=

1

ZCi

KCi
TCi GK

−1
G pG . (4)

Equation (4) actually depicts the relationship of a point pCi
on the image plane of camera Ci and

its projection pG on the surround-view. Using Equation (4), we can project the undistorted image
of camera Ci onto the ground to generate a bird’s-eye-view image by,

IGCi
(pG ) = ICi

(pCi
) (5)

where ICi
is the undistorted image captured by cameraCi , and IGCi

is the ground projection of ICi
,

namely the bird’s-eye-view image. By projecting the undistorted images of the four cameras onto
the ground and choosing appropriate stitching seams, the surround-view image can be generated.

4 ONLINE CAMERA POSE OPTIMIZATION: A CASCADE STRUCTURE

With accurate camera poses, seamless surround-view images can be synthesized at run-time. How-
ever, in online environment, camera poses sometimes may change due to some reasons like bumps
and collisions, which will inevitably lead to observable misalignment in adjacent bird’s-eye-views
of the surround-view image.

To correct the inaccurate extrinsics without re-calibration, this paper proposes an online opti-
mization scheme. Such a scheme takes initial camera poses inherited from offline calibration as
input and outputs their optimal estimations that can make the current surround-view seamless.
The proposed scheme is of a cascade structure, consisting of two levels of optimization. Each level
of optimization is based on a model designed by us. The first level is based on the ground model
and the second level is based on the ground-camera model. Both models estimate optimal camera
poses by minimizing the photometric errors between adjacent cameras. The overall structure of
the proposed online camera poses optimization pipeline is shown in Figure 2.

4.1 Ground Model

Suppose that Ci and Cj are two adjacent cameras in a surround-view system. Denote by IGCi
and

IGCj
the bird’s-eye-view images generated from Ci and Cj , respectively. Given a point pG on the

common-view area of IGCi
and IGCj

, the photometric error εpG
between IGCi

(pG ) and IGCj
(pG )

can be defined as,

εpG
= ‖IGCi

(pG ) − IGCj
(pG )‖2 . (6)

By expanding pG into a form that includes the camera’s pose, pG can be written as,

pG = KG exp(ξ∧GCi
)PCi

(7)

where PCi
represents the spatial point on the ground corresponding topG in the camera coordinate

system of Ci and ξGCi
is the Lie algebra representation [16] of the transformation from camera

Ci to the ground. ξ∧GCi
is just the anti-symmetric matrix induced by ξGCi

. By substituting pG in

Equation (6) with Equation (7), we can get,

εpG
= ‖IGCi

(KG exp(ξ∧GCi
)PCi

) − IGCj
(KG exp(ξ∧GCj

)PCj
)‖2. (8)

Then the optimization objective of the ground model can be defined as,

ξ ∗GCi
, ξ ∗GCj

= arg min
ξGCi

,ξGCj

∑
pG ∈Ni j

ε2
pG

(9)
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Fig. 2. Structural sketch of our algorithm for online cameras’ poses correction of a surround-view system.
There are two levels of optimization. The first level of optimization is based on the ground model while the
second level is based on the ground-camera model. eavд in the figure stands for the average photometric
error over the common-view regions of the used bird’s-eye-view images.

whereNi j is the set of qualified points in the overlapping region of IGCi
and IGCj

chosen by a pixel
selection strategy, whose details will be discussed in Section 4.5.

To optimize the objective function Equation (9), the derivative relationship between ε2
pG

and

ξGCi
needs to be determined. The Jacobian of ε2

pG
to ξGCi

can be expressed as,

Ji =
∂ε2

pG

∂ξT
GCi

. (10)

Equation (10) can be decomposed to four parts with the chain rule,

Ji =
∂ε2

pG

∂IGCi
(pG )

·
∂IGCi

(pG )

∂pT
G

· ∂pG

∂PT
G

· ∂PG

∂ξT
GCi

. (11)

Next, we will discuss these four parts one by one:
(1) ∂ε2

pG
/∂IGCi

(pG ) is the derivative of squared error ε2
pG

to the pixel intensity IGCi
(pG ). We

denote it by δ . Supposing that IGCi
is a grayscale image, then δ is,

δ =
∂ε2

pG

∂IGCi
(pG )

= 2
(
IGCi

(pG ) − IGCj
(pG )

)
. (12)

(2) ∂IGCi
(pG )/∂pT

G is the intensity gradient of IGCi
at the pixel pG ,

∂IGCi
(pG )

∂pT
G

Δ
=

[
∇IuG

GCi
∇IvG

GCi

]
. (13)

(3) ∂pG/∂PT
G is the derivative of pG to its corresponding spatial point PG . From Equation (2), we

can have,

∂pG

∂PT
G

=

⎡⎢⎢⎢⎢⎣
∂uG

∂XG

∂uG

∂YG

∂uG

∂ZG
∂vG

∂XG

∂vG

∂YG

∂vG

∂ZG

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣

1
dXG

0 0

0 − 1
dYG

0

⎤⎥⎥⎥⎥⎦ . (14)
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Fig. 3. Illustration of the ground model. The error is constructed on the surround-view image plane.

(4) ∂PG/∂ξT
GCi

is the derivative of the 3D point PG to the camera pose ξGCi
,

∂PG

∂ξT
GCi

=
[
I3×3 −P∧G

]
=

⎡⎢⎢⎢⎢⎢⎣
1 0 0 0 ZG −YG

0 1 0 −ZG 0 XG

0 0 1 YG −XG 0

⎤⎥⎥⎥⎥⎥⎦
(15)

where I3×3 is a 3 × 3 identity matrix and P∧G is the 3 × 3 anti-symmetric matrix generated from PG .
It needs to be noted that PG is a point on the ground plane and accordingly ZG = 0.

By combining the above four parts together, the final form of Ji can be expressed as,

Ji = δ
[
∇I

uG
GCi

dXG

−
∇I

vG
GCi

dYG

0 0 0 −
∇I

uG
GCi

YG

dXG

−
∇I

vG
GCi

XG

dYG

]
. (16)

Following a similar derivation, we can get the Jacobian of ε2
pG

to ξGCj
and denote it by Jj . Once

Ji and Jj are available, Equation (9) can be iteratively optimized with any non-linear optimization
methods, such as the gradient descent method, the Gauss-Newton method and the Levenberg-
Marquardt method [1, 6, 27, 30, 35, 40].

For a surround-view system, we can jointly optimize all camera poses by minimizing the overall
photometric error of the whole system. Thus, the optimization objective of the surround-view
system can be expressed as,

ξ ∗GCi
= arg min

ξGCi

4∑
i=1

∑
j ∈Ω(i )

∑
pG ∈Ni j

ε2
pG

(17)

where Ω(i ) contains all the indexes of Ci ’s adjacent cameras.The sketch of the ground model is
shown in Figure 3.

Although the ground model can solve the problem of camera pose optimization to some extent,
it has an obvious shortcoming. The camera pose ξGCi

has six degrees-of-freedom, but the Jacobian
matrix Ji derived by the ground model has only three degree-of-freedoms, implying that only three
dimensions of ξGCi

can be updated. The first two dimensions represent translations parallel to
the ground plane, while the last one represents rotation around the Z-axis of the ground coordinate
system. That is to say, the ground model can only correct particular types of camera poses’ change,
which limits its application scope. To solve the issue of degree-of-freedom loss, we propose a
more universal optimization model, namely the “ground-camera” model.

4.2 Ground-Camera Model

Unlike the ground model, the ground-camera model resorts to a different projection plane to com-
pute the photometric error. We also suppose that Ci and Cj are two adjacent cameras. To correct
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the pose of camera Ci , we firstly project IGCj
to camera Ci using Equation (4). Suppose that the

projection of the bird’s-eye-view image IGCj
on camera Ci is ICi

GCj
. In the ground-camera model,

the photometric error εp at p of camera Ci is defined as,

εp = ‖ICi
(p) − ICi

GCj
(p)‖2 (18)

where p is a point on the imaging plane of the camera Ci and should also be a qualified point on

ICi

GCj
. Similar to the ground model, p is firstly expanded into a form which includes the camera

pose,

p =
1

ZCi

KCi
exp(ξ∧Ci G )PG . (19)

Define PCi

Δ
= exp(ξ∧Ci G )PG = [XCi

YCi
ZCi ]T . Then the photometric error atp can be written

as,

εp =
�����ICi

(
1

ZCi

KCi
exp(ξ∧Ci G )PG

)
− ICi

GCj

(
1

ZCi

KCi
exp(ξ∧Ci G )PG

)�����2

(20)

and for camera Ci , its optimal camera pose is given by,

ξ ∗Ci G = arg min
ξCi G

4∑
i=1

∑
j ∈Ω(i )

∑
p ∈NCi

i j

ε2
p (21)

where Ω(i ) contains all the indexes of Ci ’s adjacent cameras and NCi

i j is a set containing the cor-

responding projection points on the imaging plane of Ci of all points in Ni j .
To optimize the objective function Equation (21), the derivative relationship between ε2

p and

ξCi G needs to be determined. The Jacobian of ε2
p to ξCi G can be decomposed to,

J =
∂ε2

p

∂ξCi G
=
∂ε2

p

∂ICi

∂ICi

∂pT

∂p

∂PT
Ci

∂PCi

∂ξT
Ci G

+
∂ε2

p

∂ICi

GCj

∂ICi

GCj

∂pT

∂p

∂PT
Ci

∂PCi

∂ξT
Ci G

. (22)

Obviously, this formula contains two terms and each of them can be decomposed to four simpler
parts using the chain rule. The four simpler parts are discussed below one by one:

(1) ∂ε2
p/∂ICi

and ∂ε2
p/∂I

Ci

GCj
are the derivatives of the squared photometric error ε2

p to the inten-

sities at p of images ICi
and ICi

GCj
, respectively. Define δ = 2(ICi

(p) − ICi

GCj
(p)), and accordingly we

have,
∂ε2

p

∂ICi

= δ ,
∂ε2

p

∂ICi

GCj

= −δ . (23)

(2) ∂ICi
/∂pT and ∂ICi

GCj
/∂pT are the intensity gradients of ICi

and ICi

GCj
at p, respectively. Sup-

pose that p = [u v]T , and then these two parts can be expressed as,

∂ICi

∂pT
= ∇ICi

(p)
Δ
= [�iu �iv] ,

∂ICi

GCj

∂pT
= ∇ICi

GCj
(p)

Δ
=

[
�ju �jv

]
. (24)

(3) ∂p/∂PT
Ci

is the derivative ofp to its corresponding spatial pointPCi
. From the pin-hole camera

model, we have,

∂p

∂PT
Ci

=

⎡⎢⎢⎢⎢⎢⎢⎣
fx

ZCi
0 − fx XCi

Z 2
Ci

0
fy

ZCi
− fy YCi

Z 2
Ci

⎤⎥⎥⎥⎥⎥⎥⎦
. (25)
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Fig. 4. Illustration of the ground-camera model. The error in the ground-camera model is constructed on the
image plane of Ci .

(4) ∂PCi
/∂ξT

Ci G is the derivative of the 3D point PCi
to the camera pose ξCi G ,

∂PCi

∂ξT
Ci G

=
[
I3×3 −P∧Ci

]
=

⎡⎢⎢⎢⎢⎢⎣
1 0 0 0 ZCi

−YCi

0 1 0 −ZCi
0 XCi

0 0 1 YCi
−XCi

0

⎤⎥⎥⎥⎥⎥⎦
. (26)

By merging the decomposed terms in Equations (22)∼(26), the Jacobian J of ε2
p to ξCi G can be

expressed as,

J = δ
[
�iu − �ju �iv − �jv

] ⎡⎢⎢⎢⎢⎢⎢⎢⎣

fx

ZCi
0 − fx XCi

Z 2
Ci

− fx XCi
YCi

Z 2
Ci

fx +
fx X 2

Ci

Z 2
Ci

− fx YCi

ZCi

0
fy

ZCi
− fy YCi

Z 2
Ci

−fy −
fy Y 2

Ci

Z 2
Ci

fy XCi
YCi

Z 2
Ci

fy XCi

ZCi

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (27)

Once J is available, Equation (21) can be optimized iteratively to find the optimal camera pose ξ ∗Ci G

with proper optimization methods. The sketch of the ground-camera model is shown in Figure 4.

4.3 Cascade Structure

Obviously, no dimension of the Jacobian J in the ground-camera model is constantly equal to zero.
Thus, it does not suffer from the problem of degree-of-freedom loss as the ground model. That is to
say, the ground-camera model has a wider application scope than the ground model. However, this
does not mean that the ground model is useless. Although the ground model can only deal with
limited types of camera pose changes, it has extremely low computational complexity compared to
the ground-camera model. For these reasons, our proposed online camera pose correction scheme
is naturally designed as a cascade structure comprising two levels of optimizations. Specifically,
the first level of optimization is based on the ground model while the second one is based on the
ground-camera model. Only when the ground model fails to reduce the photometric errors to a
satisfactory value, the ground-camera model is activated. In our implementation, if the decrease
of the mean photometric error of each pixel is less than a dynamic threshold by using the ground
model, the results are considered as to be unsatisfactory and then the ground-camera model should
be activated. The dynamic threshold is set to 0.1eavд , where eavд is the average photometric error
over the common-view regions of the bird’s-eye-view images utilized in the correction.

4.4 Exposure Correction

Because of the differences on lighting conditions, environmental reflections, cameras’ internal
constructions, etc., for a same point pG on the ground, corresponding pixel values ICi

(pCi
) and
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ICj
(pCj

) won’t be completely the same, even if the camera poses are absolutely accurate. Actually,
for an image of a physical object, besides the properties of the object itself, it will also be affected
by the exposure time, the vignette and the non-linear response function of the camera [8]. Based
on our experience, exposure time is the most important factor. We define the exposure factor γi j

as,

γi j =
ti
tj

(28)

where ti isCi ’s exposure time and tj is that ofCj ’s. Even though the exposure time can’t be obtained
directly in general, the factor γi j can be fitted as,

γi j =

∑
pG ∈Oi j

IGCi
(pG )∑

pG ∈Oi j
IGCj

(pG )
(29)

where IGCi
and IGCj

are bird’s-eye-view images of camera Ci and Cj , respectively, and Oi j is the
set of all pixels in the common-view region ofCi andCj on bird’s-eye-view images. Then, the error
term εpG

of the ground model in Equation (6) can be reformulated as,

εpG
= ‖IGCi

(pG ) − γi jIGCj
(pG )‖2 (30)

and for the ground-camera model, a similar reformulation is also required. Besides, corresponding
derivatives should be adjusted accordingly. With the exposure correction, the negative influence
of the intensity discrepancies aroused by different lighting conditions or environmental reflections
can be weakened effectively.

4.5 Pixel Selection Strategy

For the consideration of robustness and computational speed, our online camera pose optimization
scheme follows a sparse direct framework. Actually, pixels with tiny gradient moduli can’t provide
“confident” guidance information to the updating step. What’s worse, such pixels affect the opti-
mization mainly by noise and thus can even do harm to the final correction accuracy. Hence, it is
necessary to figure out and discard such pixels.

Besides, in Section 3 it’s mentioned that all points PG s are assumed to be on the ground plane
and their Z coordinates are considered as zero. Such an assumption is also the precondition for the
establishment of both the ground model and the ground-camera model. However, in the field-of-
view of the surround-view system, there are usually some objects whose heights are non-negligible.
Such objects will cause obvious parallax between adjacent bird’s-eye views, so in short, we call
them “mismatched objects”. Lawns, curbs, pedestrians, and other vehicles can all be regarded as
mismatched objects. In the pixel selection process, pixels from mismatched objects should also be
removed.

Take two adjacent camerasCi andCj as an example. Primarily, the pixels we select should be in
the common-view region of Ci and Cj , which can be represented as Oi j . A set of pixels N i j will
be selected out by the selection strategy and involved in optimization. For every pixel in N i j , its
corresponding pixel coordinate p must satisfy the following three criteria:

• p must lie in the common-view region Oi j ,

p ∈ Oi j . (31)

• The color discrepancy between IGCi
(p) and IGCj

(p) is not allowed to be too large. With
this rule the effect of mismatched objects captured by adjacent cameras can be eliminated
effectively. Let I c

GCi
and I c

GCj
be the channel map of IGCi

and IGCj
of channel c , respectively.
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The color ratio rc (p) is defined as,

rc (p) =
I c
GCi

(p)

I c
GCj

(p)
. (32)

We use the standard deviation of p’s color ratios in different channels as the measurement
of its color discrepancy,

Dcolor (p) =

√√∑nc

c=1

(
rc (p) − rμ (p)

)2

nc
(33)

where nc is the number of channels (normally 3) and rμ is the average of all p’s color ratios.
For any p ∈ N i j , it must satisfy,

Dcolor (p) < Dmean − 2σd (34)

whereDmean is the average color discrepancy of all the points inOi j and σd is the associated
standard deviation.

• p’s intensity gradient modulus Gi (p) should be large enough,

Gi (p) > Gmean + 2σд (35)

where Gmean is the mean intensity gradient modulus over Oi j and σд is the associated
standard deviation.

It is worth mentioning that images lacking textures should not be used to optimize camera
poses. In our implementation, if the total number of qualified points in a frame is fewer than 4,000
(for 1080p images), then the frame cannot be used for optimization and should be substituted by
another frame with richer textures.

5 EXPERIMENTAL RESULTS

5.1 Experiment Setup

To validate the performance of our online camera pose optimization approach, experiments were
performed on an electric car equipped with a surround-view system. We tested our approach on
flat fields with six typical kinds of textures and collected the associated surround-view data (fish-
eye images and the associated offline calibration parameters). These data were divided into six
groups (Groups A, B, C, D, E, and F) according to the sites where they were collected, samples of
which are shown in Figure 5. For each group, there were 100 surround-views and altogether 600
surround-views were collected. It should be noted that for all groups, cameras’ poses were changed
moderately from the state of initial offline calibration. Hence, if un-updated extrinsics were used,
the synthesized surround-views would exhibit observable geometric misalignment between adja-
cent bird’s-eye-views as shown in Figure 5 (the left one of each image pair).

The resolution, the field-of-view, and the acquisition frequency of the cameras are 1920 × 1080
(1080p), 190 degrees and 30 FPS, respectively. Images of other common resolutions can also be
obtained by resizing the captured images. Our approach was implemented with standard C++ and
all the experiments were conducted on a laptop with an Intel(R) Core(TM) i5-7300HQ CPU.

More results in the form of images or videos are available online at https://cslinzhang.

github.io/CamPoseCorrection/.

5.2 Typical Samples

In order to qualitatively demonstrate the superiority of the proposed online camera pose opti-
mization scheme in terms of generalization, we selected a typical sample from each of the six

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 18, No. 4, Article 106. Publication date: February 2022.

https://cslinzhang.github.io/CamPoseCorrection/


106:14 T. Zhang et al.

Fig. 5. Comparisons of surround-views before and after cameras’ poses correction in various environments.
From (a) to (f), the six image pairs are typical ones selected from groups A∼F mentioned in Section 5.1,
respectively. For each pair, the left image is generated with disturbed extrinsics and the right one is synthe-
sized with corrected cameras’ poses obtained by our approach. It can be observed that for all the examined
cases, after applying our camera pose optimization approach, the geometric misalignments between adjacent
bird’s-eye-views are all greatly reduced, corroborating the superior efficacy of the proposed approach.

groups of data for processing, and the results are shown in Figure 5. Figure 5(a)∼5(f) correspond
to samples from groups A∼F, respectively. For each sample, the original surround-view and the
one generated using the optimized camera poses are displayed side by side. It can be clearly seen
from the comparison that for each case the geometric misalignment in the surround-view gener-
ated by the optimized camera poses is significantly ameliorated. It implies that our scheme has
loose requirements for external working environments, and thus has a good usability and a strong
generalization ability.

5.3 Quantitative Evaluation

Minimizing photometric errors. As mentioned in Section 5.1, six groups of data were collected
and for all groups, camera poses were changed moderately from the state of initial offline calibra-
tion. In this experiment, we optimized the camera poses of each group online and used the resulting
camera poses to regenerate the surround-views. The photometric errors over surround-views of
each group were used to measure the effectiveness of our camera pose optimization approach. As
the accuracy of offline calibration methods is generally satisfactory now, we take the photomet-
ric errors over surround-views synthesized with offline calibrated camera poses as the baseline (in
short it can be called as “offline baseline”), and use the relative values of photometric errors to mea-
sure the effectiveness of the correction. It’s worth mentioning that, without special declaration, to
validate the effectiveness of our scheme on most of our collected data, the proposed method was
tested on every frame, while in practice, only one shot is enough for the correction.

Specifically, we denote the photometric error over a surround-view synthesized with the camera
poses to be measured as P1, the photometric error over the same surround-view synthesized with
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the offline calibrated poses as P2. Then the relative photometric error of the poses to be measured
is actually Pr = P1 − P2. Thus, if the relative photometric errors are lower than 0, the photometric
errors of the camera poses to be measured are lower than the offline baseline and we can say
that the camera poses in the surround-view system are accurate (more accurate than the offline
calibrated camera poses). Results in terms of relative photometric errors of each group along with
the optimization evolvement are illustrated in Figure 6. The results corroborate that using our
proposed approach, camera poses of a surround-view system could be effectively corrected online
under various environmental conditions.

Pixel selection effect. Actually, without pixel selection the optimization in our method becomes
a dense direct approach rather than a sparse one. In short, we call the optimization approach of
our method with and without pixel selection as the “sparse approach” and the “dense approach”,
respectively. Two factors are considered in the evaluation of the pixel selection strategy, the speed
and the accuracy. On one hand, as shown in Table 1, under the same experimental conditions,
the optimizations in the “sparse approaches” are all obviously faster than those in the “dense ap-
proaches” regardless of the resolution. On the other hand, the accuracy of the method is evaluated
by the relative photometric errors calculated over all surround-views. The relative photometric
errors along with the optimization evolvement of both the “sparse approach” and the “dense ap-
proach” are illustrated in Figure 7. It can be seen that for the “dense approach”, after 30 iterations
of the optimization, the final relative photometric error is 226.00, while for the “sparse approach”
the value is –289.73. To sum up, the experimental results corroborate that both the speed and the
accuracy can be enhanced effectively by our proposed pixel selection strategy.

Ablation study of the cascade structure. As aforementioned, our algorithm is of a cascade
structure. The first level of the optimization is based on the ground model and the second level is
based on the ground-camera model. In this part, we evaluate the performance of these two models
with respect to the speed and the accuracy.

On one hand, we recorded the single-iteration time costs of the ground model and the ground-
camera model under various experimental conditions in Table 1. From Table 1, it can be found that
under the same experimental conditions, the speed of the ground model is always much faster
than that of the ground-camera model.

On the other hand, the ground-camera model performs much better than the ground model
in accuracy, since it doesn’t suffer from the problem of degree-of-freedom loss. To quantitatively
verify this claim, related experimental results are offered in this part. We define the proportion
of the number of iterations of the first-level optimization to the total number of iterations as “p”.
For example, in the case that the optimization approach lasts for 30 iterations totally, the first
level of optimization will last for 30p iterations and other 30 (1 − p) iterations are all conducted
using the second-level model (the ground-camera model). It’s worth mentioning that when p is
set to 0, the optimization is thoroughly based on the ground-camera model, and when p is 1, the
ground model will be the only model used. Figure 8 shows the relationship between the relative
photometric errors and p’s settings. From the experimental results, it can be seen that the ground-
camera model performs much better than the ground model in accuracy. Besides, from Figure 8 it
can also be found that as long as p is lower than 0.5, the accuracy of the cascade structure is always
outstanding. And since the ground model is much faster than the ground-camera model, with a
combination of both models in cascade, a good balance between the speed and the accuracy can
be achieved.

Robustness to initial poses. To evaluate the robustness of our scheme to camera poses’ changes,
we firstly quantify the changes. We define the “basis disturbance” on camera poses as a 6-dimension
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Fig. 6. (a)∼(f) are relative photometric errors over surround-views of groups A∼F, respectively, along with
the optimization evolvement of our approach. The red curve plots relative photometric errors while the blue
line shows the offline baseline. Since the photometric errors shown are relative values, the offline baseline is
always equal to zero.

vector V6, which is given as,

V6 = [0.01,−0.01, 0.01,−0.01, 0.01,−0.01]T. (36)

Then the disturbed pose ξd
Ci G

of camera Ci can be expressed as,

ξd
Ci G = ξCi G + αV6 (37)
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Table 1. Time Cost Analysis of the Proposed Two Models

Model Sparsity Resolution Time cost Pixel number

Ground

Dense 1080p 0.1071s/iter 20000
Sparse 1080p 0.0572s/iter 8103.03
Dense 900p 0.1008s/iter 13889
Sparse 900p 0.0467s/iter 4907.67
Dense 720p 0.0936s/iter 8889
Sparse 720p 0.0301s/iter 3329.63
Dense 640p 0.0758s/iter 5000
Sparse 640p 0.0220s/iter 1992.20

Ground-Camera

Dense 1080p 0.8074s/iter 20000
Sparse 1080p 0.5004s/iter 8103.03
Dense 900p 0.5339s/iter 13889
Sparse 900p 0.3609s/iter 5391
Dense 720p 0.3417s/iter 8889
Sparse 720p 0.2343s/iter 4907.67
Dense 640p 0.2026s/iter 5000
Sparse 640p 0.1363s/iter 3329.63

Fig. 7. The relative photometric errors along with the optimization evolvement of approaches based on the
sparse framework and the dense framework.

where α is the disturbance factor. Suffering from a “basis disturbance” is actually equivalent to
translating the camera for about a centimeter in three orthogonal directions and then rotating the
camera for about 1◦.

We corrected poses of the surround-view system and recorded the corresponding relative pho-
tometric errors under different α ’s settings. The experimental results are illustrated in Figure 9.
It can be seen that when the disturbance on poses is less than three “basis disturbance”, or more
concretely the translation in each orthogonal direction and the rotation are within three centime-
ters and three degrees, respectively, the correction results of our scheme are always more accurate
than the offline calibrated ones. Since cameras in the surround-view system are fixed on the vehi-
cle, the natural move of cameras due to collisions or bumps won’t be violent and it’s most probably
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Fig. 8. The relative photometric errors along with the optimization evolvement under different settings of
the “first level proportion” p.

Fig. 9. The relative photometric errors of correction results under different α settings (mentioned in Equa-
tion 37). In (a), those curves plot the photometric errors along with the correction evolvement under different
α settings. The relationship between the relative photometric errors and different settings of α is plotted as
the orange curve in (b), while the blue line is the offline baseline.

in the millimeter scale unless the fixed structures are broken severely. Therefore, in most practical
situations, our method is quite robust to the variations of initial poses.

5.4 Failure Case Analysis

Although the online camera poses optimization approach for the surround-view system proposed
in this paper can work stably in most cases, it may fail in some cases. Failure cases can be roughly
divided into two categories:

Few pixels with large enough gradient moduli. As mentioned in Section 4, the “contribu-
tion” of one pixel to the optimization is proportional to its local intensity gradient modulus. If
there are no clearly observable textures on the ground around the vehicle, the gradients of most
pixels will be close to 0. In such a case, the optimization is mainly guided by noise and thus fails.
Figure 10(a) shows a typical example of this case. In the surround-view image shown in Figure 10(a),
there is geometric misalignment in the common-view areas between adjacent bird’s-eye-views.
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Fig. 10. Two typical failure cases of our approach. (a) was taken from an underground parking lot, and
it can be seen that the ground surface covered by the overlapping regions of adjacent bird’s-eye-views is
lacking clearly observable textures. In (b), camera poses of the system deviate too much from the states
of initial offline calibration and consequently, there is severe geometric misalignment between adjacent
bird’s-eye-views.

Unfortunately, there are no clearly visible textures in these areas and thus the pixels participating
in the optimization cannot provide effective gradient information. That will eventually lead to the
failure of the camera pose optimization operation. Therefore, it should be emphasized that in order
to make our method work successfully, the vehicle needs to be parked on flat ground with clearly
observable textures. Besides, in our implementation, we offer a quantitative threshold. That is if
the number of qualified pixels is smaller than 4,000 when the fisheye resolution is 1080p, this frame
should be abandoned and the user needs to try another operation site.

Excessive changes of camera poses. As our approach follows a sparse direct framework, during
the optimization the gradient information of pixels will greatly affect the optimization step. How-
ever, the intensity function of the image is with strong non-convexity and discontinuity. There-
fore, our method could perform quite well in “fine-tuning” tasks (i.e., the degrees of camera poses’
changes are not very high). Otherwise, if the camera poses change too much, our algorithm may
fall into a local optimum instead of a global one.

For example, in Figure 10(b), it can’t be determined whether the line on the ground in the front
view should be aligned with the line above or below in the left view. Actually, it should be matched
with the line below, while our algorithm mistakenly aligns it with the line above. That is to say, our
approach falls into a local optimum for this case. Generally speaking, if geometric misalignments
in the surround-view are extremely serious, it is difficult to successfully correct the camera poses
using an online method based on optimization. Quantitatively, according to Figure 9, we found that
as the pose change exceeds three “basis disturbance”, the correction performance of our method
won’t be satisfactory. Instead, the best solution in such a case is still re-calibration.

5.5 Comparison with Other Methods

In this subsection, we compare our scheme with the existing relevant methods mentioned in
Section 2 qualitatively and quantitatively to show its superiority.

Traits of methods. As we have reviewed in Section 2, there are several studies in the literature
that are relevant to our work in this paper. In order to understand the different characteristics of
these methods more clearly, in Table 2 we compare them in three aspects: (1) Does it reuse the
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Table 2. Qualitative Comparison with Related Methods

method prior applicable to surround-view feature type

Collado et al. [4] × × ground lane
Hold et al. [17] × × ground lane

Hansen et al. [12] × × feature point
Schneider et al. [38] × × odometry

Dang et al. [5]
√

× feature point
Nedevschi et al. [32]

√
× ground lane

Knorr et al. [21]
√

× feature point
Ling and Shen [25]

√
× feature point

Heng et al. [15] ×
√

odometry
Heng et al. [14] ×

√
odometry

Zhao et al. [44] ×
√

ground lane
Choi et al. [3] ×

√
ground lane

Ours
√ √

sparse pixels

Table 3. Numbers of Frames Required and the Time Costs
for Compared Schemes

Scheme Number of Frames Time Cost

Schneider et al.’s [38] 500 Not mentioned
Heng et al.’s [15] 2000 About 90 minutes
Heng et al.’s [14] 500 About 10 minutes

Ours 1 10–20s

prior information from the offline calibration? (2) Can it be readily used for the surround-view
system? and (3) What kind of features does it rely on? It can be seen that Dang et al.’s method,
Ling and Shen’s method, Knorr et al.’s method, Nedevschi et al.’s method, and ours can reuse the
offline calibration information as a prior. But only our method is applicable to the surround-view
system. Besides, since our approach follows a sparse direct framework, it has no dependence on
explicit visual features, implying that it has the potential to be more robust and more efficient.

Comparison with odometry based methods. The methods proposed in [38], [15], and [14] are
all odometry based. Such methods will perform a series of tasks to construct a stable map, solve
the trajectory of the vehicle, and finally re-estimate the camera poses by joint optimization. As
mentioned in Section 2.1, such methods are usually more or less cumbersome so that they are
unlikely to satisfy the industrial portability requirements. In Table 3, we summarize the required
numbers of frames and time cost for [38], [15], [14], and ours to complete the correction. It can
be seen that existing odometry based solutions usually take hundreds of frames and spend tens of
minutes to yield useful outputs. By contrast, ours only needs one frame and its correction process
can be thoroughly completed within ten to twenty seconds, demonstrating that our method is
more lightweight and easier to be integrated than its rivals.

Comparison with lane-line based methods. Researches in [4], [32], [17], [44], and [3] all belong
to the lane-line based category. As aforementioned, these methods all rely on a strong assumption,
“two parallel lane lines on the ground can be captured by the cameras”, which is not usually es-
tablished. Thus, the application scopes of such methods are limited to some extent. For the six
groups of data we collected, we counted the ratio of surround-views with lane-lines and surround-
views with sufficient textures to all surround-views, respectively. Whether textures are sufficient
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Table 4. The Proportion of Data with Enough Features

Feature Type
Group

A B C D E F Total

Lane-lines 0 0 0 0 1 0.34 0.22
Textures 1 0.84 1 1 0.65 1 0.92

Table 5. Relative Photometric Errors Under Different Settings of Bundle Adjustment

Robust Strategy
Feature Type

Feature Number
30 50 70 120 150

No Kernel
ORB 1112.52 1965.82 1124.87 1134.37 1383.42
SURF 1083.56 1187.75 1348.01 928.09 1335.41
SIFT 986.24 1251.46 1292.31 1204.49 1260.40

Huber Kernel
ORB 1666.56 1707.35 1704.45 991.22 1123.48
SURF 938.74 1016.63 1100.40 923.27 923.38
SIFT 959.79 1059.77 1017.47 957.58 972.29

Cauchy Kernel
ORB 879.66 873.11 916.27 906.39 883.17
SURF 919.57 916.91 914.91 923.77 853.04
SIFT 925.07 904.82 886.43 874.78 876.81

Tukey Kernel
ORB 936.64 937.95 932.93 925.02 933.36
SURF 923.61 928.46 937.33 923.67 932.40
SIFT 924.85 928.25 930.23 931.19 932.37

Before Correction 865.76

Ours −289.73

depends on whether the number of qualified pixels selected by our pixel selection strategy is suf-
ficient. The results are summarized in Table 4. From Table 4, it can be seen that for normal flat
grounds, the cases having rich textures are much more than those having clear and regular lane-
lines (at least on the dataset we collected). It implies that the potential application scope of the
camera pose correction model proposed in this article is much wider than the ones that rely on
lane-lines.

Comparison with bundle adjustment based methods. Typical existing bundle adjustment
based solutions for camera poses correction include [12], [5], [21], and [25], and it can be noticed
that they are all designed for common multi-camera systems. Actually, bundle adjustment based
methods have a notable defect when they are extended to adapt to the surround-view case.

The most fatal shortcoming of bundle adjustment based solutions for the surround-view case is
that high-quality paired features are hard to obtain. As mentioned in Section 2.1, the common-view
regions between adjacent cameras in the surround-view system are usually narrow and of large
distortion. When extracting and matching features on such small and severely distorted image
regions, lots of mismatches will be foreseeable. To make our claim more intuitive and convincing,
related experiments were conducted. We implemented a bundle adjustment based pose correction
pipeline and used it to correct camera poses under different experimental settings, including differ-
ent types of features (SIFT [28], SURF [2], and ORB [37]), different numbers of features, different
types of kernel functions (Huber, Cauchy, and Tukey), etc. The flow of the pipeline is as follows.
We firstly performed feature extraction in the common-view regions of adjacent cameras, and used
the brute-force matcher for feature matching. During matching, the “ratio test” was also utilized.
Then, the matched features were triangulated, and the camera poses were optimized via bundle
adjustment. Finally, we recorded the average relative photometric error over all surround-views.
The relative photometric errors under different settings are summarized in Table 5.
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The experimental results demonstrate that the results of bundle adjustment based methods are
unlikely to yield usable calibration outputs, since the corresponding photometric errors are even
larger than errors before the correction. Therefore, it can be concluded that for the surround-view
case, compared with bundle adjustment based ones, our scheme has obvious superiority in both
the accuracy and the usability.

6 CONCLUSION AND FUTURE WORK

In this paper, we studied a practical problem, online correction of cameras’ extrinsics for the
surround-view system, emerging from the field of advanced driving assistance system, and pro-
posed a solution. Our method is of a two-level cascade structure and each level is based on one
model designed by us, the ground model and the ground-camera model. Both of the models follow
a sparse direct framework and can correct the camera poses by minimizing the system’s over-
all photometric error without feature matching. The ground model establishes the relationship
between the photometric error and cameras’ poses, while the ground-camera model solves the
degree-of-freedom loss problem in further. With a cascade structure, an appropriate balance be-
tween speed and accuracy can be achieved. A novel pixel selection strategy was also proposed, by
which pixels from “mismatched objects” can be eliminated effectively and the performance of our
scheme can be consequently enhanced in both the speed and the accuracy. An outstanding merit
of our solution is that it only relies on one frame and has little requirements on environmental
conditions. As long as the vehicle is driving on a normal flat road with relatively rich textures, our
scheme will work well. In addition, it does not require additional apparatuses or calibration sites.
Experimental results show that our method can effectively eliminate the geometric misalignment
in the surround-view images and thus reduce the photometric errors caused by changes of cam-
era poses. However, up to now, the performance of our approach in the environment having low
texture or strong texture repeatability is still not satisfactory and thus we will continue to devote
efforts in this area.
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