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Researchers have recently found that the finger-knuckle-print (FKP), which refers to the inherent skin

patterns of the outer surface around the phalangeal joint of one’s finger, has high discriminability,

making it an emerging promising biometric identifier. Effective feature extraction and matching plays a

key role in such an FKP based personal authentication system. This paper studies image local features

induced by the phase congruency model, which is supported by strong psychophysical and neurophy-

siological evidences, for FKP recognition. In the computation of phase congruency, the local orientation

and the local phase can also be defined and extracted from a local image patch. These three local

features are independent of each other and reflect different aspects of the image local information. We

compute efficiently the three local features under the computation framework of phase congruency

using a set of quadrature pair filters. We then propose to integrate these three local features by score-

level fusion to improve the FKP recognition accuracy. Such kinds of local features can also be naturally

combined with Fourier transform coefficients, which are global features. Experiments are performed on

the PolyU FKP database to validate the proposed FKP recognition scheme.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The need for reliable automated user authentication techni-
ques has been significantly increased in the wake of heightened
concerns about security [1]. Biometrics based methods, which use
unique physical or behavioral characteristics of human beings, are
drawing increasing attention in both academic research and
industrial applications because of their high accuracy and robust-
ness in the modern e-world. In the past decades, researchers have
exhaustively investigated a number of different biometric identi-
fiers, including fingerprint, face, iris, palmprint, hand geometry,
voice, and gait, etc. [2].

Among various kinds of biometric identifiers, hand-based
biometrics attracts much interest because of their high user
acceptance and convenience. Some commonly used hand-based
biometrics, e.g., fingerprint [3–6], palmprint [7–16], hand
geometry [17,18], and hand vein [19,20], have been well inves-
tigated in the literature. Recently, scholars have reported that
finger-knuckle-print (FKP), the image pattern of skin folds and
creases in the outer finger knuckle surface, is highly unique and
can serve as a distinctive biometric identifier [21–28]. Compared
with fingerprint, FKP is hard to be abraded since people hold
ll rights reserved.

Zhang).
stuffs with the inner side of the hand. In addition, unlike
fingerprint, there is no stigma of criminal investigation associated
with the finger knuckle surface, so FKP can have a higher user
acceptance rate [27]. Moreover, people rarely leave FKP remains
on the stuff surface, making the loss of private data less possible.
Thus, FKP has a great potential to turn into a widely accepted
biometric identifier.

A novel online FKP-based personal authentication system has
been established in our previous works [21–24]. As shown in Fig. 1,
it comprises four major components: FKP image acquisition, ROI
(region of interest) extraction, feature extraction, and feature
matching. In our design, the finger knuckle will be slightly bent
when being imaged, and hence the inherent skin patterns can be
clearly captured. Fig. 2a shows the outlook of our embedded FKP
recognition system and Fig. 2b shows a typical FKP image. Figs. 2c
and d illustrate the ROI extraction process presented in [21]. The
feature extraction and matching are based on the extracted ROIs.

As in many pattern classification tasks, feature extraction and
matching plays a key role in FKP-based personal authentication
system. In [23], Zhang et al. used the Gabor filter based competitive
coding scheme, which was originally designed for palmprint recog-
nition [10], to extract the local orientation information as FKP
features. In [21], Zhang et al. combined the orientation information
and the magnitude information extracted by Gabor filters. In [24],
the Fourier transform coefficients of the image were taken as the
feature and the band-limited phase-only correlation technique was

www.elsevier.com/locate/pr
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employed to calculate the similarity between two FKP images. In the
local–global information combination (LGIC) feature extraction
scheme [22], the local orientation extracted by the Gabor filters is
taken as the local feature while the Fourier coefficients are taken as
a global feature. In [25], Morales et al. used a real Gabor filter to
enhance the FKP image and then used the scale invariant feature
transform (SIFT) to extract features; they called the proposed
method as OE-SIFT (orientation enhanced-SIFT).

In our previous methods [21,23], real Gabor filters were used to
extract the local orientation information; such an idea was inspired
by the method ‘‘competitive coding’’ [10] proposed for palmprint
recognition. Local orientation feature of biometric images can also
be defined and extracted using other different mathematical models.
For example, in [12], Jia et al. proposed a coding method to extract
the local orientation of palmprints, namely robust line orientation
code (RLOC), which is based on a modified finite Radon transform. In
addition to the local orientation, the local phase is also widely used
in the biometrics community and it is usually extracted by using
band-pass complex filters, e.g., Gabor filters [29,30] and log-Gabor
filters [31]. By making use of the local phase feature extracted by
Gabor filters, Daugman invented the famous IrisCode [32]; inspired
by Daugman’s work, Zhang et al. adopted a similar idea to match
palmprint images [9]. Actually, according to [33,34], the local phase
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Fig. 1. Architecture of our FKP recognition system.

X

Y

Fig. 2. (a) Outlook of our embedded FKP recognition system; (b) a typical FKP image; (c

in (c).
reflects the type of local features. However, it is not clear whether
such a feature is significant and stable. To address such an issue, we
need to know whether the local phases over scales are consistent.
The phase congruency (PC) model [35–38] serves as a solution to
this issue. Studies of psychophysics and neurophysiology have
revealed that visually discernable image features coincide with
those points where Fourier waves at different frequencies have
congruent phases. PC has been exploited as features by some
biometrics researchers for face recognition [39], iris recognition
[40], and palmprint recognition [13], and it has also been used in
some object recognition applications [41].

In fact, local orientation, local phase, and local phase con-
gruency reflect different aspects of information embedded in a
local image patch. Moreover, they are independent of each other
and none of them can be covered by the others. They can provide
complementary discriminating power to each other for matching
biometric images. Thus, better recognition performance could be
expected by combining these three local features together in
some way. However, to the best of our knowledge, in the
biometrics community there is no work reported to define and
analyze systematically these three local features in a unified
framework, and there is no attempt trying to integrate these
three features to improve the performance of biometrics systems,
either. Based on these considerations, in this paper, we first define
these three local features under a unified framework, and then
present an efficient method to compute them using the computa-
tion framework of PC. Finally, we integrate these three local
features together for FKP recognition. Experimental results
demonstrate that the integration of the three local features
performs better than using any of them separately. Moreover,
we report the system’s performance when integrating the three
local features with one global feature, the Fourier transform
coefficients, which leads to the best result on our benchmark
FKP database. This work differs from our previous works [21,22]
mainly in three aspects. At first, besides the local orientation, the
local phase and the local phase congruency are investigated.
Secondly, in this paper, the three local features are defined,
analyzed, and extracted in a unified framework. And thirdly, we
propose to integrate the three local features together to improve
the accuracy of FKP recognition.
) the determination of ROI; (d) the cropped ROI image from the original FKP image
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The remainder of this paper is organized as follows. Section 2
defines and analyzes the three local features, while Section 3
presents the extraction and matching scheme for each local
feature. Section 4 reports the experimental results and discus-
sions. Finally, Section 5 concludes the paper.
2. Analysis of local features

As stated in Section 1, in literature the three local features (the
local orientation, the local phase, and the phase congruency) are
extracted by using different mathematical models and their
relationships are not systematically investigated. In this section,
we will examine these three local features in detail under a
unified framework.

To ease the following discussions, we first introduce the concept
of intrinsic dimension here. The intrinsic dimension is the number of
degrees of freedom necessary to describe a local image structure
[42]. A 2D image patch I can be classified as a local region, denoted
by R, of a specific intrinsic dimension. For example, constant areas
are of intrinsic dimension zero (i0D) while straight lines and edges
are of intrinsic dimension one (i1D). Mathematically, such a classi-
fication can be expressed as [42]

IA

i0DR,IðxiÞ ¼ IðxjÞ,8xi,xjAR

i1DR,Iðx,yÞ ¼ gðx cos yþy sin yÞ,8ðx,yÞAR,I=2i0DR

i2DR,else

8><
>: ð1Þ

where g is a 1D real-valued function. Examples of i0D, i1D, and i2D
signals are shown in Fig. 3.

A point x in an image can be characterized by its ‘‘local
features’’, which are derived from a local patch centered on it.
Before we define local features we need to have a model for the
signal to be analyzed. In our case, we are dealing with 2D FKP
images, which are actually a special kind of 2D images in that
they are abundant of line-like features. And these line-like
features play dominant roles in distinguishing different indivi-
duals. Thus, in this paper, we assume that FKP images are locally
i1D (intrinsic one dimensional) signals.

Let us consider the one dimensional (1D) real signal first. In
order to analyze the local structure of the 1D real signal, analytic
signal was proposed in the literature [29] and it has been
corroborated to be quite effective [43]. Analytic representation
makes certain attributes of a real signal more accessible and
facilitates the derivation of modulation and demodulation tech-
niques. Given a 1D real signal f(x), the corresponding analytic
signal is defined as [29,43]

f AðxÞ ¼ f ðxÞþ if HðxÞ ð2Þ

where fH(x)¼ f(x)*h(x), i2¼�1,* denotes the convolution opera-
tion, and h(x)¼1/px refers to the Hilbert transform kernel in the
spatial domain. With such a complex representation, the local
amplitude and the local phase of the 1D analytic signal are
Fig. 3. Signals with different intrinsic dimen
defined as [29,43]

aðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2
ðxÞþ f 2

HðxÞ

q
, fðxÞ ¼ arctan2ðf HðxÞ,f ðxÞÞ ð3Þ

The local amplitude indicates the energetic information of the
signal, while the local phase can be used to distinguish between
different local structures and it is independent of the local
amplitude [33]. In practice, since the Hilbert transform operator
is an improper integral and difficult to calculate, researchers
usually use a pair of spatial filters forming a quadrature pair to
construct the analytic signal [33,44]. To this end, complex Gabor
[29,30] or log-Gabor [31] filters are widely used. When the 1D
signal is embedded into the 2D space, its orientation should be
considered. Thus, the local amplitude, the local phase, and the
local orientation are three independent measures to characterize
a 2D image point.

The local phase reflects the type of local structures [33].
However, we do not know to what degree it is a significant
feature. To address such an issue, we make use of the phase
congruency (PC) [35–37], a dimensionless quantity, to measure
the consistency of the local phases over scales. Based on the
physiological and psychophysical evidence, it is found that
visually discernable features coincide with those points having
maximal phase congruency. Such a conclusion has been further
corroborated by some recent studies in neurobiology using
functional magnetic resonance imaging (fMRI) [38]. Phase con-
gruency has an intriguing property that it is almost invariant to
changes in image brightness or contrast.

Thus, within the local window surrounding an image point x,
four features—the local amplitude, the local phase, the local
orientation and the phase congruency—can be extracted and they
reflect different aspects of information contained in the local
window. However, we will not use the local amplitude for
recognition because it is not contrast invariant. Hence, the local

phase, the local orientation, and the phase congruency will be used
as three local features in this article.

For a real 2D image, these three local features can be defined
and extracted using a set of 2D quadrature filter pairs, such as 2D
complex Gabor or log-Gabor filters. Suppose that complex Gabor
filters are adopted, which are defined as

Gðx,yÞ ¼ exp �
1

2

x02

s2
x

þ
y02

s2
y

 ! !
exp i

2p
l

x0
� �

ð4Þ

where x’¼x cos yþy sin y, y’¼�x sin yþy cos y. In Eq. (4), l
represents the wavelength of the sinusoid factor, y represents
the orientation of the normal to the parallel stripes of the Gabor
function, sx and sy are the standard deviations of the 2D Gaussian
envelop. It can be seen from the definition that a Gabor filter is
actually a Gaussian envelop modulated by a sinusoidal plane
wave. The Gaussian envelop ensures that the convolution is
dominated by the image patch near the center of the filter.
Therefore, the Gabor filter is a local operator and can extract
sions: (a) i0D; (b) i1D; (c) i2D; (d) i2D.
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information at a specific scale and a specific orientation within a
local region.

To define and extract the local orientation, we make use of the
competitive coding scheme which has been successfully used for
palmprint [10] and FKP [21,23] recognition. Competitive coding
scheme assumes that every image pixel resides on a negative
‘‘line’’ and it extracts the orientation of the line by using a set of
real Gabor filters with different orientations. Specifically, the
orientation along which the Gabor responses get the minimum
is taken as the feature at this point. Denote by GR (GI) the real
(imaginary) part of the Gabor filter G. With a series of GRs sharing
the same parameters, except the parameter of orientation, the
local orientation of the image I at the position (x, y) can be
extracted. Mathematically, the local orientation is defined as

oriðx,yÞ ¼ argmin
j

fIðx,yÞnGRðx,y,yjÞg ð5Þ

where yj¼ jp/J, j¼{0,y,J�1}. J represents the number of orienta-
tions. It needs to be noted that theoretically speaking, the local
orientation of ideal i1D 2D image signals can be accurately
extracted by the Riesz transform-based monogenic signal model,
which is a 2D extension of the classical 1D analytic signal [45,46];
however, for real 2D images, multi-dimensional even-symmetric
filters usually perform better for this task [10,21].

The extraction of PC using quadrature pair filters will be
presented in Section 3.1 in detail. Actually, PC is a 1D concept.
For 2D images, we can compute PCyj

along different orientations
{yj:9 j¼0� J�1}. Then the maximum of fPCyj

: 9j¼ 0� J�1g can be
taken as the PC value at the examined position:

PC2ðx,yÞ ¼max
j
fPCyj

ðx,yÞ : 9j¼ 0� J�1g ð6Þ

We denote by ym the orientation along which the 1D PC takes
the maximum. Then, we can apply Gabor filtering along ym and
define the local phase as:

phaseðx,yÞ ¼ arctan2 Iðx,yÞnGIðx,y,ymÞ,Iðx,yÞnGRðx,y,ymÞð Þ ð7Þ
3. Extraction and matching of local features

In Section 2, we have defined and analyzed three local
features. In practice, for the reason of computational efficiency,
we do not compute the three local features separately. Instead,
we present a scheme based on the computational framework of
PC in [37] to extract those features more efficiently. So, in the
following sub-sections, the PC computation will be described first.

3.1. Phase congruency (PC)

Rather than assume a feature is a point of sharp changes in
intensity, the PC model postulates that features are perceived at
points where the Fourier components are maximal in phase
[35–37]. Phase congruency can be considered as a dimensionless
measure for the significance of a structure independently of the
signal amplitude. The technique to calculate PC used in this paper
is based on Kovesi’s salient work [37].

We start from the 1D signal f(x). Denote by Me
n and Mo

n the
even-symmetric and odd-symmetric filters at scale n and they
form a quadrature pair. Responses of each quadrature pair to the
signal will form a response vector at position x and on scale n:

½enðxÞ,onðxÞ� ¼ ½f ðxÞnMe
n,f ðxÞnMo

n� ð8Þ

The local amplitude on scale n is given by

AnðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2

nðxÞþo2
nðxÞ

q
ð9Þ
and the local phase is given by

fnðxÞ ¼ arctan2ðonðxÞ,enðxÞÞ ð10Þ

These response vectors form the basis of our localized represen-
tation of the signal and the PC can be derived from them.

Let F(x)¼
P

nen(x) and H(x)¼
P

non(x). Then, the 1-D PC can be
computed as

PCðxÞ ¼
E xð Þ

eþ
P

nAnðxÞ
ð11Þ

where EðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2
ðxÞþH2 xð Þ

q
and e is a small positive constant. We

can also define the local phase as

PhaseðxÞ ¼ arctan2 HðxÞ,FðxÞð Þ ð12Þ

Actually, it is the average local phase over n scales.
For 2D images, we have to apply the 1D analysis over several

orientations and combine the results in some way. In such case,
2D filters with the orientation selection property can be used,
such as the Gabor filters [29,30] or log-Gabor filters [31]. Let
yj¼ jp/J, j¼{0, 1, y, J�1}, denote the orientation angle of the
filter, where J is the number of orientations. By modulating n and
yj and convolving with the 2D image, we can get a set of
responses at each image point x as

½en,yj
ðxÞ,on,yj

ðxÞ� ð13Þ

The local amplitude of point x on scale n and along orientation
yj is given by

An,yj
ðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
en,yj
ðxÞ2þon,yj

ðxÞ2
q

ð14Þ

The local energy along orientation yj is given by

Eyj
ðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fyj
ðxÞ2þHyj

xð Þ2
q

ð15Þ

whereFyj
ðxÞ ¼

P
nen,yj
ðxÞ andHyj

ðxÞ ¼
P

non,yj
ðxÞ. Then, the phase

congruency along orientation yj is computed by

PCyj
ðxÞ ¼

Eyj
ðxÞ

eþ
P

nAn,yj
ðxÞ

ð16Þ

The average local phase along orientation yj is defined as

Phaseyj
ðxÞ ¼ arctan2 Hyj

ðxÞ,Fyj
ðxÞ

� �
ð17Þ

We define the 2D PC at x as

PC2ðxÞ ¼max
j

PCyj
ðxÞ ð18Þ

It should be noted that PC2(x) is a real number within 0–1.

3.2. Local feature extraction and coding

In this section, we present the extraction and coding algorithm
for each local feature. The local orientation and the local phase
can be efficiently extracted by using the intermediate results of
the PC computation.

Having obtained two raw PC maps of two images, we do not
match them directly. Instead, we quantize them to several levels
and then code them into integers. In practice, such a scheme can
have three advantages: (a) it can save a lot the storage space;
(b) for recognition, it works more robustly than using raw PC
maps; and (c) it allows a fast matching of two maps. Therefore,
we quantize PC into L levels and define the PC code as

pcCodeðxÞ ¼
PC2ðxÞ

1=L

� �
ð19Þ

where bxc is the operator to return the largest integer not bigger
than x. It is easy to see that each pcCode is an integer within
0�L�1.
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Although there are other kinds of methods to evaluate the local
phase feature and the local orientation feature, we want to make a
full use of the intermediate results in the process of computing PC in
order to reduce the computational cost. It is easy to see that when
calculating PC, we can get responses from a set of even-symmetric
and odd-symmetric quadrature filters at different scales and differ-
ent orientations. We can compute the local orientation and the local
phase directly from them. For the local orientation evaluation, we
borrow the idea from the competitive coding scheme [10,21,23].
With the responses from the even-symmetric filters at a certain
scale B, i.g.fez,yj

ðxÞ : j¼ 0� J�1g, the orientation code at x can be
defined as

oriCodeðxÞ ¼ argmin
j

ez,yj
ðxÞ

n o
,j¼ 0,:::,J�1 ð20Þ

Obviously, each orientation code oriCode(x) is an integer within
0� J�1.

Refer to Eq. (18), by our definition the 2D PC is actually the
maximum of the 1D PCs along different orientations. We denote
by ym the orientation along which the 1D PC takes the maximum
value. Then, we can take the average local phase along ym as the
local phase at x. That is

LPðxÞ ¼ Phaseym
ðxÞ ð21Þ

The range of LP is [0, 2p]. Once again, we do not need the exact
local phase angle. Instead, we quantize LP into several discrete
levels to get the ‘‘phase code’’ as

phaCodeðxÞ ¼ LPðxÞ= 2p=M
	 
� �

ð22Þ

where M is the number of quantization levels. Thus, each phase
code is an integer within 0�M�1.

Finally, for a given image, we can get its three code maps: pcCode,
oriCode, and phaCode. Examples of them are shown in Fig. 4.
3.3. Matching of local feature maps

Having obtained three code maps pcCode, oriCode, and phaCode

for each image, the next issue is how to match them for
recognition. Since the PC is a dimensionless measure, we can
use the absolute difference to measure the distance between two
pcCode maps. Specifically, given two PC code maps, pcCode1 and
pcCode2, we define their normalized matching distance as

pcD¼

PP
abs pcCode1ðxÞ�pcCode2ðxÞð Þ

ðL�1ÞS
ð23Þ

where S is the area of the image.
Fig. 4. Examples of local feature maps. (a1) and (a2) are the original FKP ROI images; (b

oriCode maps; (d1) and (d2) are the corresponding phaCode maps.
For comparing two orientation code maps, oriCode1 and
oriCode2, we resort to the normalized angular distance proposed
in [10], which is defined as

oriD¼

PP
ang oriCode1ðxÞ,oriCode2ðxÞð Þ

SJ=2

ang p,qð Þ ¼
min p�q,q�pþ Jð Þ,pZq

min q�p,p�qþ Jð Þ,poq

(
ð24Þ

When matching two phase code maps, we use a similar
method as matching two orientation code maps. The matching
distance between two phase code maps, phaCode1 and phaCode2,
is given by

phaD¼

PP
ang phaCode1ðxÞ,phaCode2ðxÞð Þ

SM=2
ð25Þ

In real implementation, it is easy to design ‘‘bitwise’’ repre-
sentations for pcCode, oriCode, and phaCode, and accordingly, pcD,
oriD, and phaD can be effectively computed.
3.4. Integration of local features

The three local features reflect different aspects of information
contained in an image patch. Thus, we can expect higher recogni-
tion accuracy when assembling information from the three
features together. This can be achieved by a score-level fusion
and we refer to this feature integration scheme as local feature

integration (LFI) in this paper. Suppose that three matching
distances pcD, oriD, and phaD have been calculated by matching
the three kinds of local features respectively. These three dis-
tances can be fused together to get the final matching distance.
There are a couple of rules for the fusion of matching distances,
such as the Simple-Sum (SS) rule, the MIn-Score (MIS) rule, the
MAx-Score (MAS) rule, and the Matcher-Weighting (MW) rule
[47]. In our case, pcD, oriD, and phaD can be considered to be
obtained from three different matchers and we adopt the MW
rule. With the MW fusion rule, weights are assigned according to
the equal error rate (EER) obtained on a training dataset by
different matchers. Denote by ek the EER of the matcher k,
k¼1,y,3. Then, the weight wk associated with matcher k can be
calculated as

wk ¼ 1=
X3

j ¼ 1

1

ej

0
@

1
A,ek ð26Þ

where 0rwkr1 and
P3

k¼1wk¼1. It is obvious that the weights
are inversely proportional to the corresponding EERs. Then, the
final matching distance between two FKP images using LFI is
1) and (b2) are the corresponding pcCode maps; (c1) and (c2) are the corresponding



Table 1
Performance of different FKP verification schemes based on local feature(s).

Feature type EER (%) d’

Local orientation 1.67 4.2847

Local phase 3.01 2.9213

Local phase congruency 2.59 3.3811

CompCode [21] 1.66 4.2989

LFI 1.27 4.3221
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Fig. 5. DET curves obtained by using various FKP recognition methods based on

local feature(s).
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calculated as

d¼w1pcDþw2oriDþw3phaD ð27Þ

4. Experimental results and discussions

4.1. FKP database and the test protocol

In our previous work [21–24], an FKP database was established
using the developed FKP image acquisition device. This database is
intended to be a benchmark to evaluate the performance of various
FKP recognition methods, and it is publicly online available at [48].
In this database, FKP images were collected from 165 volunteers,
including 125 males and 40 females. Among them, 143 subjects
were 20–30 years old and the others were 30–50 years old. We
collected samples in two separate sessions. In each session, the
subject was asked to provide 6 images for each of the left index
finger, the left middle finger, the right index finger, and the right
middle finger. Therefore, 48 images from 4 fingers were collected
from each subject. In total, the database contains 7920 images from
660 different fingers. The average time interval between the first
and the second sessions was about 25 days. The maximum and
minimum time intervals were 96 days and 14 days, respectively. In
all of the following experiments, we took images collected at the
first session as the gallery set and images collected at the second
session as the probe set. To obtain statistical results, each image in
the probe set was matched with all the images in the gallery set. If
the two images were from the same finger, the matching between
them was counted as a genuine matching; otherwise it was counted
as an imposter matching.

The equal error rate (EER), which is the point where the false
accept rate (FAR) is equal to the false reject rate (FRR), is used to
evaluate the verification accuracy. The decidability index d’ [49] is
used to measure how well the genuine and the imposter dis-
tributions are separated. d’ is defined as

d’
¼

m1�m2



 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs2

1þs2
2Þ=2

q ð28Þ

where m1 (m2) is the mean of the genuine (imposter) matching
distances and s1 (s2) is the standard deviation of the genuine
(imposter) matching distances. Besides, by adjusting the matching
threshold, a detection error tradeoff (DET) curve [50], which is a plot
of false reject rate (FRR) against false accept rate (FAR) for all
possible thresholds, can be created. The DET curve can reflect the
overall verification accuracy of a biometric system. Thus, the DET
curve obtained by using each evaluated method will be provided.

4.2. Determination of parameters

In real implementation, with respect to the quadrature pair
filters, we utilized the log-Gabor filters whose transfer function in
the frequency domain is

G2ðo,yjÞ ¼ exp �
log o=o0

	 
	 
2

2s2
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 !
exp �

y�yj

	 
2
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2
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where o0 is the filter’s center frequency, sr controls the filter’s radial
bandwidth and sy determines the filter’s angular bandwidth. In the
spatial domain, a log-Gabor filter has a similar shape with a Gabor
filter [37]. However, compared with Gabor filters, log-Gabor filters
have some special advantages [31,37]. At first, one cannot construct
Gabor filters of arbitrary bandwidth and still maintain a reasonably
small DC component in the even-symmetric filter, while log-Gabor
filters, by definition, has no DC component. Secondly, the transfer
function of the log-Gabor filter has an extended tail at the high
frequency end, which makes it more capable to encode natural
images than ordinary Gabor filters. Thus, we chose to use log-Gabor
filters to compute local features discussed in Sections 2 and 3 in this
paper. Parameters were empirically tuned based on a sub-dataset
containing images from the first 300 FKP classes and the tuning
criterion was that parameter values that could lead to a lower EER
would be chosen. As a result, parameters were set as the following:
n¼3, J¼6, sy¼0.44, L¼5, B¼3, M¼8, o1

0¼0.60, o2
0¼0.167,

o3
0¼0.083, where o1

0, o2
0, and o3

0 represent the three center
frequencies of the log-Gabor filters at three scales. In LFI, the weights
assigned to the local orientation matcher, the local phase matcher,
and the phase congruency matcher are 0.45, 0.25, and 0.30,
respectively.
4.3. Performance of local features

In this experiment, we validate our claim that LFI could provide
higher performance than using any of the three local features (the
local orientation, the local phase, and the phase congruency)
individually. In this experiment, all the classes of FKPs were
involved. Therefore, there were 660 (165�4) classes and 3960
(660�6) images in the gallery set and the probe set each. Each
image in the probe set was matched against all the images in the
gallery set. Thus, the numbers of genuine matchings and imposter
matchings were 23,760 and 15,657,840, respectively.

The verification accuracy by using each single feature, the local
orientation, the local phase, or the PC, is given in Table 1. The
performance of the LFI scheme is also reported in Table 1. The
performance of a state-of-the-art FKP recognition method, Comp-
Code [21], is listed in Table 1 for comparison. The DET curves
obtained by the evaluated methods are shown in Fig. 5.

From the experimental results shown in Table 1 and Fig. 5, we
can have the following findings. At first, the local orientation can
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provide higher discriminability than the other two local features,
the local phase and the PC, for the task of FKP verification.
Secondly, ‘‘local orientation’’ and ‘‘CompCode’’ have nearly the
same performance because both of them exploit the orientation
information. In fact, the local orientation in this paper is extracted
by using log-Gabor filters while CompCode extracts such infor-
mation by using Gabor filters. Thus, we can conclude that Gabor
filters and log-Gabor filters have very similar performance for
orientation feature extraction. Thirdly, the LFI scheme which
integrates all the three local features together performs obviously
better than using any of them individually, which corroborates
our claim.

It should be noted that LFI has higher computational cost and
needs more storage space than CompCode [21]. At the feature
extraction stage, the major operations involved are convolutions.
So, the number of convolutions used can roughly reflect the overall
computational complexity of the feature extraction. For CompCode,
6 convolutions are needed [21]. For LFI, in order to compute the
phase congruency, at each specific scale 6 log-Gabor filtering
are applied and altogether 3 scales are adopted; thus, 6�3¼18
convolutions are needed. Therefore, LFI has about 3 times the
computational complexity of CompCode. In CompCode, each feature
point is represented by 3-bits. In LFI, for each feature point, 3-bits
are used to represent each local feature, and thus 9-bits are used to
represent a feature point. So, it is easy to see that LFI needs 3 times
storage space compared with CompCode.
Table 3
FKP verification performance of OE-SIFT, LGIC and LGIC2.

Method EER (%) d’

OE-SIFT [25] 0.850 –

LGIC [22] 0.402 4.5356

LGIC2 0.358 4.7001
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4.4. Further discussions

4.4.1. Robustness to small rotations

From the experimental results reported in Section 4.3, we can
see that the local orientation has much higher discriminability
than the local phase and PC for FKP recognition, and by incorpor-
ating the local phase and PC, the verification performance could
be much better than using the local orientation feature alone. The
local phase and PC could provide additional discriminative infor-
mation that is independent of local orientation for the FKP
verification task. In addition, the local phase and PC features are
more robust to small rotations than the local orientation. Due to
the imperfection of the imaging device and the ROI extraction
algorithm, there will be small rotations among intra-class images
captured at different times, which will have negative effect to the
algorithms mainly depending on the orientation information. To
validate such a conjecture, we tested the robustness to small
rotations of each local feature in this section.

For this purpose, we selected images from the first 400 FKP
classes as the dataset and the experiment protocols were the
same as described in Section 4.1. Let a¼{0, 1, 2, 3, 4, 5}. For each
a, by rotating each image in the dataset randomly by a degree
within range [�a, a], we can get a new virtual dataset. The
verification performances of each local feature in terms of EER on
these 6 virtual datasets are summarized in Table 2. For compar-
ison, we also list the results obtained by CompCode and LFI under
the same experimental settings in Table 2.
Table 2
Verification performance (measured by EER) of local features on the virtual

rotated datasets.

a¼0 a¼1 a¼2 a¼3 a¼4 a¼5

Local orientation 2.03% 2.04% 2.16% 2.40% 2.78% 3.61%

Local phase 3.63% 3.65% 3.87% 4.21% 4.64% 5.50%

Phase congruency 2.83% 2.86% 2.91% 3.23% 3.36% 3.88%

CompCode [21] 2.01% 2.03% 2.15% 2.38% 2.77% 3.60%

LFI 1.52% 1.54% 1.64% 1.77% 1.96% 2.34%
As shown in Table 2, when a increases, the EER obtained by
using each local feature increases. However, for different local
features, the ‘‘accelerations’’ of the EER increase are different. We
use the following measure to characterize the ‘‘acceleration’’ of
the EER increase:

Z¼ 1

5

X5

i ¼ 1

eeri�eer0

eer0
ð30Þ

where eeri is the EER obtained when a¼ i. By using this metric Z,
the ‘‘acceleration’’ of the EER increase by using different local
features while a increases can be compared. For the local
orientation, Z¼0.2798; for the local phase Z¼0.2050; and for
the PC, Z¼0.1477. From this experiment, we can clearly see that
with the increase of the rotation degree, the performance
decrease of local phase and PC is much less than local orientation,
which indicates that the local phase and PC are more robust to
small rotations than the local orientation. Moreover, for Comp-
Code, Z¼0.2866 and for LFI, Z¼0.2171, which indicates that the
proposed local feature integration scheme LFI is much more
robust to small rotations than the CompCode scheme which
depends on local orientation information only.

4.4.2. Integrating local features with a global feature

In our previous work [22], we presented a local–global
information combination (LGIC) scheme for FKP recognition, in
which the local orientation extracted by Gabor filters was taken
as the local feature while the image’s Fourier transform coeffi-
cients were taken as the global feature. Similarity of Fourier
transform coefficients from two images were compared using
the phase-only correlation (POC) technique [51,52]. LGIC could
achieve the highest verification accuracy on our FKP database. In
fact, the local features discussed in this paper can also be
integrated with the global feature, i.e., the Fourier transform
coefficients, using the same framework as LGIC. We call this
new local–global information combination scheme as LGIC2.
Compared with LGIC, LGIC2 involves two more local features,
0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

False Accept Rate (%)

Fa
ls

e 
R

ej
ec

Fig. 6. DET curves obtained by LGIC and LGIC2.
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the local phase and the phase congruency. We compared the
performance of LGIC and LGIC2 under the same experiment
settings as described in Section 4.3. The results in terms of EER
and d’ are summarized in Table 3. Besides, the EER reported by
another state-of-the-art method OE-SIFT [25] under the same
experimental settings is also listed in Table 3 for comparison. DET
curves obtained by LGIC and LGIC2 are shown in Fig. 6. Distance
distributions of genuine machings and imposter matchings
obtained by LGIC2 are plotted in Fig. 7. From the experimental
results, we can see that LGIC2 performs better than LGIC. It once
again corroborates our claim that the local phase and the phase
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Fig. 7. Distance distributions of genuine matchings and imposter matchings

obtained by LGIC2.

Table 4
Computation time for key processes of LGIC2.

Operations Time (ms)

ROI extraction 198

Local feature extraction 405

Local feature matching 0.9

Global feature matching 2.1

Fig. 8. (a) and (b) are two intra-class FKP images in PolyU FKP dataset [48]; (c) and (d)

and they are recognized as different classes by LGIC2.
congruency could afford more discriminative information for FKP
recognition.

LGIC2 is implemented using Visual C#.Net 2005 on a Dell
Inspiron 530s PC embedded Intel E6550 processor and 2 GB of
RAM. Computation time for the key processes is listed in Table 4.
The total execution time for one verification operation is less than
0.7 s in our prototype system, which is fast enough for real-time
applications. We believe that with the optimization of the
implementation, the system’s efficiency could be much further
improved.

It should be noted that though LGIC2 performs the best among
all the existing FKP verification methods, it cannot deal with
severe intra-class pose variations. Such variations can result in
severe affine transforms or even non-elastic deformations among
intra-class FKP images. In fact, most of the failure cases of LGIC2

can be attributed to such large-scale intra-class pose variations.
Fig. 8 shows a typical example. Figs. 8a and b are two FKP images
captured from the same finger in different sessions. Figs. 8c and d
are the ROIs extracted from Figs. 8a and b, respectively. It can be
seen that there is an obvious pose variation between the two
FKPs. They are recognized as different classes by LGIC2. Hence, in
the future, we will focus on devising high performance FKP
recognition algorithms being robust to such intra-class pose
variations. For example, the idea proposed in Morales et al.’s
work [25] can be borrowed.
5. Conclusions

In this paper, we focused on developing new effective feature
extraction and matching method for FKP recognition. To this end,
we analyzed three commonly used local features, the local
orientation, the local phase, and the phase congruency system-
atically and presented a method for computing them efficiently
using the phase congruency computation framework. Coding and
matching algorithm for each local feature was presented. Exten-
sive experiments were conducted on the benchmark PolyU FKP
database. The experimental results showed that the integration of
all the local features together performs better than using any of
them separately. The algorithm LGIC2, which integrates all the
three local features and one global feature, Fourier transform
coefficients, could achieve the best verification result on the
benchmark FKP database, with the EER 0.358%.
are their ROI sub-images. There is an obvious pose variation between the two FKPs
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