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Abstract— Recently, a new biometrics identifier, namely finger
knuckle print (FKP), has been proposed for personal authentica-
tion with very interesting results. One of the advantages of FKP
verification lies in its user friendliness in data collection. However,
the user flexibility in positioning fingers also leads to a certain
degree of pose variations in the collected query FKP images. The
widely used Gabor filtering based competitive coding scheme is
sensitive to such variations, resulting in many false rejections.
We propose to alleviate this problem by reconstructing the query
sample with a dictionary learned from the template samples in
the gallery set. The reconstructed FKP image can reduce much
the enlarged matching distance caused by finger pose variations;
however, both the intra-class and inter-class distances will be
reduced. We then propose a score level adaptive binary fusion
rule to adaptively fuse the matching distances before and after
reconstruction, aiming to reduce the false rejections without
increasing much the false acceptances. Experimental results on
the benchmark PolyU FKP database show that the proposed
method significantly improves the FKP verification accuracy.

Index Terms— Biometrics, finger-knuckle-print, reconstruc-
tion, score level fusion.

I. INTRODUCTION

RELIABLE personal identity verification is crucial in a
variety of applications such as building access con-

trol, e-banking, airport, computer system login, and mobile
phones, etc. Compared with the passwords or ID cards based
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Fig. 1. Outlook of the FKP image acquisition device.

solutions, biometrics authentication is much more preferable
and reliable to those applications requiring high security.
In the past decades, various biometrics traits, such as face
[1], [2], fingerprint [3], [4], iris [5], [6], etc., have been
widely studied. Meanwhile, hand-based biometrics methods
are popular in the biometrics community, and techniques such
as palmprint [7]–[9], hand geometry [10], hand vein [11],
etc., have been developed. Nonetheless, every biometrics
identifier has its pros and cons, and no biometric identifier
can supersede the other one. Therefore, it is desired that
new biometrics identifiers, as well as the associated feature
extraction and pattern recognition techniques, can be further
developed to improve and enrich the biometrics methods and
technologies.

Recently, a novel biometric identifier, namely finger-
knuckle-print (FKP), has been developed for online personal
verification [12]–[16]. FKP refers to the inherent skin pattern
of the outer surface around the phalangeal joint of one’s
finger. Fig. 1 shows the FKP image acquisition device and
the use of the system. Preprocessing and region of interest
(ROI) extraction algorithms for FKP images can be found
in [12], [13]. In [12], Zhang et al. applied the Gabor filter-
ing based Competitive Coding (CompCode) scheme, which
was originally proposed for palmprint recognition [8], to the
FKP image for orientation feature extraction and matching.
In [13], this scheme was extended by combining the Gabor
filtering magnitude information. The Gabor filtering based
methods extract image local features. In [14], the Fourier
transform based band-limited phase only correlation (BLPOC)
was adopted to extract the global features of FKP images
for matching, and in [15] the local and global information
was combined for FKP verification, which achieves very
promising accuracy of FKP verification. Recently, a set of

1057-7149 © 2013 IEEE
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Fig. 2. (a) A template FKP sample and (b) two testing FKP samples from
the same finger but collected at different sessions. Obvious pose variations
can be observed from the samples in (b).

phase congruency induced local features were defined in [16].
By fusing those local features in the matching score level,
the proposed local feature integration (LFI) method [16] leads
much better results than other local feature based methods
such as CompCode [12] and improved CompCode [13].

Refer to Fig. 1, although a triangular block is used to control
the finger freedom in FKP image acquisition, there is still
much flexibility for the users to position their fingers. This
is good to increase the user friendliness but also allows much
variation of the finger pose in query sample collection process.
Fig. 2 shows some examples. We can see obvious deformations
between the two FKP samples due to the finger pose variations.
Unfortunately, the CompCode and LFI based FKP recognition
methods are sensitive to such variations, resulting in false
rejections and degrading the FKP verification performance.

From the above discussions, we can see that the main
difficulty in FKP recognition is the false rejections caused
by finger-pose-variation in the query samples. One strategy to
solve this problem is to correct the pose deformations by affine
transformations. However, estimating the affine transformation
parameters is itself a very difficult problem, particularly for
FKP images where very few distinctive key points can be
extracted. Since our ultimate goal is FKP verification but not
pose deformation correction, another strategy is to enhance the
FKP matching process without pose deformation correction.
Considering that the finger pose variation caused FKP image
deformation enlarges the matching distance between two FKP
images from the same person and hence results in false rejec-
tions, we propose a reconstruction based matching scheme to
reduce the enlarged matching distance.

First, a dictionary is learned from the template FKP images,
and this dictionary defines the subspace of the gallery FKP
dataset. For a given query sample which may have pose
variation, we represent it as the linear combination of the
atoms in the learned dictionary. This process actually projects
the query sample onto the subspace spanned by the gallery
FKP images. The CompCode scheme can then be applied to
the reconstructed image for feature extraction and matching.
Nonetheless, the reconstruction of the query sample will not
only reduce the intra-class distance, but also reduce the inter-
class distance. In other words, it can reduce false rejections but
may also increase the false acceptances. To effectively exploit
the discriminative information of the query sample before and
after reconstruction, a simple yet powerful score level adaptive

binary fusion (ABF) rule is proposed to make the final decision
by fusing the matching scores before and after reconstruction.
The ABF ensures a good reduction of false rejections without
increasing much the false acceptances, leading to much lower
equal error rates than state-of-the-art methods.

The rest of this paper is organized as follows. Section 2
briefly reviews the CompCode scheme and indicates its prob-
lems. Section 3 presents the proposed reconstruction based
methodology for FKP recognition. Section 4 presents the ABF
rule. Section 5 summaries the proposed algorithm. Section 6
presents extensive experimental results and discussions, and
Section 7 concludes this paper.

II. BRIEF REVIEW OF COMPETITIVE CODING

BASED FKP VERIFICATION

Gabor filtering has been widely used as an effective feature
extraction technique in face, iris, fingerprint, palmprint, as
well as FKP recognition systems. A 2D Gabor filter can be
mathematically expressed as

G(n, m) = exp

(
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2

(
n2

θ

σ 2
n

+ m2
θ

σ 2
m

))
· exp (i2π f nθ ) (1)

where nθ = n·cosθ + m·sinθ , mθ = −n·sinθ + m·cosθ , f is
the frequency of the sinusoid factor, θ is the orientation of the
normal to the parallel stripes of the Gabor function, σn and
σm are the standard deviations of the 2D Gaussian envelop.

Based on the observation that the FKP images contain
abundant line-like structures, the orientation features can be
extracted for FKP image recognition. Let’s denote by G R the
real part of a Gabor filter, and by IRO I an FKP ROI (region
of interest) image. With a bank of Gabor filters, at each pixel
IRO I (n, m), the CompCode scheme [8], [12], [13] extracts and
codes the dominant orientation feature as follows:

CompCode(n, m) = argmin
j

{
IRO I (n, m)∗G R(n, m, θ j )

}
(2)

where symbol “*” denotes the convolution operation, and
θ j = jπ/6, j = {0,…,5}. CompCode(n,m) is assigned the
orientation along which the smallest response is obtained.

In order for real-time recognition, CompCode uses three bits
to represent each orientation [8]. For matching two CompCode
maps P and Q, the normalized Hamming distance based
angular distance is commonly adopted [8]:

sh =
∑Rows

n=1
∑Cols

m=1
∑2

i=0 (Pi (n, m) ⊗ Qi (n, m))

3S
(3)

where S is the area of the code map, Pi (Qi ) is the i th

bit plane of P (Q), and ⊗ represent the bitwise “exclusive
OR” operation. In practice, multiple matches are performed
by translating one of the two feature maps vertically and hor-
izontally, and the minimum matching distance is regarded as
the final angular distance. Nonetheless, the CompCode scheme
is sensitive to the variation of FKP image and then resulting
in false rejection. Even a small rotation and misalignment can
lead to an incorrect matching.
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Fig. 3. The distribution of matching distance of a typical FKP verification
system.

III. RECOGNITION VIA RECONSTRUCTION

A. Motivation

The CompCode scheme is simple and fast, and it leads
to acceptable accuracy in FKP verification [12], [13]. If the
query FKP image is well aligned after ROI extraction, the
CompCode scheme can work very well. As we discussed in
the introduction section, however, there can be certain degree
of variations of the finger pose in the data collection process
(refer to Fig. 2 please), which lead to deformations in the
FKP images and consequently result in false rejections because
CompCode is sensitive to image deformations.

Fig. 3 shows the genuine and imposter matching distance
distributions of a typical FKP verification system. Based on
the curves, it is obvious that we can divide the matching
distance into two parts: an uncertain interval, which is between
thresholds t1 and t2, and a confidence interval, which cov-
ers the remaining part. Generally speaking, if the matching
distance of two FKP feature maps falls into the confidence
interval, it can be easily decided if the query sample is a
genuine or an imposter, while most of the false acceptances
and false rejections occur when the matching distance falls
into the uncertain interval [t1, t2]. On the other hand, the finger
pose variation is the main cause that increases the intra-class
distance (see the long tail of the blue genuine curve in Fig. 3),
making the false rejections happen.

The FKP verification accuracy can be improved if we
could correct the finger-pose-variation caused deformations
of query samples via affine transformation. Unfortunately,
it is a particularly difficult problem to estimate the affine
transformation parameters for FKP images because very few
distinctive key points can be extracted from them. Therefore,
this solution is impractical. In this paper, we propose to reduce
the pose variation caused false rejections by enhancing the
matching process without pose deformation correction.

Denote by X = [x1, x2, . . . , xk] the set of gallery FKP
samples, where xi is a vectorized FKP sample. We can use the
hull of X, denoted by H(X) = {X · w}, where w = [w1,…,wk]T

is the vector of weights, to characterize the subspace of
gallery FKP images. If the gallery set is big enough, we can
reasonably assume that each regular FKP image will fall into

Fig. 4. The distribution of ||e|| 2.

the hull H(X), i.e., it can be well represented as the linear
combination of the template samples in X. For a query image
y, we can project it into the hull H(X), and rewrite it as
y = X ·ŵ+e, where weight ŵ is determined by minimizing the
distance between y and its projection ŷ = X · ŵ (usually some
regularization will be imposed on ŵ), and e is the projection
residual.

For a regular query image, there is no much finger pose
variation caused deformation in it, and the projection residual
e will be very small (i.e., ||e||2 is very small). In such case,
the query sample y can be accurately recognized by using
the efficient CompCode scheme. However, if the finger pose
varies much in the data acquisition process, the query sample
y can have much deformation and fall outside the hull H (X),
i.e., ||e||2 becomes much bigger. In this case, the CompCode
scheme can fail since it is sensitive to image deformations,
which can be reflected by the big values of ||e||2.

Let’s plot the distribution of ||e||2 by using the PolyU FKP
database [32]. We use the first 6 samples of each of the 660
classes in the PolyU FKP database to construct the gallery
dataset X, and take the remaining 6 samples of each class
as the query samples. In projecting each query sample into
the hull H (X), we use the l2-norm regularized least square
to compute the weight: ŵ = arg minw ‖y − X · w‖2

2 + λ ‖w‖2
2.

Then e is computed as e = y − X · ŵ. In Fig. 4 we plot the
distribution of ||e||2 by using all the 660 × 6 = 3,960 query
samples. We can see that the distribution has a long tail, which
is mainly caused by those samples with large deformations.
Since it is mainly the big residual e that makes the CompCode
feature of query sample y deviates much from the CompCode
features of gallery samples in X, one intuitive idea is that we
can compute the CompCode of ŷ = X · ŵ for verification.

Note that we use all the gallery samples, not only the
samples from the class that y claims, to compute ŷ. There
are two reasons for such a configuration. First, the number of
samples of each class is usually small (e.g., 6 samples per
class in the gallery set of PolyU FKP database), and thus
reconstructing y using only the samples from one class is not
accurate. Second, the query sample y can be an imposter, i.e.,
it may come from a class out of the gallery set, or from a class
that is different from the class it claims. Reconstructing y using
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Fig. 5. From left column to right column: original FKP image; reconstructed FKP image by l1-regularization (Eq. (6)), reconstructed FKP image by
l2-regularization (Eq. (8)), and reconstructed FKP image without regularization (i.e., let λ = 0).

only the samples of one class will make the distance from ŷ
to this class too small so that false acceptance will happen.
Therefore, all the classes in the gallery set should be involved
in reconstructing y.

B. Reconstruction With l1-Norm Sparse Regularization

By approximating y with X · w, one solution to w is the
least square solution: ŵ = arg minw ‖y − X · w‖2

2. It is easy
to see that ŵ = (

XT X
)−1

XT y. Though the least square
solution is simple to compute and it ensures the minimal
l2-norm reconstruction residual of ŷ, it is not the best choice
for the verification purpose. The least square solution aims to
minimize the reconstruction residual, and the weights w tend to
be densely distributed, hence many classes in X will contribute
in reconstructing y. Finally, some discriminative features in y
may be smoothed out in ŷ.

In order to preserve the discriminative features of y in ŷ,
some regularization term could be imposed on w. Intuitively,
we hope that only a small portion of the weights in w are
significant so that only several classes are dominantly involved
to reconstruct y. The l1-norm based sparse representation (or
sparse coding) is a very good choice to this end. In recent
years sparse coding has been successfully used in various
image reconstruction and pattern classification applications
[17]–[22]. It represents a given signal as a sparse linear
combination over a dictionary of atoms. By imposing the l1-
norm constraint on w, we have

ŵ = arg min
w

‖y − X · w‖2
2 + λ ‖w‖1 (4)

where λ is a positive scalar balancing the reconstruction
residual and the sparsity of w. Eq. (4) can be solved by many
convex optimization algorithms such as l1-magic [17], l1-ls
[18], etc.

The sparse coding in Eq. (4) still has two problems. First,
it is known that the commonly used l1-minimization solvers
such as l1_ls have an empirical complexity of O(z2k1.3) [18],
where z is the dimension of y and k is the number of samples
in X. In practice, k can be very big so that the sparse coding
complexity is high. Second, the atoms in X are the original
gallery FKP images, which may contain noise and some trivial
structures that can be negative to the representation of y.

To solve the above problems and considering the fact
that the FKP images in X have much redundancy across
samples, we can learn a more compact dictionary D from X,
and then use D to code the input FKP image y. Dictionary
learning has been widely used in image processing and pattern
recognition [19]–[21], [23], [24]. In this paper, we simply
adopt the method in [21] to learn the dictionary D. Denote by
D = [d1, d2,…, d p], where p ≤ k and each d j is a unit

column vector. The dictionary learning can be formulated as
the following minimization problem:

JD,W = arg min
D,W

{‖X − DW‖2
F + λ ‖W‖1

}
(5)

Eq. (5) is a joint optimization of dictionary D and the
coefficient matrix W , and it can be solved by optimizing D
and W alternatively [21]. Once the dictionary D, which has
less number of atoms than X, is computed, we use it to code
the input FKP image y as follows:

ŵ = arg min
w

‖y − D · w‖2
2 + λ ‖w‖1 (6)

Finally, the image is reconstructed as:

ŷ = D · ŵ (7)

Let’s show an example of the reconstruction results. We
take 1980 images from the first 330 classes in the gallery set
of PolyU FKP dataset as X, and learn from it a dictionary
D with 1386 atoms. D is then used to reconstruct the input
image y. The parameter λ is set as 0.1 and 2 in Eq. (5) and
Eq. (6), respectively. The left column of Fig. 5 shows an input
FKP image, and the second column shows the reconstructed
image using D. One can see that the reconstructed image is
smoother than the original one because some details as well as
variations in the query sample y, which cannot be represented
by the learned dictionary D, are suppressed.

C. Reconstruction With l2-Norm Regularization

In Eq. (6), the l1-norm sparsity constraint is imposed on
the coding coefficients to enforce that only a small portion
of the atoms are dominantly used to reconstruct y. How-
ever, l1-minimization is time consuming. Though many fast
l1-minimization solvers such as FISTA [25], ALM [26] and
Homotopy [27] have been developed, they may not be fast
and accurate enough for practical use in the application of FKP
verification, where real time implementation is expected. One
intuitive solution is to relax the strong l1-regularization to the
weaker l2-regularization in Eq. (6). The l2-regularization offers
a closed form solution to w, which can be very efficiently
computed. Though the resolved coefficient w is not sparse
anymore, the l2-regularization can still make w have a small
energy. As we will see in the experimental results, the FKP
verification accuracy by l2-regularized reconstruction is only a
little lower than that by l1-regularized reconstruction, but the
computational complexity is greatly reduced.

By using l2-norm to regularize w, the coding becomes a
regularized least square problem:

ŵ = arg min
w

‖y − D · w‖2
2 + λ ‖w‖2

2 (8)
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and a closed form solution can be readily obtained as:

ŵ =
(

DT D + λ · I
)−1

DT y (9)

Let P = (
DT D + λ · I

)−1
DT . Clearly, P can be pre-calculated

so that the coding vector can be obtained by projecting y over
P: ŵ = Py. This process is very fast.

In the third column of Fig. 5, we show the reconstructed
FKP image by l2-regularization in Eq. (8). The parameter λ is
set as 4. (Note that the parameter λ in l2-regularized coding is
usually set bigger than that in l1-regularized coding because
l2-regularization is much weaker than l1-regularization.) For a
better illustration, we also show in the right column of Fig. 5
the reconstructed FKP image without regularization (i.e., set
λ = 0 in Eq. (8)). It can be observed that due to the non-sparse
l2-regularization, more classes are involved in the reconstruc-
tion of y, and thus the reconstructed image is smoother than
that by l1-sparse regularization. This will lead to some lose of
the distinctive features in the original FKP image. Nonetheless,
this is the price we should pay for the great reduction in
time complexity. In the section of experimental results, we
will see that the reconstructed image by l2-regularization can
still lead to quite competitive verification accuracy. It can also
be observed from Fig. 5 that the reconstructed image without
regularization is the smoothest and more distinctive features
are lost. Our experiments also show that the verification
accuracy by the reconstructed image without regularization is
lower than that with, l2-regularization1 which validates that
l2-regularization is very helpful for verification. Note that the
complexity of reconstruction with l2-regularization is the same
as that without l2-regularization.

D. Patch Based Reconstruction

In Sections 3.2 and 3.3, we stretch the whole FKP image
as a vector y for coding and reconstruction. In coding y over
D by Eq. (6) or Eq. (8), we actually enforce that all the
elements (i.e., all the pixels) in y, denoted by yi , i =1,2,…,n,
share the same coding vector w over their corresponding sub-
dictionary (i.e., the i th row of D). The good side of such
a global coding strategy is that the solution is very stable
because only one global coding vector needs to be solved.
The bad side of such a coding strategy, however, lies in its
less flexibility because it does not allow the different parts of
the FKP image to have different coding vectors. Considering
the fact that different portions of a query FKP sample y may
have different variations, it is reasonable to allow them to
have different coding vectors so that the reconstruction can be
spatially adaptive. Therefore, we can partition the FKP image
into several patches, reconstruct separately each patch, and
then combine them to obtain the whole reconstructed image.

1For example, we use the first 165 classes in the first session as the
gallery set and the whole 660 classes in the second session as the probe
set. By using the algorithm described in Table II together with the ABF
rule (refer to Section 4 please), if the query sample is reconstructed with
l2-regularization, the equal error rate is 1.27%, while if the query sample
is reconstructed without regularization, the equal error rate is 1.41%. We see
that the l2-regularization is helpful for verification without increasing the time
complexity.

Fig. 6. The patch partition of FKP images.

If we partition the image into too many patches, the size
of each patch will become small and the sub-dictionary
corresponding to each patch will tend to be under-determined
(i.e., the sub-dictionary will tend to be a fat matrix). This
will reduce the stability of the coding process, no matter
l1-regularization or l2-regularization is used. Based on our
experimental experience and considering the special pattern of
FKP images, we partition the FKP image (size: 110 × 220)
into 6 overlapped patches, as illustrated in Fig. 6. Four patches
of size 60 × 45 lie in the four corners of the FKP images,
and two patches of size 60 × 155 lie in the middle of the
image. The reason that we set two fat rectangle patches in the
middle is based on the observation that the pose variation along
vertical direction has bigger effect than that along horizontal
direction on the FKP recognition accuracy. Therefore, we
should pay more attention to the pose variation along vertical
direction in the partition.

Let’s denote by y j , j =1,2,…,6, the six patches of an FKP
image y. For each patch, we can learn a dictionary D j from
the training samples by using the same method described in
Section 3.2. Then for an input query sample y, each patch y j of
it can be reconstructed by D j . Similarly, both l1-regularization
and l2-regularization can be employed in the reconstruction of
y j via

ŵ j = arg min
w j

∥∥y j − D j · w j
∥∥2

2
+ λ

∥∥w j
∥∥

1 (10)

and
ŵ j = arg min

w j

∥∥y j − D j · w j
∥∥2

2
+ λ

∥∥w j
∥∥2

2 (11)

respectively. After each patch is reconstructed, the whole
reconstructed image can be obtained by combining them.
For the overlapped area of neighboring patches, we simply
average the results. Similar to our discussions in Sections
3.2 and 3.3, the l1-regularization in Eq. (10) may preserve
more discrimination information, but the l2-regularization in
Eq. (11) is much faster.

At last, let’s use an example to illustrate the performance
of patched based reconstruction. Fig. 7 shows a query sample
y and a template image which is from the same class of y.
We reconstruct y with l2-regularization in this example. Image
ŷg is the output of global reconstruction by Eq. (8) (we set
λ = 1), while ŷp is the output of patch based reconstruction
by Eq. (11) (we set λ = 0.1). One can see that the patch
based reconstruction can preserve more distinctive features
than the global reconstruction due to the higher flexibility in
coding coefficients of each patch. After extract the CompCode
feature maps (refer to Section 2 please), the matching distances
between the template image and y, ŷg and ŷp are 0.3783,
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Fig. 7. A query sample y and the reconstructed images of it with
l2-regularization. ŷg is the output of global reconstruction while ŷp is the
output of patch based reconstruction. The matching distances between a
gallery image (which is from the same class as y) and y, ŷg and ŷp are 0.3783,
0.3761 and 0.3631, respectively. One can see that the global reconstruction can
reduce the genuine matching distance, while the patched based reconstruction
can further reduce the matching distance.

0.3761 and 0.3631, respectively. One can see that the global
reconstruction can reduce the genuine matching distance,
while the patched based reconstruction can further reduce the
matching distance. Though imposter matching distance will
also be reduced after reconstruction, we will see that with an
adaptive binary fusion strategy proposed in next section, more
accurate verification results can be obtained by adaptively
fusing the matching distances before and after reconstruction.
In the experimental results in Section 6, we will also see
that patch based reconstruction can lead to better verification
performance.

IV. VERIFICATION BY BINARY SCORE LEVEL FUSION

As can be observed in Fig. 5 and Fig. 7, the reconstruction
can reduce the deformation caused matching distance so that
the intra-class matching distance can be reduced. At the same
time, however, the inter-class matching distance may also be
reduced. Fig. 8 shows some examples. One can see that the
imposter inter-class matching distance is also reduced after
the query sample is reconstructed (global reconstruction with
l2-regularization is used). What we expected is that the intra-
class genuine matching distance can be reduced more than
the inter-class imposter matching distance, but there is no
guarantee for such an ideal situation. If we directly apply the
CompCode scheme [8] to the reconstructed image for verifi-
cation, incorrect decision can be made. To make this clear, we
apply CompCode to the original images and the reconstructed
images, respectively, for FKP verification. The equal error
rates (EER) are shown in Table I, from which we can see
that using only the reconstructed images for verification leads
to worse performance because some useful texture features are
smoothed out in the reconstructed images. For a more robust
and accurate verification, the matching scores (or distances)
of both the original image y and the reconstructed image ŷ
should be considered for decision making.

Denote by s1 and s2 the matching distances of y and ŷ
to a gallery image, respectively. We propose to fuse the two

TABLE I

FKP VERIFICATION BY USING ONLY THE ORIGINAL IMAGE AND ONLY

THE RECONSTRUCTED IMAGE, RESPECTIVELY

distance scores for final decision making. In the following,
we first briefly review the existing popular score level fusion
methods, and then propose a simple but very effective adaptive
fusion method, namely the adaptive binary fusion rule.

A. Popular Score Level Fusion Methods

The score level fusion is a kind of combination-based
approach, where the matching scores of individual matchers
are integrated to generate a single scalar score for final
decision making. Denote by s the fusion result of s1 and s2.
Three commonly used score level fusion methods [28] are the
simple-sum (SS):

s = s1 + s2 (12)

the min-score (MIN):

s = min{s1, s2} (13)

and the max-score (MAX):

s = max{s1, s2} (14)

The above three fusion rules do not use any additional
information apart from the matching scores s1 and s2. Another
popular method is the matcher weighting (MW) scheme [28].
The fused score is the weighted average of the two scores:

s = ω1 · s1 + ω2 · s2 (15)

where 0≤ ω1, ω2 ≤1 and ω1 + ω2 =1. To determine ω1 and
ω2, some prior knowledge needs to be known. Often the EERs
of the two matchers (i.e., matching by y and matching by ŷ)
are used. Using some training dataset, the two EERs, denoted
by e1 and e2, can be obtained, and the weight can then be
calculated as

ω j =
(

1
/(∑2

j=1

(
1/e j

)))/
e j (16)

It is obvious that the weight is inversely proportional to the
corresponding EER. A higher weight will be assigned to a
more reliable (i.e., lower EER) matcher, and vice versa.

There are also some other score level fusion formulas.
For example, in [29] Kumar et al. proposed the exponential
sum rule s = ∑n

j=1 exp(s j )ω j and the tan-hyperbolic sum
rule s = ∑n

j=1 tanh(s j )ω j . The Particle Swarm Optimization
(PSO) [30] is employed to dynamically select the weights ω j .
Such dynamic rules may work better than the SS, MIN, MAX
and MW rules when there are multiple biometric identifiers for
fusion, but they need to optimize the fusion rules, weights,
and decision thresholds. Overall, the PSO based dynamic
score level fusion is complex and has high computational
complexity [29].
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Fig. 8. Examples of matching distances before and after reconstruction. (a) inter-class; (b) intra-class.

B. Adaptive Binary Fusion

In general, the MW fusion rule works better than SS, MIN
and MAX rules. However, the MW rule has two drawbacks.
First, it needs a preset training dataset to train the weights.
Second, once the weights are learned, they are applied to
all query images y and the reconstructed images ŷ. In other
words, the MW rule is not adaptive to the input query image,
limiting its performance. This phenomenon can be seen in
Fig. 8. In Fig. 8(b), the reconstructed image is more reliable for
verification, so the weight ω2 assigned to this matcher is higher
(ω1 < ω2). However, the situation is opposite in Fig. 8(a).
Because the query sample is an imposter, it is hoped that the
weight ω1 assigned to the original image is higher (ω1 > ω2)
so that the final matching distance can be larger. The MW
rule cannot meet this requirement because ω1 and ω2 are
fixed.

In this paper, we propose a new fusion rule, which is
adaptive to the query image and does not need a preset training
dataset. The weights ω1 and ω2 are adaptively determined
online based on the input image pair y and ŷ. The idea is as
follows. For the query image y which is claimed to belong
to class c, we can calculate its within-class and between-
class matching distances. Using CompCode, those matching
distances can be computed very fast by Eq. (3). So does for
the reconstructed query image ŷ. Then the higher weight is
assigned to the matcher whose within-class and between-class
matching distances are better separated.

Denote by μ1,w and μ1,b the mean values of the within-
class and between-class matching distances of y, respectively,
and by σ1,w and σ1,b the standard deviations of the within-
class and between-class matching distances, respectively. For
both genuine matching and imposter matching, the within-
class distances are calculated between the query image and
the class which it claims to belong to, and the between-class
distances are calculated between the query image and other
classes. Because of the fast speed of CompCode, this process
can be implemented in less than one second on the PolyU
FKP database. For very large scale databases, computing the
between-class distance using the whole dataset can be costly.
To save cost, we can randomly select an enough number
of samples from the classes other than the claimed class to
compute a good approximation of the between-class distance.

The decidability index [31] can be used to measure the
separability of the distributions of within-class and between-
class matching distances. The decidability index for y is

calculated as follows:

d1 = |μ1,w − μ1,b|√(
σ 2

1,w + σ 2
1,b

)
/2

(17)

Similarly, we can calculate the decidability index of ŷ and
denote it as d2. A bigger decidability index means that the
within-class and between-class matching scores can be better
separated, and hence the matcher is more accurate, vice versa.
Therefore, d1 and d2 can be used to adaptively determine
the weights ω1 and ω2 that are assigned to s1 and s2. The
higher the decidability index, the higher the weight. However,
designing an optimal function to map d1 and d2 to ω1 and
ω2 is not a trivial work. In this paper, we propose to use the
simple binary logic operation for the weight determination.
The so-called adaptive binary fusion (ABF) rule is defined as
follows:

1) Adaptive Binary Fusion (ABF): If d1 ≥ d2, ω1 = 1 and
ω2 = 0; otherwise, ω1 = 0 and ω2 = 1.

The above proposed ABF rule is a kind of “winner-take-
all” strategy and is similar to the notion of using cohort
scores for multi-biometric fusion [28]. However, there are
clear differences between them. In cohort score based multi-
biometric fusion, the fusion weight is fixed for each biometric
identifier once the weights are learned offline. All the users
of one biometric identifier share the same pre-learned fusion
weight. Instead, in the proposed ABF the fusion weight is
adaptively determined for each user online. The ABF rule is
simple but fits our application very well. The reconstruction
of y can only lead to two situations: the reconstructed image
ŷ is either better or worse than y for verification. Hence, it
is reasonable and effective to adaptively choose one of them
for the final decision making. Our experimental results in
Section 6 validate the effectiveness of the proposed ABF rule.

V. SUMMARY OF THE VERIFICATION ALGORITHM

In practice, it is not necessary to reconstruct every input
query image for verification. As shown in Fig. 3, if the
matching distance of a query image y falls into the confident
interval, we can directly make the decision; only when the
matching distance falls into the uncertain interval [t1, t2], the
reconstruction is needed, and the ABF rule is applied for the
verification. The proposed algorithm of reconstruction based
FKP verification with ABF is summarized in Table II. The
output is the final matching distance s. The final decision
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TABLE II

SUMMARY OF THE PROPOSED FKP VERIFICATION ALGORITHM

(accept or reject) is then made by applying a threshold to
s, as in existing FKP verification systems [12]–[16].

VI. EXPERIMENTAL RESULTS

The PolyU FKP database, which can be freely downloaded
at: http://www.comp.polyu.edu.hk/~biometrics/FKP.htm, was
used in our experiments. This database contains the cropped
FKP region of interest (ROI) images of 4 fingers (the left index
finger, the left middle finger, the right index finger and the
right middle finger) from 165 persons. Each finger knuckle
was acquired 12 samples in two separated sessions with 6
samples per session, giving a total of 165 × 4 × 12 = 7,920
samples from 660 (i.e., 165 × 4) fingers.

In the following experiments, the gallery set is always
extracted from the first session while the probe set is extracted
from the second session. As in [12]–[16], each image in the
probe set was matched with all the images in the gallery set. If
the two images were from the same finger, a genuine matching
was counted; otherwise, an imposter matching was counted.

A. Comparison Between Different Fusion Rules

In this section, we verify that the proposed ABF rule is
more effective than the commonly used SS, MIN, MAX and
MW rules. In the experiment, the gallery set is composed of
the first 165 fingers in the PolyU FKP gallery set, and the
probe set is composed of the first 330 fingers in the PolyU
FKP probe set. (Other settings of the gallery and probe sets
lead to similar conclusions.) That is, there are 165 classes out
of the gallery set. The gallery set is used to train the dictionary
D to code the samples in the probe set.

In this experiment the l1-regularization is used in the recon-
struction of query samples. In the dictionary learning (Eq. (5))
and sparse coding (Eq. (6)), the parameter λ is set as 0.1 and
0.5. The number of atoms in the learned dictionary is 0.7 times
the number of samples in the gallery set. The parameters for
uncertain interval setting is t1 = 0.35 and t2 = 0.39 based on
our experimental experience. If the class label of the query
sample is out of the gallery set, only the imposter matching
distance will be counted when calculating EER.

The algorithm described in Table II is used to perform
the FKP verification experiments with different fusion rules

TABLE III

EER (%) VALUES BY DIFFERENT FUSION RULES

in step 5. For the MW rule, the whole dataset is used to train
the weights. The EER results by using the different fusion rules
are listed in Table III. We can clearly see that the lowest EER is
obtained by the proposed ABF rule, which works much better
than other rules. Even that the MW rule uses more information
with a training dataset, it is only slightly better than the MIN,
SS and MAX rules. In the following experiments, we only
report the results by using the ABF rule.

B. Experiment Settings and Parameter Selection

We compare the proposed reconstruction based FKP veri-
fication method with ABF, denoted by “R-ABF”, with state-
of-the-art FKP verification methods, including the improved
CompCode (ImCompCode) [13], BLPOC [14], LGIC [15] and
the local feature integration (LFI) method [16]. Considering
that the LGIC scheme is a combination of the CompCode
(which employs the image local orientation features) and the
BLPOC (which employs the image global Fourier transform
features) methods, for fair comparison we will first compare
R-ABF with ImCompCode, BLPOC and LFI, and then couple
R-ABF with BLPOC and compare it with the LGIC method.

In the proposed method, the query image reconstruction can
be regularized by either l1-norm or l2-norm, and can be done
either globally or patch-by-patch. Therefore, there are four
variants of the proposed R-ABF scheme, denoted by R-ABF-
g-l1, R-ABF-g-l2, R-ABF-p-l1 and R-ABF-p-l2, respectively,
where “g” is for “global” and “p” is for “patch”. In order to
evaluate the proposed R-ABF method more comprehensively,
we conduct 3 experiments with different sizes of the gallery set
(165, 330 and 660 fingers, respectively). In all the experiments,
the gallery set is extracted from the FKP images collected
in the first session, while all the FKP samples collected
in the second session are used as the probe set (all the
660 fingers).

There are some parameters to set in our algorithm. For
the parameters in CompCode, we adopt the settings in the
original paper [12]. The uncertain interval is set by letting
t1 = 0.35 and t2 = 0.39. The thresholds t1 and t2 can also
be automatically determined based on the training set. By
using the “leave-one-out” strategy, each image of one subject
is matched with all the other images in the training set to
obtain the distribution of matching distances. The point where
the false acceptance rate equals to the false rejection rate is
taken as the decision threshold t , and the width of the uncertain
interval (refer to Fig. 3) can be set as w0. Then t1 and t2 can be
determined as: t1 = t − w0/2 and t2 = t + w0/2. By using this
strategy, the computed t1 and t2 are 0.34 and 0.38, respectively,
which are very close to the manually set thresholds (i.e., 0.35
and 0.39).

In the global reconstruction scheme, we set the parameter
λ in dictionary learning (i.e., in Eq. (5)) as 0.1 by experience.
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Fig. 9. DET curves by different methods in (a) experiment 1; (b) experi-
ment 2; and (c) experiment 3.

The selection of parameter λ in dictionary learning has small
influence on the final verification result in terms of EER.
The parameter λ for l1-regularized coding in Eq. (6) and
l2-regularized coding in Eq. (8) is related to the number of
atoms in dictionary D. We determine it by the following
criterion: λ = 0.5 × (n/990)2 in l1-regularized coding and
λ = (n/990)2 in l2-regularized coding, where n is the number
of atoms in the dictionary. In patch based reconstruction, the
parameter λ in dictionary learning and coding is set as 1/10

Fig. 10. DET curves by the fused methods in (a) experiment 1; (b) experi-
ment 2; and (c) experiment 3.

of that in global reconstruction. The partition of patches is
discussed in Section 6.5.

Our method needs to train a dictionary D with atom number
p ≤ k, where k is the number of samples in gallery set X. If p
is too small, much information contained in the gallery sample
set X can be lost and thus the test sample may not be well
represented by the learned dictionary D. On the other hand, the
commonly used l1-minmization solvers such as l1_ls have an
empirical complexity of O(z2 p1.3) [18] (z is the dimension
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TABLE IV

EER (%) VALUES AND DECIDABILITY INDICES BY THE COMPETING METHODS

TABLE V

THE PERCENTAGE (%) OF MATCHINGS IN WHICH THE SCORE FROM y OR ŷ IS SELECTED

of samples). So if p is big, the computational cost can be
high. To balance the computational cost and the representation
capability, we set the ratio of p to k as 0.7 in our method, and
this configuration leads to satisfying experimental results.

C. FKP Verification Results

1) Experiment 1: In this experiment, only the FKP images
of the first 165 (out of the 660) fingers (i.e., 165 × 6=990 sam-
ples) are used as the gallery set. Hence, there are 5,940 genuine
matchings and 3,914,460 imposter matchings, respectively.
Fig. 9(a) plots the DET (Detection Error Tradeoff) curves,
which are the plots of false rejection rates (FRR) against false
acceptance rates (FAR) for all possible thresholds. Table IV
lists the results of competing methods in terms of EER and
decidability index.

It can be seen that the R-ABF methods outperform much
ImCompCode, BLPOC and LFI. This validates that the recon-
struction of query sample y can reduce much the image
deformation induced intra-class distance, and the ABF rule can
prevent the less discriminative reconstruction of y from being
adopted for final decision making. Among the four variants of
R-ABF, the l1-regularized ones have higher accuracy than the
l2-regularized ones, while the patch based ones have higher
accuracy than the global based ones. Specifically, R-ABF-
p-l1 achieves the lowest EER. This is consistent with our
discussions in Section 3.

Table V lists the percentage of matchings in which the
score from y or the reconstruction ŷ is selected as the final
matching score. We can see that for genuine matchings, about
40% ∼ 45% of the matching scores from ŷ are selected by
the ABF rule.

For imposter matchings, about 28% ∼ 35% of the matching
scores from ŷ are adopted.

2) Experiment 2: In the 2nd experiment, 330 classes are
involved in the gallery set. Therefore, the numbers of genuine
and imposter matchings are 11,880 and 7,828,920, respec-
tively. Fig. 9(b) shows the DET curves by the different

verification schemes, while the EER values and decidability
indices are listed in Table IV. The percentage of matchings in
which the score from the reconstruction ŷ is selected is listed
in Table V. Again, the proposed R-ABF methods get much
better results than ImCompCode, BLPOC and LFI.

3) Experiment 3: At last, all the classes (i.e., all fingers)
are involved in the gallery set, and the numbers of genuine
and imposter matchings are 23,760 and 15,657,840, respec-
tively. The DET curves by different verification schemes are
illustrated in Fig. 9(c). Table IV lists the EER values and
decidability indices, and Table V lists the percentage of match-
ings in which the score from the reconstruction ŷ is selected.
Similar conclusions to the previous two experiments can be
made.

It can be seen that the EER decreases from Experiment 1
to Experiment 2, and increases from Experiment 2 to Exper-
iment 3. The reason can be as follows. From Experiment 1
to Experiment 3, the number of gallery classes is increasing.
The increased number of gallery samples makes the dictionary
D more capable to reconstruct the query sample, but it also
makes the verification tasks more challenging. There are only
165 gallery classes in Experiment 1, so the learned dictionary
D may not be representative enough to reconstruct the query
sample. The number of gallery classes is increased to 330
in Experiment 2, and the representativeness of D is much
improved so that the FAR and FRR are decreased simulta-
neously. As a consequence, the overall EER in Experiment 2
is reduced. With 330 gallery classes, the representativeness
of learned dictionary D is already good. Thus, the benefit
of using 660 gallery classes in Experiment 3 is not big in
term of learning dictionary D; however, the FAR and FRR
are increased simultaneously due to the increased number of
gallery classes, resulting in a bigger EER than Experiment 2.

D. Integrating With Global Features

The LGIC scheme [15] combines CompCode, which
employs the image local orientation features, and BLPOC,
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TABLE VI

EER (%) VALUES AND DECIDABILITY INDICES BY DIFFERENT METHODS

which employs the global Fourier transform features. In
this section, for fair comparison, we also combine R-
ABF, which basically employs the image local orienta-
tion features, with the BLPOC method in the same way
as that in [15]. According to the reconstruction strategy,
we denote the fused methods as R-ABF-g-l1+ BLPOC,
R-ABF-g-l2+ BLPOC, R-ABF-p-l1+BLPOC and R-ABF-p-
l2+ BLPOC, respectively. We compare the performance of
LGIC with the proposed methods under the same experiment
settings as described in Section 6.3. The combination of LFI
and BLPOC is also used for more comprehensive comparison.
The DET curves of the competing methods are shown in
Fig. 10, and the EER values and decidability indices are
summarized in Table VI.

From the experimental results in both Sections 6.3 and
6.4, we can see that the proposed R-ABF scheme leads to
state-of-the-art verification accuracy, no matter using only the
local orientation feature or using both local and global fea-
tures. Specifically, the R-ABF-p-l1 and R-ABF-p-l1+BLPOC
methods achieve the best accuracy, respectively. By relax-
ing the l1-regularized sparsity constraint in the reconstruc-
tion, the l2-regularized reconstruction can also lead to very
competitive verification results but with much less complex-
ity, which is a good solution in practical FKP recognition
systems.

E. Discussions

In the proposed method, we learn a dictionary D from
the gallery set to reconstruct a query sample. When a new
subject is enrolled, we can update D by solving Eq. (5).
However, if the dataset has a large scale, this can be very
costly. Fortunately, it is not necessary to update D for a new
enrollment in large-scale dataset.

The dictionary D in our algorithm is just used for recon-
struction, and it is not used in the classification stage. This is
very different from the works in [21]–[23], where the atoms
in the dictionary have class labels and they will be used to
calculate the class-specific distances for classification. The role
of dictionary D in our work is similar to the dictionaries in
image restoration such as K-SVD [19]. There are no class
labels of the atoms in D, and D is a universal dictionary
shared by all classes. Once enough gallery classes are involved
in learning the dictionary D, this D will be able to well
represent any FKP image. Therefore, when there are some new
enrollments, we actually do not need to update the dictionary.

Kindly note that the online learning algorithms in [33] and [34]
aim for updating classifiers when new individuals are enrolled.
The problem is very different from ours.

Let us use two experiments to validate the above statement.
We use the first 600 classes out of the 660 classes in the PolyU
FKP database as the gallery set (6 samples per class in the first
session) to learn a dictionary, denoted by D1. We then use all
the 660 classes to learn another dictionary, denoted by D2.
In the first experiment, we take D1 as the dictionary and take
the 60 new classes (6 samples per class) as the query set,
and the EER is 0.8% by the proposed R-ABF-g-l2 method.
If we take D2 as the dictionary and take the 60 same classes
as the query set, the EER is 0.76% by R-ABF-g-l2 In the
second experiment, with D1 and using all the 660 classes as
the query set (6 samples per class in the second session), the
EER is 1.21% by R-ABF-g-l2, while with D2 and using all
the 660 classes as the query set, the EER is 1.19% by R-ABF-
g-l2. Clearly, in both the two experiments, the EER values by
D1 and D2 are very close, implying that there is no necessary
to further update the dictionary since D1 is already good in
reconstruction.

If we do want to update the dictionary D when new
enrollments come, there are two strategies to save cost. First,
we can update D once a batch of new enrollments is available.
Second, we can let the new dictionary be Dnew = [DoDa],
where Do is the old dictionary and Da includes the new atoms
to be added. In this way, we only need to learn the several new
atoms by using dictionary learning algorithms such as [21].

VII. CONCLUSION

This paper presented a novel reconstruction based finger-
knuckle-print (FKP) verification method to reduce the false
rejections caused by finger pose variations in data collection
process. For an input query image whose matching distance
falls into the uncertain interval, we reconstructed a new version
of it by using a dictionary learned from the gallery set.
Then a new matching distance can be obtained. An adaptive
binary fusion (ABF) rule was then proposed to fuse the
two matching distances for the final decision making. The
proposed reconstruction based FKP verification with ABF,
denoted by R-ABF, can effectively reduce the false rejections
without increasing much the false acceptances. Our extensive
experimental results demonstrated that the R-ABF can result
in much lower equal error rate than existing state-of-the-art
methods.
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