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RefineDNet: A Weakly Supervised Refinement
Framework for Single Image Dehazing
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Abstract— Haze-free images are the prerequisites of many
vision systems and algorithms, and thus single image dehazing
is of paramount importance in computer vision. In this field,
prior-based methods have achieved initial success. However, they
often introduce annoying artifacts to outputs because their priors
can hardly fit all situations. By contrast, learning-based methods
can generate more natural results. Nonetheless, due to the lack
of paired foggy and clear outdoor images of the same scenes
as training samples, their haze removal abilities are limited. In
this work, we attempt to merge the merits of prior-based and
learning-based approaches by dividing the dehazing task into two
sub-tasks, i.e., visibility restoration and realness improvement.
Specifically, we propose a two-stage weakly supervised dehazing
framework, RefineDNet. In the first stage, RefineDNet adopts
the dark channel prior to restore visibility. Then, in the second
stage, it refines preliminary dehazing results of the first stage to
improve realness via adversarial learning with unpaired foggy
and clear images. To get more qualified results, we also propose
an effective perceptual fusion strategy to blend different dehazing
outputs. Extensive experiments corroborate that RefineDNet
with the perceptual fusion has an outstanding haze removal
capability and can also produce visually pleasing results. Even
implemented with basic backbone networks, RefineDNet can
outperform supervised dehazing approaches as well as other
state-of-the-art methods on indoor and outdoor datasets. To make
our results reproducible, relevant code and data are available at
https://github.com/xiaofeng94/RefineDNet-for-dehazing.

Index Terms— Single image dehazing, weak supervision, image
fusion, unpaired dehazing dataset.

I. INTRODUCTION

UNDER haze conditions, the visibility of images is seri-
ously degraded due to the scattering of atmospheric

aerosol particles, making it difficult to further perceive and
understand for many computer vision applications, such as
object detection, recognition, and ADAS (Advanced Driver
Assistance System). Therefore, haze removal, especially single
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image dehazing, is highly valuable and has been extensively
studied in the past decade [1]–[7].

Existing dehazing methods can be roughly classified into
two categories, i.e., the prior-based and the learning-based.
Methods of the first class rely on a widely accepted physical
model for atmospheric scattering, Koschmieder’s law [9].
In our case, this law can be defined as,

I (x) = J (x) t (x) + A (1 − t (x)) . (1)

Here, x refers to the position of a pixel. I (x) and J (x) are
the apparent luminance (the foggy image) and the intrinsic
luminance (the clear scene), respectively. A is the global
skylight representing ambient light in the atmosphere. t (x) is
the transmission of the intrinsic luminance in the atmosphere
and it can be further modeled as,

t (x) = e−βd(x) (2)

where β is the extinction coefficient, and d (x) is the scene
depth of x. Since there are more than two unknown variables
in Koschmieder’s law, we cannot pinpoint them using the input
hazy image only. Thus, researchers of prior-based methods
have proposed various priors as extra constraints to find a
proper solution for J (x). Those priors usually aim to restore
the contrast of objects against the ambient light. Since the
visibility is decided by the contrast, prior-based methods can
generate dehazing results with high visibility. Although those
priors perform well in specific cases, they are unable to fit all
circumstances and thus overly enhance the contrast, producing
unwanted artifacts, e.g., halos and color blockings.

Unlike prior-based dehazing methods, learning-based
approaches learn to estimate A and t (x), or to recover J (x)
directly from the input hazy image via supervised learning.
Since they adopt convolutional neural networks (CNNs) that
are inborn to generate images with few artifacts according
to [10], those methods are able to produce dehazing results
with satisfactory realness. However, their training processes
require a large number of clear and hazy image pairs from the
same scenes, which are hardly possible to collect in bulk under
real-world conditions. Therefore, they often make a trade-off
and synthesize hazy images by applying Koschmieder’s law on
indoor scenes where the essential depth information is avail-
able. Since there are certain gaps between indoor synthetic and
real-world outdoor images, learning-based methods are likely
to overfit the synthetic data, and their ability to remove real
haze is limited.
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Fig. 1. Drawbacks of learning-based and prior-based methods. (a) is
generated by the learning-based method AODNet [5]. (b) is generated by
the prior-based method DCP [8]. The result of AODNet is visually better
but includes more haze, whereas DCP removes more haze at the cost of
introducing artifacts. The red and the blue boxes highlight their differences.

Interestingly, due to the characteristics of the two categories,
prior-based methods are relatively better for restoring visibility
whereas learning-based methods are preferable for improving
the result’s realness. Fig. 1 provides dehazing results of (a) the
learning-based AODNet [5] and (b) the prior-based DCP [8]
to illustrate this phenomenon. As we can see, DCP’s result has
less haze but more artifacts, whereas the result of AODNet is in
high realness but with more haze. In Appendix A, we provide
some theoretical explanations for the preference of prior-based
and learning-based methods.

To further improve the dehazing results, it is a natural idea to
exploit the advantages of both categories, but surprisingly such
a simple idea has seldom been explored in the literature. In this
work, based on the above-mentioned findings, we propose a
two-stage weakly supervised dehazing framework, RefineDNet
(Refinement Dehazing Network), to merge the merits of the
two categories.

Specifically, in the first stage, RefineDNet restores the
visibility of the input hazy image by producing preliminary
results with DCP. We embed DCP dehazing in our framework
to enable end-to-end training and evaluations. In the second
stage, RefineDNet improves the realness of the preliminary
dehazed image and the quality of the transmission map by
refining them using two refiner networks. During training,
we update the refiner networks via adversarial learning with a
discriminator on unpaired images. This weak supervision with
unpaired data is beneficial to dehazing because it is possible to
collect a large amount of unpaired images from the real world
to train our model. In this way, RefineDNet suits to process
real-world foggy images better than supervised methods that
are trained on simulated images and may overfit those data.

Beside the refined dehazed image, RefineDNet reconstructs
another dehazed image using the hazy input and refined
transmission. Since the refined and the reconstructed dehazed
images are generated in different ways, they are unlikely to
perform the same in all regions. It is highly possible that either
of them may outperform the other in some regions. Thus,
fusing better regions in either of them can boost performance.
To this end, we propose a perceptual fusion strategy to fuse the
refined and the reconstructed dehazed images. In this strategy,

greater weights are assigned to regions that are closer to
natural images. To obtain such weights, we exploit powerful
features in the field of image quality assessment (IQA).

With the two-stage dehazing strategy, RefineDNet divides
the dehazing task into two less intractable subtasks, namely,
visibility restoration and realness improvement, and lever-
ages priors and learning to handle the two subtasks, respec-
tively. Since priors and learning are used in separate stages
of RefineDNet, they are unlike to affect each other. Thus,
RefineDNet merits the advantages of both prior-based and
learning-based methods. Besides, RefineDNet only needs to
remove artifacts in the refinement stage, and thus, its learning
encounters less ambiguity of dehazing. As a result, it is
blessed with stable weak supervision and circumvents the
issue of the lack of data that supervised methods suffer
from. To support our claims, we show that even implemented
with basic backbone networks, RefineDNet is able to out-
perform state-of-the-art supervised methods on both indoor
and outdoor datasets. Moreover, since there is no off-the-shelf
outdoor training set for RefineDNet, we built an unpaired
outdoor training dataset, RESIDE-unpaired, using images from
RESIDE [11].

The main contributions of this work are summarized as:
• We propose a two-stage weakly supervised framework

RefineDNet which first adopts prior-based DCP to restore
visibility and then employs GANs to improve realness.
It is demonstrated that RefineDNet integrates the advan-
tages of both prior-based and learning-based dehazing
methods and generates visually pleasing results with
high visibility. Moreover, due to the two-stage dehazing
strategy, RefineDNet boasts effective weak supervision
with unpaired foggy and clear images, which avoids the
issue of the lack of paired data for supervised methods.

• We propose a novel perceptual fusion strategy to
blend different dehazing results. Our experimental results
demonstrate that this strategy is effective with perfor-
mance gain in various datasets.

• We also construct a necessary unpaired dataset with
6,480 outdoor images to facilitate the relevant studies of
weakly supervised dehazing approaches.

The remainder of this paper is organized as follows.
Section II reviews the related work. Section III describes the
proposed RefineDNet with the perceptual fusion in detail.
Section IV presents experimental results and ablation studies.
Finally, Section V concludes this paper.

II. RELATED WORK

This work is related to the prior-based and learning-based
dehazing methods and generative adversarial networks
(GANs). Since GANs have been widely explored in recent
years, we mainly review their applications on dehazing.

A. Prior-Based Dehazing Methods

In the literature, various priors or assumptions have been
explored. Fattal [1] decomposed J (x) in Koschmieder’s
law [9] into surface reflectance coefficients and a shading
factor, and he solved all unknown variables by assuming
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that the shading factor and transmission are independent.
Tan [12] constructed a Markov Random Field (MRF) with the
energy function based on their observation that clear images
have higher contrast, and the atmosphere scattering term of
Koschmieder’s law (the second term) changes smoothly across
small regions. Following Tan’s observation [12], Tarel and
Hautiere [13] defined the atmospheric veil and provided its
closed-form solution. Later, He et al. [8] proposed the afore-
mentioned dark channel prior (DCP) to estimate transmission
maps. Salazar-Colores et al. [14] combined DCP with math-
ematical morphology operations, e.g., erosion and dilation,
to compute transmission maps efficiently. Meng et al. [3] gen-
eralized DCP to the boundary constraint and adopted this con-
straint together with a weighted contextual regularization to get
optimized transmission maps. More recently, Liu et al. [15]
proposed the non-local total variation regularization (NLTV) to
refine preliminary transmission maps obtained by the boundary
constraint.

Besides, distributions of different parts of Koschmieder’s
law were studied. Nishino et al. [16] analyzed the distributions
of the scene albedo and image depth and then applied a
Factorial MRF [17] to estimate them jointly. Fattal [18] found
that pixels in small patches of natural images typically exhibit
one-dimensional distributions called color-lines in RGB color
space. Specifically, the color-lines of hazy images own the
exclusive offsets. Berman and Avidan [19] pointed out that
haze-free images can be well approximated by a few hundreds
of distinct colors, and pixels can be grouped into clusters
according to their colors. In haze conditions, pixels of each
cluster become a haze-line in RGB space. Thus, dehazing is
equal to identifying those haze-lines. More recently, based on
the observation that pixels of image patches are clustered in
an ellipsoid region instead of color-lines, Bui and Kim [20]
proposed the color ellipsoid prior to maximize the contrast of
dehazed pixels.

B. Learning-Based Dehazing Methods

With the popularity of CNNs, learning-based methods have
emerged in this field. Cai et al. [4] proposed an end-to-end
CNN called DehazeNet to estimate the transmission map
from a hazy image. Ren et al. [21] exploited multi-scale
information to predict transmission by using a coarse-scale
net and a fine-scale one. Differently, Li et al. [5] combined
the two unknown variables, i.e., the transmission and the
ambient light, into one by reformulating Koschmieder’s law.
Then, they constructed the AODNet to estimate this variable.
In [22], Zhang et al. adopted AODNet’s formulation and
proposed a fast and accurate multi-scale dehazing network
called FAMED-Net to estimate the same variable. Later,
Ren et al. [23] proposed the gate fusion network (GFN) to
conflate three intermediate results generated by white balance,
contrast enhancement, and gamma correction as dehazing
results. Santra et al. [24] constructed a patch quality compara-
tor (PQC) with CNNs to attain the best dehazing patches.
More recently, based on the finding that the atmospheric
illumination has a greater impact on the illumination channel
of the YCrCb color space than the chrominance channels,

Want et al. proposed AIPNet [25] which adopts multi-scale
CNNs to restore the Y channel of a hazy image. Liu et al. [26]
solved the dehazing problem in an iterative manner. For each
iteration, the input was optimized via a variational model and
then put into a CNN to generate the output as the input for
the next iteration. Liu et al. [27] constructed a grid network
with several residual dense blocks [28] and a channel-wise
attention mechanism to remove haze. All those approaches
rely on supervision with paired images, whereas our method
is weakly supervised with unpaired data.

C. GANs in Dehazing

GAN originated in [29], where a generator and a discrim-
inator are involved to play a maximin game during training
in an adversarial way. Many studies [30]–[32] have proved
that GANs are superior in fields of image generation and
restoration. For dehazing, GAN was first introduced in [33]
where dehazed images are generated by the network according
to Koschmieder’s law and judged by a discriminator. Later,
Zhang et al. [6] proposed more complex structures to generate
unknown variables of Koschmieder’s law and adopted one
discriminator to jointly judge the transmission map and the
dehazed output. Li et al. [34] employed a conditional GAN
to directly generate dehazing results without any physical
model. Following Li et al.’s work [34], Qu et al. [7] proposed
enhancing blocks, multi-scale generators, and multi-scale dis-
criminators to further enhance the results. Although GANs
are involved, all those dehazing methods still require paired
training data. As the pioneer of leveraging unpaired data, Dis-
entGAN [35] employed three generators to produce dehazed
images, transmission maps, and ambient light from the hazy
input, and then it resorted to a multi-scale discriminator to
conduct adversarial training. Our method focuses on training
with unpaired images as well, but it solves the dehazing prob-
lem by restoring visibility and improving realness separately.

III. PROPOSED FRAMEWORK

In this section, the proposed RefineDNet will be presented
in detail. We first introduce its overall architecture and then
review how to get the preliminary dehazing results of DCP,
which are essential to RefineDNet. After that, the perceptual
fusion is detailed. Finally, the loss function is described.

A. Overall Framework

We divide the dehazing task into two sub-tasks, i.e., visi-
bility restoration and realness improvement, and propose the
weakly supervised framework RefineDNet. Our motivation is
twofold. First, we have found that prior-based methods are
more likely to remove haze at the expense of introducing
artifacts whereas learning-based methods are good at pro-
ducing visually pleasing results but with more haze. Thus,
it should be promising to combine the merits of both kinds of
methods. Second, supervised learning-based methods require
pairs of clear and hazy images which are difficult to obtain in
the real-world conditions, whereas the weak supervision with
unpaired data can tackle this issue appropriately.
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Fig. 2. Overview of RefineDNet. RT and RJ represent the two refiner networks. D refers to the discriminator. Ireal and Jreal are the unpaired input
images. Tre f and Jre f are the refined results of TDC P and JDC P , respectively. A is the ambient light, and the numbers in the brackets are the values for
the R, G, B channels of A, respectively. Jrec is the reconstructed dehazed image via Eq. (3). Irec is the reconstructed hazy image via Eq. (1). The outline
of the perceptual fusion is presented in Fig. 3.

1) Two-Stage Framework: As shown in Fig. 2, RefineDNet
includes two stages. In the first stage, it adopts DCP to
generate the ambient light A, the preliminary dehazed image
JDC P , and transmission map TDC P . In the second stage, TDC P

is refined by the refiner network RT as Tre f , and JDC P is
refined by another refiner network RJ as Jre f . Note that the
DCP stage is embedded in our framework, and thus, Ireal is
the only input for RefineDNet in the inference. Also, Fig. 2
indicates that Tre f values of sky regions are larger than their
true values. However, the magnified Tre f values at sky regions
do not affect the dehazing results, which is discussed in
Appendix B in detail.

2) Weakly Supervised Learning: During training, to ensure
that Tre f is appropriately refined, we reconstruct the hazy input
as Irec using Tre f , Jre f , and A according to Koschmieder’s law
(i.e., Eq. (1)). Then, the refiner RT is updated by minimizing
the distance between Ireal and Irec . For the reason why we
can updated RT in this way, please refer to Appendix C.
Besides, there is an additional discriminator notated by D,
which receives either Jre f or the clear sample Jreal to enable
adversarial learning. Since there is no requirement that Jreal

must be taken from the same scene of the hazy input Ireal ,
the whole framework is weakly supervised. In RefineDNet,
D plays a paramount role in the weak supervision. Without
D, we are not able to conduct adversarial learning, and as a
result, RJ will not be appropriately updated.

3) Dehazing Result Fusion: In RefineDNet, although Jre f is
a dehazed image, it doesn’t fit any physical model. To obtain a
more qualified result, we reconstruct another clear output Jrec

by reformulating Koschmieder’s law as,

Jrec (x) = Ireal (x) − A

Tre f (x)
+ A. (3)

Then, we adopt powerful features for IQA to compute weights
to fuse Jre f and Jrec as the final dehazed output J f used .

IQA metrics based on those features can generate effective
judgments that are close to human perceptions, and thus we
call our fusion strategy the perceptual fusion. This strategy is
elaborated in Section III-C.

4) Network Structures: To justify the effectiveness of
RefineDNet’s motif rather than that of backbone net-
works, we adopt basic backbone networks provided by
CycleGAN [31] to implement RT , RJ , and D without incor-
porating any multi-scale or other customized structures pop-
ular in modern state-of-the-art dehazing pipelines [6], [7],
[23], [35]. Specifically, RT is a U-Net [36] that includes
8 downsampling and 8 upsampling convolution layers. RJ is
a ResNet [37] with 9 residual blocks. D is a CNN with
5 convolution layers.

B. Preliminary DCP Results

DCP [8] is embedded in RefineDNet to enable the end-
to-end training and inference. In this section, we briefly intro-
duce how we gain the preliminary dehazing results, i.e., TDC P ,
JDC P , and A, for RefineDNet with the imbedded DCP.

1) Dark Channel Extraction: For an input RGB image I ,
we calculate the channel-wise minimum value image denoted
as I min . Then, we apply the max pooling with the kernel size
of 5×5 on the additive inverse of I min and then get the additive
inverse of the pooling result as the dark channel image I dark .
The extraction of the dark channel can be formulated as,

I dark(x) = −max pool(− min
c∈R,G,B

(I c(x))) (4)

where I c refers to one of the R, G, B channels of I .
2) Transmission Estimation: We get the dark channels at

both sides of Koschmieder’s law as,

I dark (x) = J dark (x) t (x) + A (1 − t (x)) (5)
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where I dark(x) and J dark(x) are the dark channels of images
I and J at pixel x, respectively. According to DCP’s assump-
tion that pixels in most of the non-sky patches of natural
images have the intensity values close to zero at least in one
color channel, J dark(x) → 0. Then

t (x) = 1 − I dark (x)

A
. (6)

If A is known, TDC P can be obtained accordingly. In addition,
we employ a guided filter to make TDC P smooth. The guided
filter is also imbedded in our framework and implemented
using one average pooling with the kernel size of 19 ×19 and
the stride of 1.

3) Ambient Light Estimation and the Dehazed Image:
As for A, since the large pixel values (e.g., the pixel values
of the sky region) in an image are very close to ambient light,
the top 0.1% brightest pixels in I dark(x) are picked, and their
values in color channels of I (x) are averaged as A. With
acquired A and TDC P , JDC P can be attained by reversing
Koschmieder’s law like Eq. (3).

C. Perceptual Fusion

Since Jre f and Jrec are produced in their own ways, it is
highly possible that either of them is better than the other in
some regions. In this sense, if better regions from either of
Jrec and Jre f are assigned with larger weights, we can obtain
a better result by fusing Jrec and Jre f .

Since both Jre f and Jrec are dehazed images with good
visibility, their fusion with arbitrary normalized weights should
not impair the visibility. Thus, we fuse them based on the
image realness. Since Ireal is a natural image with high
realness, the similarity map of Ireal and Jre f (or Ireal and Jrec)
is an informative indicator for the realness of Jre f (or Jrec). In
this sense, we should assign a larger weight to either of Jrec(x)
and Jre f (x), which has a larger corresponding value in the
similarity map. To get appropriate similarity maps, we adopt
two features, i.e., gradient modulus (GM) and chrominance
information of the LMN color space (ChromMN), which are
widely adopted in the field of IQA.

1) Feature Extraction: According to IQA studies [38]–[41],
GM is computed in the Y channel (luminance channel) of
the YIQ color space, and ChromMN refers to the M and
N channels of the LMN color space [42], [43]. Therefore,
to obtain GM, we first calculate the Y channel of YIQ using
its definition as,

Y = 0.299 · R + 0.587 · G + 0.114 · B. (7)

Then, the GM of an image is computed as G(x) =√
G2

x(x) + G2
y(x), where x is a pixel of that image, and Gx (x)

and Gy(x) are its partial derivatives at x in the Y channel. For
ChromMN, we compute the M and N channels of the LMN
color space as follows,

M = 0.30 · R + 0.04 · G − 0.35 · B

N = 0.34 · R − 0.60 · G + 0.17 · B. (8)

2) Similarity Calculation: We calculate the similarity with
GM and ChromMN to evaluate the realness of the dehazing
result. Given the GM values of two images notated as G1(x)
and G2(x), the similarity SG(x) at pixel x is defined as,

SG(x) = 2G1(x) · G2(x) + C1

G2
1(x) + G2

2(x) + C1
(9)

where C1 is set to 160 as suggested in [39].
As for the ChromMN, supposing that M1(x) and N1(x)

are computed from the first image, and M2(x) and N2(x) are
derived from the second, the similarity SC (x) at pixel x is
calculated as,

SC (x) = 2M1 (x) · M2 (x) + C2

M2
1 (x) + M2

2 (x) + C2
· 2N1 (x) · N2 (x) + C2

N2
1 (x) + N2

2 (x) + C2

(10)

where C2 is set to 130 as suggested in [40].
We consider both SG (x) and SC (x) and define the overall

similarity map SGC (x) as,

SGC (x) = SG (x) · [SC (x)]α (11)

where α is a parameter used to adjust the relative importance
between the GM and ChromMN. Following the previous IQA
study [40], we set α = 0.4 in our experiments.

3) Fusion Weights: In this step, we convert the similarity
into fusion weights. Supposing that SGC

re f (x) is the similarity
value of Ireal (x) and Jre f (x) at pixel x, and SGC

rec (x) is the
similarity value of Ireal (x) and Jrec(x) at pixel x, the weights
of Jre f (x) and Jrec(x) at pixel x are defined as the softmax of
SGC

re f (x) and SGC
rec (x). We notate the weights as Wre f (x) and

Wrec(x), respectively. Hence,[
Wre f (x)
Wrec(x)

]
= sof tmax(

[
SGC

re f (x)

SGC
rec (x)

]
). (12)

Note that Wre f (x) + Wrec(x) = 1.
In the end, we fuse Jre f and Jrec with their weights, and

the final result J f used is defined as,

J f used = Jre f � Wre f + Jrec � Wrec (13)

where � refers to pixelwise product. Fig. 3 illustrates the
outline of our perceptual fusion. Its efficacy is discussed in
ablation studies in Section IV-C.

4) Adaptation to Fusing Multiple Results: The perceptual
fusion can be easily adapted to fusing more than two dehazing
results. Suppose that J1, J2, . . . , and Jn are n dehazing results
to be fused. For Ji (i ∈ 1, 2, . . . , n), we calculate the similarity
map SGC

i of Ji and the foggy input I according to Eq. (11).
Then, for a pixel x, the fusion weight for Ji (x) is Wi (x) of
the softmax defined as,⎡

⎢⎢⎢⎣
W1(x)
W2(x)

...
Wn(x)

⎤
⎥⎥⎥⎦ = so f tmax(

⎡
⎢⎢⎢⎣

SGC
1 (x)

SGC
2 (x)

...

SGC
n (x)

⎤
⎥⎥⎥⎦). (14)

Finally, the fused image Ĵ f used is derived as,

Ĵ f used =
n∑
i

Wi � Ji (15)

where � refers to the pixel-wise product.
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Fig. 3. Outline of the perceptual fusion. Ireal is the hazy image. Jrec
and Jre f are the reconstructed and the refined dehazing results, respectively.
SGC

rec and SGC
re f are their similarity maps, and Wrec and Wre f are their weights

in the fusion. J f used is the final fused result.

D. Loss Function

The loss function of RefineDNet includes 3 terms, i.e., the
GAN loss LG , the reconstruction loss Lrec , and the identity
loss Lidt . Their definitions are as follows, and we demonstrate
their effectiveness in Section IV-C.

GAN loss is originally used to update the generator and the
discriminator in an adversarial way [29]. In our case, LG is
used to supervise RJ and D. It is defined as,

LG(RJ , D) = EJreal∼Jreal [log D(Jreal )]
+ EJDC P ∼JDC P [log(1 − D(RJ (JDC P)))] (16)

where Jreal is the set of all possible Jreal , and JDC P refers
to the set of all possible JDC P .

Reconstruction loss is adopted to regularize the recon-
structed hazy image. As mentioned in Section III-A, we define
Lrec as the distance between Ireal and Irec, namely,

Lrec = �Ireal − Irec� (17)

where Ireal is the hazy input, Irec is obtained via Eq. (1), and
� · � denotes the distance metric.

Identity loss is applied to depress the artifacts which may be
introduced by the refiner RJ . Generally, this term encourages
RJ to output something similar to its input when the input is a
real-world clear image. In this way, RJ is less likely to cheat

the discriminator by adding extra textures. We define Lidt as,

Lidt = �Jreal − RJ (Jreal)� (18)

where � · � is a distance metric the same as the one appearing
in Eq. (17). � · � can be the L1-norm or the L2-norm.
In our experiments, we trained RefineDNet with both L1
and L2 and found that the achieved models exhibited nearly
the same performance. This indicates that there is no need
to deliberately choose the metric form, L1 or L2, to train
RefineDNet. For more details, please refer to Section IV-C. By
default, we report the results of RefineDNet trained with L1.

Overall loss function. Combining all loss terms, the whole
objective is formulated as,

R∗
T , R∗

J = arg min
RT ,RJ

max
D

λLG + Lrec + Lidt (19)

where λ is a hyperparameter indicating the weight of LG . the
default value of λ is set to 0.02.

IV. EXPERIMENTS AND DISCUSSIONS

Our experiments are aimed at answering the following
questions: 1) Is the proposed framework RefineDNet effective?
2) Does each part of RefineDNet indeed contribute to its
performance? To this end, we implemented RefineDNet with
basic backbone networks to diminish the performance gain
brought by advanced network architectures and compared
it with several state-of-the-art methods on various datasets.
Then, we conducted ablation studies concerning the two-stage
strategy, loss terms, the refinement with various priors, the per-
ceptual fusion, and the weight of LG (λ in Eq. (19)).

A. Experimental Protocols

In this subsection, we present training and test datasets,
evaluation metrics, and implementation details of RefineDNet
in the experiments.

1) Indoor Training Set: We trained our framework and
other competitive learning-based models on the training set of
RESIDE-standard [11] called ITS (Indoor Training Set). ITS
contains 13,990 clear and synthetic hazy image pairs from
indoor scenes, which are generated with the images and depth
maps from NYU Depth v2 [44]. Note that we didn’t exploit the
paired information in ITS and randomly shuffled the images
during the training of RefineDNet.

2) Indoor Evaluation: We evaluated different dehazing
approaches on both RESIDE-standard’s test set SOTS (Syn-
thetic Objective Testing Set) and the cross-domain Middlebury
part of D-HAZY [45]. SOTS has 500 indoor pairs gener-
ated in the same manner as ITS’s. The Middlebury part of
D-HAZY contains 23 indoor pairs generated from images
and high-quality depth maps of the Middlebury dataset [46].
Following previous studies, we adopted PSNR and SSIM [47]
as the evaluation metrics on both SOTS and D-HAZY.

3) Outdoor Training Set: To verify the effectiveness of
RefineDNet on outdoor scenes, a large number of unpaired
clear and foggy outdoor images are required. RESIDE [11]
provides 8,970 clear images and 9,129 foggy ones. However,
many of those images are of low quality or out of the
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Fig. 4. Qualitative comparisons on (a) SOST and (b) D-HAZY. For each test sample, the leftmost two images are the hazy and the clear images, respectively.
As for other images, the first row presents dehazed images, and the second row shows transmission maps. Note that AODNet and EPDN have no transmission
map, and thus the associated slots in the figure remain blank.

dehazing scope, e.g., in very low resolutions or strong sunlight.
Therefore, for clear images, we manually selected high-quality
cloudy ones. For foggy images, we filtered out low-quality
ones with obvious artifacts or blur. Eventually, 3,577 clear
images and 2,903 foggy images were chosen as the training
set notated by RESIDE-unpaired.

4) Outdoor Evaluation: We adopted the recently released
real-world outdoor benchmark dataset BeDDE [48] and the
recommended metrics VSI [40], VI [41], and RI [41]. This
dataset contains 208 clear and foggy image pairs of high
quality. Those images were collected from 23 provincial
capital cities of China under different weather conditions.

5) Implementation Details: RefineDNet was trained on the
deep learning platform PyTorch with the acceleration of an
Nvidia Titan X GPU. We employed the Adam optimizer [49]
with a learning rate of 0.0002. The default value for λ in

Eq. (19) is set to 0.02. The default value for α in Eq. (11)
is set to 0.4. Similar to the training of GANs, the two refiner
networks of RefineDNet (RT and RJ ) and the discriminator
D are alternately updated. That is, with the parameters of D
fixed, RT and RJ are trained for one iteration. Then, RT and
RJ are fixed, and D is trained for another iteration. To make
our results reproducible, relevant code and datasets have been
released online.1

B. Comparisons With State-of-the-Art Methods

We compare RefineDNet2 with several state-of-the-art
methods on indoor and outdoor datasets quantitatively and

1Released code: https://github.com/xiaofeng94/RefineDNet-for-dehazing
2RefineDNet models trained with L1 and L2 actually have similar perfor-

mance. Unless otherwise specified, the reported RefineDNet’s results were
obtained with L1.
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Fig. 5. Qualitative comparisons on BeDDE and hazy images from the Internet. Note that there is no reference for the Internet samples.

TABLE I

QUANTITATIVE EVALUATIONS OF VARIOUS DEHAZING METHODS

ON INDOOR DATASETS, I.E., SOST AND D-HAZY

qualitatively. Among those approaches, prior-based ones are
FVR [13], DCP [8], BCCR [3], CAP [50] and NLD [19].
Supervised ones are DehazeNet [4], MSCNN [21], AOD-
Net [5], GFN [23], PQC [24], EPDN [7], GridDehazeNet [27],
and FAMED-Net [22]. The weakly supervised one is Disent-
GAN [35]. In this subsection, the champion and the runner-up
for each metric in the tables are highlighted in boldface and
underline, respectively.

1) Results on Indoor Datasets: Table I shows the quan-
titative results of different methods on both SOTS and
D-HAZY. As shown, although RefineDNet is weakly
supervised, it still outperforms the competitors including

supervised ones in terms of most metrics, which demonstrates
the superiority of our framework. Note that some methods,
e.g., EPDN [7] and GridDehazeNet [27], adopt complex
multi-scale structures to improve their performance, while
RefineDNet only makes use of basic backbone networks pro-
vided by cycleGAN [31]. Therefore, RefineDNet might be fur-
ther enhanced with specially designed multi-scale structures.

Additionally, RefineDNet achieves consistently excellent
performance on both two datasets, whereas FAMED-Net [22]
is the runner-up method on SOTS but fails to remain com-
petitive on the cross-domain part of D-HAZY. Such a result
indicates that RefineDNet is more robust with a good general-
ization ability. Fig. 4(a) and 4(b) visualize the dehazing results
of different methods using examples from SOTS and D-HAZY,
respectively. As shown, RefineDNet is capable of removing
haze without introducing obvious artifacts or distortions.

2) Results on Outdoor Datasets: In Table II, we present the
quantitative evaluation results on the real-world benchmark
dataset BeDDE. All the supervised models were trained on
indoor datasets, and the weakly supervised DisentGAN [35]
and RefineDNet were trained on RESIDE-unpaired. It seems
unfair at first glance, but since there are no paired outdoor
images to train supervised models, it is one of the important
advantages of weakly supervised approaches to be able to
train with unpaired outdoor images. Thus, the comparisons
are reasonable.

According to Table II, RefineDNet still achieves comparable
performance, and it’s the sole method that achieves high
performance in terms of both VI and RI. Since VI and
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TABLE II

COMPARISONS OF STATE-OF-THE-ART METHODS ON THE REAL-WORLD
BENCHMARK DATASET, BEDDE

Fig. 6. The dehazing results of DCP and corresponding results refined by
RefineDNet. The hazy and haze-free images comes from SOST. As shown,
RefineDNet effectively removes the artifacts and refines the dehazing results
generated by DCP.

RI evaluate the visibility and realness of dehazing methods,
respectively, it can be concluded that RefineDNet can not
only remove haze but also avoid artifacts. Moreover, it is
practical to collect unpaired training images for RefineDNet
in a large amount. Thus, RefineDNet might receive further
improvement with more high-quality training samples. Fig. 5
illustrates the visual results of different dehazing methods
for real-world hazy samples as qualitative evaluations. The
samples of the first 3 rows come from BeDDE, and the others
are from the Internet. As we can see, RefineDNet works well in
those cases by generating dehazing results with high realness
and visibility, whereas others might involve artifacts or fail
to remove haze. Considering those results together, we can
conclude that RefineDNet boasts the advantages of both DCP
and learning-based methods.

C. Ablation Study

1) Analysis of the Two-Stage Dehazing: We aim to justify
the effectiveness of RefineDNet’s main idea, i.e., restor-
ing visibility first with priors and then improving the real-
ness of the results via learning-based refinement. Therefore,
we compare RefineDNet with three baselines, DCP [8], Cycle-
GAN [31] and BasicNet. DCP is the prior-based method

Fig. 7. (a) Visual results of DCP [8] and our dehazing models trained with
different loss terms. RefineDNet involves all the three loss terms. (b) VSI
scores of RefineDNet and RefineDNet-L2 on BeDDE. The performance for
every three epochs is exhibited.

TABLE III

EVALUATION OF THE EFFECTIVENESS OF THE TWO-STAGE

DEHAZING STRATEGY ON SOTS

chosen for the first stage of RefineDNet. cycleGAN is a
general unpaired image-to-image transformation framework.
BasicNet has exactly the same structure as the second stage
of RefineDNet but takes Ireal as the input rather than TDC P

and JDC P . We trained cycleGAN, BasicNet, and RefineDNet
on ITS and evaluated them on SOTS. Table III provides the
evaluation results.

As shown in Table III, RefineDNet outperforms the oth-
ers with a large margin. Since the only difference between
BasicNet and RefineDNet is whether to dehaze with two
stages, it is clearly testified that dehazing is highly plausible
and effective by restoring visibility with priors first and then
improving realness via the learning-based refinement. To better
demonstrate how RefineDNet improves the results of DCP,
we present several samples from SOST in Fig. 6. Apparently,
RefineDNet effectively removes artifacts generated by DCP
and produces very natural images that are highly close to the
haze-free ground-truth.
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Fig. 8. Visual results of RefineDNet with various prior-based methods. For
each method, the first row presents the preliminary result of this method, and
the second row presents the result after the refinement. Images in the column
of “Haze&Clear” are the hazy image and the clear reference.

TABLE IV

PERFORMANCE OF DCP AND DEHAZING MODELS TRAINED WITH

VARIOUS COMBINATIONS OF LOSS TERMS ON BEDDE

2) Analysis of Loss Terms: We demonstrate how loss terms
in our framework affect the results by comparing RefineD-
Net with four baselines trained with different loss terms on
RESIDE-unpaired. Those baselines are 1) Rec: The model
trained with Lrec only; 2) Rec+G: The model trained with
Lrec and LG ; 3) Rec+idt: The model trained with Lrec and
Lidt ; 4) RefineDNet-L2: We adopted L2 distance in the loss
function and trained the model with all loss terms. Table IV
provides the quantitative evaluations on BeDDE. Fig. 7(a)
illustrates the visual results of DCP, the four baselines, and
RefineDNet. Fig. 7(b) displays the VSI scores of RefineDNet
and RefineDNet-L2 evaluated on BeDDE every three epochs
during the training.

From those results, we have several interesting findings.
First, supported by the results of Rec and Rec+G, the GAN
loss contributes to considerable improvement quantitatively,
which is probably because when LG is absent, Rec’s refiner
RJ has no idea on how to improve the result and produces
similar outputs as DCP’s. Second, the GAN loss seems to
introduce unwanted structures that don’t exist in the original
scene, whereas the identity loss can depress those structures
and further improves the performance of Rec+G. This can
be explained by the fact that the identity loss encourages

TABLE V

PERFORMANCE OF OUR MODELS WITH VARIOUS PRIORS ON BEDDE.
“VSI” (“VI” OR “RI”) AND “+R/VSI” (“+R/VI” OR “+R/RI”) REFER

TO THE VSI (VI OR RI) SCORES BEFORE AND AFTER THE

REFINEMENT, RESPECTIVELY

TABLE VI

EVALUATION OF THE EFFECTIVENESS OF THE PERCEPTUAL

FUSION ON DIFFERENT DATASETS

RJ to generate similar outputs as its inputs, and thus the
unwanted structures are eliminated to some extent. Third,
RefineDNet-L2 and RefineDNet achieve similar performance.
Considering the only difference between them is the distance
used in the training loss, we can conclude that both L1 and
L2 are qualified to train the proposed framework.

3) Analysis of RefineDNet With Different Priors: We per-
form an ablation study to demonstrate how RefineDNet works
with different preliminary dehazing results generated by var-
ious prior-based methods. This study involves 5 represen-
tative prior-based methods, namely FVR [13], BCCR [3],
CAP [50], NLD [19] and DCP. All models were trained on
RESIDE-unpaired and evaluated on BeDDE. Table V shows
the quantitative evaluations of different preliminary results
and evaluations of the refined counterparts from RefineDNet.
In Table V, for preliminary results of each prior, “VSI”, “VI”,
and “RI” refer to the VSI, VI, and RI scores, respectively.
“+R/VSI”, “+R/VI”, and “+R/RI” refer to the corresponding
scores of the refined results. For example, “+R/VSI” means
the VSI score after the refinement. Fig. 8 visually illustrates
the results before and after the refinement.

As we can see, RefineDNet is effective with various
prior-based methods and can be regarded as a general dehazing
framework. Moreover, RefineDNet with DCP achieves the best
performance, and a probable explanation for this outcome is
that DCP can generate better preliminary results and simplify
the task of refinement in the second stage of our framework.
In this sense, with better priors, RefineDNet can be further
improved.

4) Analysis of the Perceptual Fusion: In Table VI,
we present different outputs of RefineDNet, i.e., Jrec , Jre f , and
J f used , to evaluate the effectiveness of our perceptual fusion
strategy. As shown, J f used outperforms the other two on all
the three test datasets in terms of various metrics. Considering
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Fig. 9. (a) Performance plot for RefineDNet models trained with different λ values. All models were trained on RESIDE-unpaired and evaluated on BeDDE.
(b) Dehazing results of all models in (a). The value of λ for each model is provided under the image.

that J f used is the combination of Jrec and Jre f without further
enhancement, we can conclude that our perceptual fusion
strategy contributes to better dehazing results. Note that we
only fuse two intermediate dehazing results in RefineDNet,
but the perceptual fusion can be easily adapted to fuse more
results. Therefore, we can expect its applications in other
multi-output dehazing methods.

5) Analysis of LG’s Weight: Besides the two-stage strategy,
loss terms, priors, and the fusion scheme, we further demon-
strate the impact of λ on the dehazing results. Note that λ in
Eq. (19) is the sole parameter in our loss function. We trained
RefineDNet on RESIDE-unpaired with λ as 2, 2 × 10−1,
2 × 10−2, 2 × 10−3, 2 × 10−4, and 2 × 10−5, respectively.
Then, all models were evaluated on BeDDE. Fig. 9(a) displays
the performance of RefineDNet models trained with different
λ values.

Apparently, as λ gets smaller, the performance first increases
and then decreases. When λ is between 0.2 and 0.02,
the results remain satisfactory. However, if λ gets less than
0.02, the performance suffers a huge drop. Probably, with a
too large weight for LG , the training of RefineDNet behaves
the same as that of the baseline Rec+G. In other words, RJ is
encouraged to generate unpleasant structures to cheat the dis-
criminator D. On the other hand, if the weight λ is too small,
RefineDNet deteriorates as the baseline Rec+idt. Therefore,
RJ learns nothing about the refinement and produces dark
and distorted outputs as DCP does. To support our analysis,
we exhibit several dehazing results of RefineDNet trained with
different λ values in Fig. 9(b). As shown, when λ equals 0.2 or
0.02, the results are visually pleasing. However, others are
unacceptable due to either getting too dark or involving plenty
of artifacts.

V. CONCLUSION

In this work, we propose a simple yet effective two-stage
weakly supervised dehazing framework RefineDNet for
two purposes, i.e., merging the merits of prior-based and
learning-based methods and addressing the lack of paired
training images. To get more qualified results, we also
propose a perceptual fusion strategy to fuse different out-
puts of RefineDNet. According to the experimental results,

RefineDNet can achieve state-of-the-art performance using
basic backbone networks on both indoor and outdoor datasets.
Its components are thoroughly studied and demonstrated to
be effective. Additionally, we construct an unpaired dataset
with 6,480 outdoor images which can benefit further studies
of weakly supervised dehazing. In the future, we are going
to explore customized structures and priors to ameliorate
RefineDNet.

APPENDIX A

In Section I, it is illustrated that the prior-based dehazing
methods are relatively better for restoring visibility whereas
learning-based methods are preferable for improving image
realness. In this appendix, we provide some theoretical expla-
nations for this phenomenon.

A. Prior-Based Methods

The visibility is decided by the contrast of objects against
the ambient light A. Fog reduces the contrast and leads to
low visibility, and thus, many prior-based methods restore the
visibility by improving the contrast. For example, DCP [8]
generates the dehazed image with the least upper bound of
the contrast that follows Koschmieder’s law [9], which can be
proved as follows.

On one hand, based on Eq. (5), the transmission of the
image I (x) at pixel x can be defined as,

t (x) = A − I dark(x) + J dark(x)t (x)

A
. (20)

Here, J dark(x) ≥ 0, and according to Eq. (2), t (x) =
e−βd(x) ≥ 0. Hence,

t (x) ≥ A − I dark(x)

A
. (21)

According to DCP’s assumption, J dark(x) is close to or equals
to zero. Therefore, in some cases, t (x) = (A − I dark(x))/A
that is the greatest lower bound of x.

On the other hand, the contrast of the dehazed image J (x)
against A at x, CJ (x), is defined as,

CJ (x) = |J (x)−A|
A

. (22)
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According to Koschmieder’s law, J (x) can be defined as,

J (x) = I (x) − A

t (x)
+ A. (23)

Applying Eq. (23) to Eq. (22), CJ (x) can be written as,

CJ (x) = |I (x)−A|
A · t (x)

. (24)

Therefore, when t (x) is at its minimum, CJ (x) gets its
maximum. Since DCP adopts the greatest lower bound of
t (x) to generate the dehazing result with Koschmieder’s law,
the dehazed image gets its least upper bound of the contrast.
As a result, the dehazing results of DCP enjoy high contrast,
and the visibility is satisfactory.

However, it is inevitable that the DCP’s assumption does
not hold in some regions. In this case, t (x) is underestimated,
and the contrast is overly enhanced. Thus, the noises of those
regions are magnified, which leads to obvious artifacts. To con-
clude, DCP can restore visibility effectively but introduce
artifacts.

B. Learning-Based Methods

On one hand, according to Deep Image Prior [10], the struc-
ture of a neural network is sufficient to capture a great deal of
low-level image statistics prior to any learning. Thus, neural
networks can work well in many reverse problems such as
denoising, super-resolution, and inpainting. In other words,
neural networks are inborn to generate natural images with
few artifacts.

On the other hand, learning-based dehazing methods lack
real-world foggy and clear image pairs as supervision. Instead,
most studies adopt simulated indoor image pairs to train and
evaluate their dehazing models. However, there are consider-
able data gaps between the simulated indoor and real-world
outdoor foggy images. Therefore, supervised dehazing models
are not fully trained to handle the real-world fog. Then, those
models may perform well on their own test set but fail to deal
with real-world foggy images.

In conclusion, the learning-based dehazing methods are able
to generate high realness results with CNNs but may fail to
remove the fog of the real-world outdoor images due to the
lack of suitable training data.

APPENDIX B

In Section III-A, we claim that inaccurate Tref values of the
sky, which are larger than the true values as shown in Fig. 2,
do not affect the dehazing results in sky regions. In this
appendix, we explain the reason for our claim in detail.

A. The Observed Color of the Sky

Since there is no object in the sky, the intrinsic luminance
of the sky J sky equals to zero, i.e. J sky = 0, which is not what
we observe in the clear weather. Thus, unlike other objects,
the intrinsic luminance of the sky cannot be regarded as its
color in the dehazing result. Actually, the observed color of
the sky is close to the ambient light (A) in the atmosphere,
which can be explained as follows.

Denote by β1 the extinction coefficient of the clear day. The
color of the sky I sky

clear can be formulated as,

I sky
clear = J sky(x) · e−β1·d(x) + A · (1 − e−β1·d(x))

= 0 + A · (1 − e−β1·d(x)) (25)

where x refers to the location of one pixel in sky regions. Since
d(x) → ∞, the transmission t1(x) = e−β1·d(x) is close to zero.
Thus, I sky

clear ≈ A and I sky
clear ≤ A. When haze presents in the

scene, the extinction coefficient increases from β1 to a much
larger value. In this case, for the color of the sky with haze
denoted by I sky

haze, we have similar conclusions that I sky
haze ≈ A

and I sky
haze ≤ A. Therefore, the color of sky regions in either

of clear and hazy days is close to and less than the ambient
light.

B. The Color of the Sky After Dehazing

Supposing t2 is the estimated transmission, the color of the
dehazed sky (I sky

dehazed ) is formulated as,

I sky
dehazed(x) = I sky

haze(x) − A

t2(x)
+ A (26)

where x refers to the location of one pixel in sky regions.
Supposing that �(x) = A − I sky

haze(x), which is for sure a quite
small number, then,

I sky
dehazed(x) = −�(x)

t2(x)
+ A. (27)

Therefore, once t2 is not a small value, I sky
dehazed ≈ A, which

is a good estimation of I sky
clear , regardless of the value of t2.

APPENDIX C

In Section III-A, it is mentioned that the refiner network
RT is updated by minimizing the distance of Ireal and Irec .
In this appendix, we provide the reason why RT can be trained
appropriately with this loss function.

As we know, there is no ground truth to supervise RT , and
thus, we have to update it in an unsupervised way. To this end,
we leverage Koschmieder’s law [9] to construct the unsuper-
vised training. There are four parameters in Koschmieder’s
law, namely, the foggy image, clear image, ambient light and
transmission, and any one of them can be derived by the other
three. Since the refiner network RJ of RefineDNet is updated
by adversarial learning with unpaired data, its output Jre f is
a dehazed image with high visibility and realness. Moreover,
a satisfactory estimation of the ambient light A can be obtained
by the estimation method of DCP [8]. Therefore, with Jre f , A,
and Ireal , we can get the pseudo ground truth of transmission
denoted as Tpse, according to Koschmieder’s law, i.e.,

Tpse = Ireal − A

Jre f − A
. (28)
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Then, RT can be updated by minimizing the distance between
Tpse and Tre f as,

�Tpse − Tre f � = � Ireal − A

Jre f − A
− Tre f �

= �Ireal − [Jre f � Tre f + A(1 − Tre f )]�
�Jre f −A� .

(29)

Applying Eq. (1) to Eq. (29), we can get the following formula,

�Tpse − Tre f � = �Ireal − Irec�
�Jre f −A� ∝ �Ireal − Irec�. (30)

Therefore, we can update RT by minimizing the distance of
Ireal and Irec.
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