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ABSTRACT

As a pre-processing step for many problems in the field of
computer vision, superpixel algorithms aim to over-segment
the image by grouping homogenous pixels. In this paper, we
propose a novel superpixel segmentation algorithm, namely
Superpixel using the Shortest Gradient Distance (SSGD for
short) in a k-means clustering framework. Starting from ini-
tializing the superpixel seeds, bilateral filtering is applied to
the texture-rich regions centered at initial seeds. Then, a nov-
el distance function taking the shortest gradient distance into
account is computed to enforce adherence to boundaries. Un-
like using the simple Euclidean distance, the proposed com-
bined distance function increases the accuracy of associating
a pixel to a cluster. The experimental results demonstrate
that our algorithm outperforms the state-of-the-art methods
in this field. Source codes of SSGD are publicly available at
http://sse.tongji.edu.cn/linzhang/ssgd/index.htm.

Index Terms— Superpixels, segmentation, shortest gra-
dient distance

1. INTRODUCTION

Superpixels are regarded as perceptually meaningful atomic
regions [1]. Recently, superpixel methods have been applied
to many computer vision tasks, such as semantic segmenta-
tion [2], tracking [3], gesture recognition [4], etc.

Research on superpixels has drawn great attention during
the past decade. Most of the superpixel algorithms are graph-
based or clustering-based. Graph-based approaches consider
pixels as nodes of a graph, and usually propose a cost func-
tion. By optimizing the cost function, graph-based methods
are able to enforce color homogeneity. Shi et al. proposed N-
Cuts [5] and minimized the cost function by formulating it as
a generalized eigenvalue problem. GraphCut [6] proposed by
Veksler et al. can generate compact superpixels in an energy
minimization framework.

In contrast to graph-based methods, clustering-based al-
gorithms group pixels into clusters and refine them until the
specific conditions are satisfied. Some representative paper-
s belonging to this category are reviewed here. Turbopixels
[7] uses geometric flow to yield compact and regular super-
pixels efficiently. The Simple Linear Iterative Clustering [8]
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algorithm (SLIC) introduces a local k-means approach to or-
granize pixels in CIELAB color space. This method may fail
to cling to object contours. Recently, several variants of SLIC
have been proposed to improve its performance of clinging to
the contours. Zhang et al. [9] introduced a boundary term to
enhance boundary constraint. A structure-sensitive algorithm
[10] based on geodesic distance can generate adaptive super-
pixels according to the region density. SCALP [11] includes
a contour prior and computes the linear path to the cluster
barycenters to ensure both the regular size and the color ho-
mogeneity; however, several parameters need to be tuned.

Inspired by the simplicity and high performance of SLIC
[8], in this paper, we propose a novel effective superpixel al-
gorithm, namely Superpixels using the Shortest Gradient Dis-
tance (SSGD), which is actually an extension to SLIC. The
main contributions of this paper are: 1) When the initial seed-
s are distributed, we apply bilateral filtering [12] to texture-
rich regions centered at seeds. This operation is able to re-
duce the interference of non-edged texture-rich regions. 2) A
new distance function taking the shortest gradient distance in-
to account is computed during each iteration. This combined
distance function prevents a pixel from being associated to a
cluster if the pixel is surrounded by boundary. What’s more,
only two parameters need to be set in our newly proposed
distance function.

We evaluated SSGD on the Berkeley Segmentation Da-
ta Set [13], and also compared it to other state-of-the-art
algorithms. The results show that our approach could out-
perform those competitors. To make the results fully repro-
ducible, the source code of SSGD are publicly available at
http://sse.tongji.edu.cn/linzhang/ssgd/index.htm.

2. SSGD: SUPERPIXELS USING THE SHORTEST
GRADIENT DISTANCE

Our approach SSGD extends SLIC to yield superpixels cling-
ing to boundaries. In this section, we describe the detail-
s of SSGD. We first describe the SLIC framework briefly,
and then, introduce the bilateral filtering operation. Next, we
present the shortest gradient distance and design a distance
function incorporating this new spatial distance term. After
that, we adopt the strategy proposed in [9] to update the clus-
ter centers, and finally, the overall flowchart of SSGD is given.
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Fig. 1. Image reconstruction with 300 superpixels using mean color of clusters. (a) original image, (b) SLIC[8], (c) SCALP[11],
(d) SSGD without bilateral filtering operation, (e) SSGD. Regions of interest enclosed by white rectangle are provided with
high resolution for zoom-in examination.

2.1. SLIC: Simple linear iterative clustering

The input image with N pixels is denoted by I. For any pixel
p ∈ I, its color c(p) is represented in the CIELAB color space,
i.e., c(p) = [lp, ap, bp], and the coordinates of p are Xp =
[xp , yp]. The iterative clustering procedure starts from an
initialization of K cluster centers {Ck = [lk, ak, bk, Xk]}Kk=1,
and the grid step is S =

√
N/K.

The color distance dc and the spatial distance ds between
a pixel p and the cluster center Ck are defined by SLIC as:

dc(Ck, p) =
√
(lp − lk)2 + (ap − ak)2 + (bp − bk)2, (1)

ds(Ck, p) =
√
(xp − xk)2 + (yp − yk)2. (2)

Then, the 5D Euclidean distance is simply combined as:

D(Ck, p) = dc(Ck, p) + ds(Ck, p). (3)

The cluster centers search for pixels in a 2S × 2S region,
which is called a searching window, and each pixel is assigned
to the nearest cluster by calculating Eq. 3. After this process,
the barycenters of the clusters are adjusted as the mean of all
the pixels belonging to the same cluster.

2.2. Incorporating bilateral filtering

During the iterations that clusters group pixels, the texture-
rich regions, such as grass, wood, fur, etc., could have an neg-
ative effect on segmentation due to dramatic color variation.
In our SSGD approach, we introduce the bilateral filtering
operation [12] for edge-preserving smoothing to ensure a bet-
ter segmentation result. In Fig. 1, we reconstruct one image
from [13] with 300 superpixels using mean color of clusters.
The result shows that with the bilateral filtering operation, the

texture-rich regions are blurred while the edges can be pro-
tected. Bilateral filtering can be expressed as [12]:

h(x) = k−1(x)

∫ ∞

−∞

∫ ∞

−∞
f(ξ)c(ξ, x)s(f(ξ), f(x))dξ, (4)

with the normalization:

k(x) =

∫ ∞

−∞

∫ ∞

−∞
c(ξ, x)s(f(ξ), f(x))dξ. (5)

In Eq. 4, c(ξ, x) and s(f(ξ), f(x)) are two weight functions
related to the geometric closeness and the photometric sim-
ilarity between a central pixel x and its nearby pixel ξ, re-
spectively. We simply set these two weight functions as both
Gaussian functions, i.e.,

c(ξ, x) = e
− 1

2 (
d(ξ,x)

σd
)2
, (6)

s(ξ, x) = e−
1
2 (

δ(f(ξ),f(x))
σr

)2 , (7)

d(ξ, x) denotes the Euclidean distance between ξ and x, while
δ(ϕ, f) measures the color difference between ϕ and f .

In SSGD, bilateral filtering will only be applied to texture-
rich regions. When the initial seeds are dispersed, we mea-
sure the texture-richness of the 2S × 2S region Ri centered
at the seed si by counting the number of different intensity
values (represented by integers) in Ri. If the region’s texture-
richness is greater than a predefined threshold, bilateral filter-
ing will be performed in this region.

2.3. Incorporating the shortest gradient distance

Given the coordinates of two points, SLIC uses Eq. 2 to ac-
quire the simple spatial distance. In order to achieve better
boundaries adherence, we thus propose to take the shortest
gradient distance into consideration.

We start from converting the input image I into a gray-
scale image and extracting its gradient magnitude (GM) map



IG by Sobel operator. Boundary pixels in I correspond to
large GM values in IG. Therefore, we treat the GM map as a
weighted undirected graph and when a node point p1 arrives
at another adjacent node point p2, the cost is calculated by
1
2IG(p1) +

1
2IG(p2). Similarly, given a node point p3 which

is adjacent to p2, the cost that p1 goes across p2 to p3 can be
calculated by 1

2IG(p1) +
1
2IG(p2) +

1
2IG(p2) +

1
2IG(p3).

For any given point p, its shortest minimum-cost path
to the cluster center Ck can be obtained using the Dijkstra
shortest-path algorithm and we denote it by SPCk→p. We
regard the sum of the costs along the path SPCk→p as the
shortest gradient distance between Ck and p and denote it
by COST (Ck, p). The spatial distance between p and Ck

combined with the shortest gradient distance is defined as:
dsc(Ck, p) = λ · ds(Ck, p) + (1− λ) · η · ds(Ck, p),

η = exp
(
norm(COST (Ck, p)) +

|g(p)−g(Ck)|
255

)
,

(8)

where λ ∈ [0, 1] weights the influence of the traditional Eu-
clidean distance and λ is fixed to 0.3 in this paper. norm(·)
is the normalization operation, making each element of the
cost matrix between 0 and 1, and |g(p)−g(Ck)|

255 represents the
similarity of gradient magnitudes between two points p and
Ck. If Ck and p are very similar and both lie in the same flat
region, then η is small. On the contrary, when they are sim-
ilar and both locate on the boundary, η is medium owing to
the large norm(COST (Ck, p)) and the small |g(p)−g(Ck)|

255 .
In addition, if p is surrounded by boundaries while Ck is on
the smooth region, Ck must go across the boundary to reach
p, so even though they are alike, η is large. High value η will
prevent Ck from absorbing p into the homogeneous superpix-
el.

Finally, the proposed distance function D(Ck, p) used in
SSGD is defined as:

D(Ck, p) = dc(Ck, p) +
m2

S2
dsc(Ck, p), (9)

where m is a compactness parameter and it is set to 15 in this
paper.

 !
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Fig. 2. The black color indicates those pixels having the
largest gradient magnitude values, and the white pixels have
the least gradient magnitude values.

Fig. 2 depicts a searching window in the GM map. The
cluster center Ck (red border) searches the shortest path to
point p1 (green border) and point p2 (blue border). p1 is en-
compassed with edges, so Ck must consume energy to cross

Table 1. SSGD algorithm
Input: image I , expected number of superpixels K
Output: superpixel labels S
1: Place K initial seeds {C}Kk=1.
2: Perform bilateral filtering in texture-rich regions.
3: Initialize labels of all pixels S ← 0.
4: Update the labels of all pixels using Eq. 9.
5: Update cluster centers using Eq. 10.
6: Repeat 4 and 5 till reach the termination condition.
7: Assign the orphaned pixels to the adjacent cluster
to enforce connectivity.

the large gradient point to reach p1. Although p1 and p2 have
the same Euclidean distance to Ck, the minimum-cost path is
totally different.

2.4. Update cluster centers

We only use the most reliable pixels to update the cluster cen-
ters. The position of the lth cluster center is updated using the
3-sigma rule which is proposed in [9], i.e.,

Cl,i =

∑
x∈Φl,i−1

q(x)

|Φl,i−1|
, i ≥ 1

Φl,i−1 = {x|L(x) = l and |p(x)− Cl,i−1| ≤ 3ξl,i−1},
(10)

where Cl,i is the cluster center of the lth superpixel in the
ith iteration, q(x) is distance function in Eq. 3. p(x) is the
intensity of pixel x in CIELAB space. And ξl,i−1 denotes
the standard deviations of the mean color of the lth cluster at
the (i − 1)th iteration. The overall flowchart of our SSGD
approach is summarized in Table 1.

3. EXPERIMENTS

We compare SSGD with several state-of-the-art methods, in-
cluding SLIC [8], SCALP [11], TP [7], NC [5], on BSDS500
[13]. BSDS500 consists of 500 natural images with human-
annotated ground truth.

3.1. Performance metrics and parameters

We use three standard metrics to evaluate the performance of
different algorithms, which are Boundary Recall (BR), Cor-
rected Undersegmentation Error (CUE) and Achievable Seg-
mentation Accuracy (ASA). For BR and ASA the higher the
better, while for CUE the lower the better.

1) Boundary Recall (BR): BR evaluates the fraction of
ground truth edges falls within a distance threshold ϵ. In our
experiments, ϵ is fixed to 2.

2) Corrected Undersegmentation Error (CUE): CUE is de-
fined as[14]:

CUE =

∑
k |sk − gmaxsk|∑

i |gi|
, (11)
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Fig. 3. Superpixel segmentation results on a sample image. (a) NC [5], (b) TP [7], (c) SLIC [8], (d) SCALP [11], (e) SSGD.
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Fig. 4. Evaluation of representative algorithms and SSGD on BSDS500. (a) BR; (b) CUE; (c) ASA.

where sk are the superpixels produced by algorithm, gmaxsk
denotes the matching ground truth segments of sk with the
largest overlap, gi are the ground truth clusters, and | · | is the
size of the segment.

3) Achievable Segmentation Accuracy (ASA): ASA mea-
sures the highest performance by labeling each superpixel
with the label of ground truth segment with the largest over-
lap. ASA is defined as:

ASA =

∑
k maxi|sk ∩ gi|∑

i gi
, (12)

3.2. Results and discussion

Using a sample image, we first made a qualitative evaluation
of the superpixel segmentation performance of the examined
approaches and the results are shown in Fig. 3. It can be seen
that NC [5] and TP [7] can generate the most compact super-
pixels but they perform worst in clinging to boundaries. As an
improvement of SLIC, SCALP [11] enhances in boundaries
detection, however, part of the skyline cannot be segmented
correctly by SCALP [11]. In general, our SSGD can result in
the most visually appealing results.

Then, we performed a quantitative evaluation using the
curves of BRs against the number of superpixels, the curves
of CUEs against the number of superpixels, and the curves

of ASAs against the number of superpixels. The resultan-
t plots are shown in Fig. 4, and we can have the following
findings. Firstly, thanks to our novel distance function, high-
er BR can be achieved without sacrificing many regularities.
Meanwhile, a vital reason contributes to this improvement is
the adoption of bilateral filtering, which can effectively re-
duce the interference of texture-rich regions. Secondly, as
shown in Fig. 4 (b), SSGD has the lowest CUE, this indicates
that superpixels generated by SSGD overlap less ground truth
segments. Finally, Fig. 4 (c) demonstrates that with the in-
creasing of the numbers of superpixels, higher ASA can be
obtained. Actually, no matter which performance criteria is
used, SSGD always achieves the best results.

4. CONCLUSION

In this paper, a novel superpixel algorithm SSGD was pro-
posed. SSGD is actually an effective and reasonable exten-
sion of SLIC by applying bilateral filtering to texture-rich re-
gions and incorporating the shortest gradient distance term in
the distance function used for clustering. The superiority of
SSGD over the other state-of-the-art competitors was corrob-
orated by extensive experiments. Our future work may focus
on adapting SSGD to depth image inpainting.
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