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ABSTRACT Depth estimation from a monocular image is of paramount importance in various vision tasks,
such as obstacle detection, robot navigation, and 3D reconstruction. However, how to get an accurate depth
map with clear details and a fine resolution remains an unresolved issue. As an attempt to solve this problem,
we exploit image super-resolution concepts and techniques for monocular depth estimation and propose
a novel CNN-based approach, namely MSCNNS , which involves multi-scale sub-pixel convolutions and
a neighborhood smoothness constraint. Specifically, MSCNNS makes use of sub-pixel convolutions with
multi-scale fusions to retrieve a high-resolution depth map with fine details of the scene. Different from
previous multi-scale fusion strategies, those multi-scale features come from supervised scale branches of
the network. Furthermore, MSCNNS incorporates a neighborhood smoothness regularization term to make
sure that spatially closer pixels with similar features would have close depth values. The effectiveness and
efficiency of MSCNNS have been corroborated through extensive experiments conducted on benchmark
datasets.

INDEX TERMS Monocular depth estimation, multi-scale feature fusion, neighborhood smoothness,
sub-pixel convolution.

I. INTRODUCTION
Accurate depth information is vital to many computer
vision tasks, such as scene understanding [1]–[3], 3D
reconstruction [4], obstacle detection [5], etc. However, col-
lecting depth is expensive or even impossible in some scenar-
ios and in those cases, depth estimation from RGB images
is required. Generally, stereo vision approaches [6]–[8] are
kind of solutions for this task. Nevertheless, they require
binocular images from two cameras with fixed relative loca-
tions and thus image quality has a great influence on the
performance. Moreover, those methods are usually time con-
suming to get an accurate disparity map. Therefore, for data
consisting of only monocular images, how to predict depth
from a single still image becomes profoundly important.
However, it is a very challenging task since one captured
image may correspond to numerous real world scenes [9]
and there are no reliable depth cues available, e.g. stereo
correspondences or motions [10].

To handle such a problem, various solutions have been
proposed in the literature. Primary methods [11]–[13] in
this field usually formulated depth estimation as a Markov
random field (MRF) learning problem and resorted to
hand-crafted features, such as SIFT, GIST, PHOG, etc. Later,
data-driven approaches [14], [15] were explored. Those
approaches made use of hand-crafted features to retrieve the
most similar candidates in the training set for a given query
image. And then, the corresponding depth candidates were
warped and fused to produce the final prediction. However,
all these methods were usually designed for specific con-
ditions and thus could only achieve reluctantly acceptable
results.

With the emergence and popularity of CNNs (Convolu-
tional Neural Networks), recently, researchers have begun
exploring CNNs in the context of depth estimation and
preliminary better results in terms of both the efficiency
and the accuracy have been achieved. Inspired by the
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great success already achieved along this direction, in this
paper, focusing on how to further explore deep mod-
els together with super-resolution concepts and techniques
for solving the depth estimation problem, we propose a
CNN-based approach with multi-scale sub-pixel convolu-
tions and a neighborhood smoothness constraint, namely
MSCNNS (Multi-scale Sub-pixel Convolutional Network
with a Neighborhood Smoothness constraint). Specifically,
we generate multi-scale features from different branches of
our network and fuse those features in several sub-pixel
convolutions to get fine details in a high resolution pre-
diction. Moreover, we further improve our model with
a neighborhood smoothness constraint as a regularization
term during the training phase. Through extensive experi-
ments, we demonstrate that the proposed method is able to
outperform state-of-the-art methods in various metrics on
benchmark datasets and runs much faster, as well. Besides,
the multi-scale sub-pixel convolution and the neighborhood
smoothness constraint are proven to be helpful to improve the
performance by the ablation study in Sect. V-C.

The remainder of this paper is organized as follows.
We first introduce the related work and our contributions
in Sect. II and then present the formulation of our method
in Sect. III. After that, the details of the proposed method
MSCNNS will be described in Sect. IV. In the follow-
ing, the experimental results and analysis are elaborated in
Sect. V. Finally, we conclude the paper in Sect. VI.

II. RELATED WORK AND OUR CONTRIBUTIONS
A. RELATED WORK
In this paper, we focus on how to better explore deep models
for solving the problem of depth estimation from monocu-
lar images and our method concerns the multi-scale feature
fusion and the sub-pixel convolution which is an up-sampling
strategy for image super-resolution problem. Therefore,
we will briefly review some representative works or con-
cepts into three aspects, namely, CNNs for monocular depth
estimation, multi-scale CNNs and image super-resolution
approaches.

1) CNNs FOR MONOCULAR DEPTH ESTIMATION
The first depth estimation model exploiting CNN was pro-
posed by Eigen et al. [9]. Their model was composed of a
coarse-scale CNN and a fine-scale CNN which mapped the
input image to the target prediction. The coarse-scale CNN
is modified from AlexNet [16] or VGG [17] and outputted a
coarse depth map and the fine-scale CNN refined the coarse
output with more details of the scene. In their later work [18],
Eigen and Fergus extended their model [9] using more
CNNs to solve multiple tasks, e.g. depth estimation, surface
normal estimation and semantic segmentation. Inspired by
Eigen et al.’s works [9], [18], Mousavian et al. [19] adopted
such a multiple CNN style to predict the semantic label and
the depth value of each pixel jointly with shared features.
In Li et al.’s work [20], authors considered preserving local

details in the predictions and a two-streamed CNN that could
simultaneously predict depth and depth gradients was pro-
posed. Finally, an accurate depth map with local details was
acquired by fusing the output information.

Different from multiple CNN approaches, other methods
added more spices into CNNs for monocular depth estima-
tion. Liu et al. [10] assumed that pixels in one super-pixel
own the same depth value and inferred the pixel-level depth
through a conditional random field (CRF) whose unary and
pairwise potentials were learned by a CNN. Later, they
improved their model by introducing a super-pixel pool-
ing operation [21] to remove redundant convolutions and
reduce computation costs. Similarly, Li et al. [22] and
Wang et al. [23] involved super-pixel-level predictions and
then refined them to the pixel-level predictions via CRFs.
Besides, Roy et al. [24] combined CNNs with a regression
forest, using shallow architectures at each tree node, to avoid
the request of large datasets. Xu et al. [25], [26] proposed
two kinds of sequential deep networks, i.e., the cascade one
and the unified graphical one, which fused complementary
information derived from multiple side outputs of ResNet by
the means of CRFs. In addition, deeper networks for this task
have been exploited. Laina et al. [27] leveraged the residual
learning from ResNet [28] and proposed a fully convolu-
tional architecture with a novel up-sampling method called
up-projection.

Although various CNN-based methods have been widely
studied in the literature, we are not aware of any work in this
field involving image super-resolution techniques or concepts
to address the resolution problem and to preserve details of
the scene in the prediction.

2) MUTI-SCALE CNNs
Multi-scale fusion strategies for CNNs can be categorized
into two main classes, namely, the multi-stream learning
and the skip-layer learning, which are illustrated in Fig. 1.
In the first class, multiple (or parallel) network streams with
different parameters or network architectures are learned.
Those networks have different receptive field sizes which
refer to multiple scales. Neverova et al.’s work [29] for ges-
ture detection and Buyssens et al.’s work [30] for image clas-
sification are typical samples of this class. The second class
has one main stream and adds links between different lay-
ers of the main stream. Usually, features from those linked
layers are fused by element-wise addition or concatena-
tion. Many CNNs concerning multi-scale fusion for diverse
tasks [31]–[35] fell into this class. Our multi-scale fusion
strategy belongs to this class, as well. However, we propose
supervised structures to acquire multi-scale features which
should be more reliable and controllable.

3) IMAGE SUPER-RESOLUTION APPROACHES
Super-resolution
is a traditional problem in computer vision which aims
at restoring a high-resolution image from a low-resolution
image. The sparse-coding-based (SC) methods [36], [37]
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FIGURE 1. Two multi-scale fusion strategies for CNNs. (a) shows the
multi-stream learning. (b) outlines the skip-layer learning. Note that the
number of streams or skip connections depends on the specific network.

were representative approaches for solving this problem.
In Dong et al.’s work [38], the authors proved the equiva-
lence between SC methods and CNNs, and thus they pro-
posed a three-layer CNN for this problem. Later, a great
number of studies followed this idea and proposed vari-
ous CNN-based methods. Kim et al.’s model [39] involved
a deeper network, i.e., VGG [17], and learned the residual
between an interpolated low-resolution image and the cor-
responding high-resolution image. In Kim et al.’s another
work [40], a recursive structure was proposed to produce
several intermediate outputs which were fused to gener-
ate the final high-resolution image. Additionally, Shi et al.’s
work [41] proposed the sub-pixel convolution and made
the inference much faster. More recently, Ledig et al. [42]
involved GAN, a great idea from Goodfellow et al. [43],
to achieve perceptually good results. In this paper, we exploit
some image super-resolution concepts and techniques for
the monocular depth estimation and propose a multi-scale
sub-pixel convolution to get better results and accelerate the
inference.

B. OUR MOTIVATIONS AND CONTRIBUTIONS
Having investigated the literature, we find that in the
field of depth estimation based on CNNs, there is still
large room for further improvement. First, since CNN usu-
ally reduces feature maps’ dimensions, many CNN-based
methods [9], [18], [25]–[27] can only generate low resolu-
tion predictions and adopt bilinear interpolation to restore
the original resolution, which leads to blurs in the pre-
dictions. Second, even though multi-scale features are

involved, there are still many details missing in current
methods [9], [18], [19].

In this work, we attempt to solve the aforementioned prob-
lems to some extent by proposing a CNN-based approach
with multi-scale sub-pixel convolutions and a neighborhood
smoothness constraint, namelyMSCNNS . The advantages and
novelties ofMSCNNS are highlighted as follows:
(1) We formulate the depth estimation problem as a

super-resolution problem on the depth map and up-sample
the predicted depth map progressively. Such a formula-
tion is quite different from other depth estimation methods,
since those methods up-sample feature maps to get a higher
resolution depth map. However, up-sampling feature maps
leads to blurs in the prediction. Thus, those methods cannot
up-sample feature maps to the dimension of the input and
cannot output high resolution depth predictions. It has been
corroborated by experiments that our method is able to output
a high resolution depth map with sharp edges, runs much
faster and achieves state-of-the-art results on popular datasets
for the monocular depth estimation task.

(2) For a better prediction, we propose a new up-sampling
strategy for depth estimation, namely the multi-scale sub-
pixel convolution which involves multi-scale features into
Shi et al.’s sub-pixel convolution [41]. The proposed struc-
ture is quite reasonable in two aspects. First, restoring
the resolution of a depth map can be naturally formulated
as a super-resolution problem on the depth map. Since
the sub-pixel convolution is an efficient way to deal with
the image super-resolution problem, it is very likely to
be effective on depth estimation. Second, many previous
studies [9], [18], [19], [44] have shown that, for depth esti-
mation as well as other pixel-level classification or regres-
sion problems, more accurate predictions can be obtained by
combining information from multiple scales. The proposed
structure is novel, as well. First, it can be regarded as the
first attempt to explore image super-resolution techniques
on depth estimation. Second, Different from prior studies
concerning multi-scale fusions, this work provides a new
idea to get multi-scale features from supervised branches
of the network. Third, involving multi-scale information
in up-sampling is barely studied in previous researches.
As one of the most important parts of this work, the multi-
scale sub-pixel convolution will be described concretely
in Sect. IV-C.
(3) Considering that adjacent pixels with similar features in

an image should have close depth values, we have proposed
a neighborhood smoothness constraint as a regularization
term to train MSCNNS . Different from the smoothness in
previous studies [10], [19], [21], [24] which use hand-crafted
features or take it as a post-processing, our neighborhood
smoothness constraint adopts features learned from CNNs
automatically to evaluate the similarity of adjacent pixels in
order that it can be seamlessly integrated with other parts
of our network. In addition, our neighborhood smoothness
constraint is highly explainable by regarding it as a pixel level
conditional random field (CRF).

VOLUME 7, 2019 16325



S. Zhao et al.: Super-Resolution for Monocular Depth Estimation With Multi-Scale Sub-Pixel Convolutions

FIGURE 2. The outline of our model. The blue objects represent the smoothness branch and other colored objects connecting to
the main path with vertical arrows are scale branches. The black arrow means that features at its starting side will be fused into
the corresponding multi-scale sub-pixel convolution.

III. PROBLEM FORMULATION AND OVERIEW
Following previous studies, we formulate the task of monoc-
ular depth estimation from monocular images as the problem
of learning a non-linear mappingF : I → D, whichmaps the
image space I to the depth space D. We denote the training
set as T = (Xi,Yi), i ∈ N, where Xi ∈ I and Yi ∈ D
representing the corresponding depth map of Xi, and denote
the test set by Q. Thus, our goal is to construct a mapping
function F which (a) minimizes the distance of F(Xj) and Yj,
(b) ensures that the resolution of F(Xj) is the same as Yj’s,
and (c) preserves fine details of the scene in F(Xj) for a given
input Xj ∈ Q.
For (a), we follow the recent success in CNNs for the image

classification and make use of DenseNet [45] as the skeleton
of our network. For (b), we involve the super-resolution
concepts in this task, which means that our network will gen-
erate several intermediate outputs with different resolutions
sequentially. Moreover, we adopt an efficient up-sampling
technique for super-resolution, i.e., sub-pixel convolution,
to accelerate our inference. For (c), we introduce multi-scale
features into the sub-pixel convolution. Those multi-scale
features comes from different scale branches which are super-
vised respectively. Thus, our multi-scale strategy is quite
different from previous works’. In general, our formulation
can be defined as,

Pfinal = F1(Xj)

Fn(Xj) = SPn(F2n(Xj), ϕ2n(Xj), ϕ22n(Xj), . . . , ϕ2kn(Xj)) (1)

Here, n, k ∈ N and Pfinal refers to our final prediction.
n and 2kn refer to the downscaling factors. SPn refers to a
sub-pixel convolution which recovers the resolution to 1/n2

of the original input resolution, and ϕ2tn(·) (t = 1, 2, . . . , k)
refers to a feature extractor to get feature maps related to a
downscaling factor of 2tn.

As (1) shows, our formulation always up-samples the last
result with a factor of 2 until the output owns the same

resolution as the input’s. Thus, it is different from the end-to-
end formulations of previous works. Additionally, since there
are no restrictions on ϕ2tn(·) (t = 1, 2, . . . , k) and the final
target F1(·), our method can be used as a general architecture
for other dense prediction problem, e.g., semantic segmenta-
tion and optical flow estimation, as well as monocular depth
estimation.

IV. MSCNNS : THE PROPOSED METHOD
In this section, we present details of the proposed depth esti-
mation approach MSCNNS , including the network architec-
ture, the loss functions, the multi-scale sub-pixel convolution
and the neighborhood smoothness constraint. Our approach
follows the formulation in Sect. III. Fig. 2 gives the outline of
the model, which will be described later.

A. NETWORK ARCHITECTURE
We now describe the details of our model. As shown in Fig. 2,
our network contains a main path, a sub-pixel convolution
path, a smoothness branch and several scale branches. The
main path follows the design of DenseNet [45] without the
global pooling and the fully connection. We denote the fea-
tures at a certain scale from the main path by Mn×. ‘‘n’’ in
Mn× is the downscaling factor ofMn× whose dimensions are
1/n2 the size of the input. Note that n ∈ {2, 4, 8, 16, 32} for
Mn× in our method.

Each scale branch uses Mn× with a certain n as inputs to
generate features of different scales via a cascade of trans-
posed convolutions and finally outputs a predicted depthmap.
We denote the scale branch using Mn× as inputs by Bn×

and denote the output prediction of Bn× by On×. Note that
‘‘n’’ in Bn× means that features from the main path with a
downscaling factor of n (i.e., Mn×) are used as inputs of the
scale branch Bn×. On× has the same resolution as the input.
Here, the number ‘‘n’’ in Bn× should be one of {4, 8, 16, 32}
and M2× is not used by any scale branch. In the whole
paper, we use subscripts to represent the real downscaling
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factor of feature maps or an output prediction, and use
superscripts to indicate the scale branch to which feature
maps or an output prediction belong. Thus, as for different
scale features generated by transposed convolutions of the
branch Bn×, we denote them by Bn×m×, respectively, where
m is the downscaling factor of the features and ∀m ∈ {x |
x ∈ {2, 4, 8, 16}, x < n}. The smoothness branch takes M2×
(features from the main path with a downscaling factor of 2)
as inputs, and tries to learn features to measure the similarity
of neighboring pixels.

The sub-pixel convolution path contains three multi-scale
sub-pixel convolutions. Each multi-scale sub-pixel convolu-
tion fuses the last low resolution output and all Bn×m× with a
certain m, i.e. ∀Bn×m×, n ∈ {x | x ∈ {4, 8, 16, 32}, x > m}.
(Note that the first low resolution output is generated by a
sub-pixel convolution using B32×16×.) Then it generates a higher
resolution depth map with a downscaling factor of t (t =
m/2). We call this sub-pixel convolution SPt× and denote its
output by Pt×. For example, P4× is presented as,

P4× = SP4×(P8×,B
16×
8× ,B

32×
8× ). (2)

B. MULTI-SCALE TARGET LEARNING AND THE LOSS
During the training phase of our approach, we adopt a
multi-scale target learning method to train the sub-pixel con-
volutions. That is, for a given sample (Xi,Yi) ∈ T we
minimize the l2 distance between Yi and each of 1× scale
predictions which contain P1× and On× (n = 4, 8, 16, 32,
respectively). And then, we down-sample Yi to Y ti where t
is the downscaling factor and minimize the l2 distance of Y ti
and the corresponding Pt× to make sure that details of the
scene are preserved. Moreover, we fuse 1× scale predictions
via weighted average and minimize the l2 distance between
Yi and the averaged prediction. Thus, our loss function can be
defined as a sum of several l2 distances,

L2 = l2(Yi,P1×)+ l2(Yi, Ỹfs)

+ λ1
∑
n∈S

l2(Yi,On×)+
∑

t∈{2,4,8}

λt2l2(Y
t
i ,Pt×) (3)

Here, l2(·) refers to the l2 distance. λ1 and λt2 are given
constants. S = {4, 8, 16, 32}. Ỹfs refers to the weighted
average prediction defined as,

Ỹfs = w0P1× +
∑
i∈S

wiOi× (4)

where w0 and wi are weights for fusing 1× scale predictions,
and those weights are learned automatically via CNN.

Additionally, we formulate the neighborhood smoothness
constraint as a regularization term, Lsmooth, for training our
model, which will be described concretely in Section IV.D.
Finally, the whole loss function can be defined as,

L = L2 + Lsmooth . (5)

C. MULTI-SCALE SUB-PIXEL CONVOLUTION
Sub-pixel convolution was first proposed by Shi et al. [41]
as an efficient up-sampling method for the image

super-resolution problem. It is originally defined as,

ISR = f L(ILR) = PS(WL ∗ f L−1(ILR)+ bL) (6)

Here, ILR refers to a low resolution RGB image. ISR refers to
the high resolution RGB image to be recovered. f L−1 refers to
a neural network with L−1 layers.WL and bL are parameters
of Layer L, and PS(·) represents a shuffling operator that
rearranges the elements of an H × W × (C · r2) tensor to
a tensor of the shape rH × rW × C where r is the upscaling
factor.

Inspired by this, we formulate the prediction of a fine
resolution depth map as a multi-stage super-resolution prob-
lem on the depth map. In each stage, the predicted depth
map is up-sampled by the factor of 2. Therefore, different
scale targets should be considered during training and our
multi-scale target learning method is born. Furthermore, con-
sidering that features from early layers of a CNN carry more
detail information of the input image, and the information
is very likely to benefit preserving more details of the scene
in the prediction, we construct several branches called scale
branches in our network and fuse features of different scales
from those branches into the sub-pixel convolution. Note that
all the scale branches are supervised for extracting better
features. Finally, If the resolution of the original input image
is H × W , our multi-scale sub-pixel convolution can be
defined as,

Pn× = PS(H ([P2n×,B
22n×
2n× ,B

23n×
2n× , . . . ,B

32×
2n×]))

n ∈ {1, 2, 4, 8} (7)

Here, [P2n×,B
22n×
2n× ,B

23n×
2n× , . . . ,B

32×
2n×] refers to the concate-

nation of input feature maps. H (·) refers to a series of con-
volutional layers which output a tensor with the shape of
H/(2n)×W/(2n)×(1·22), andPS(·) represents a pixelshuffle
operation which shuffles the output of H (·) to a predicted
depth map of resolutionH/n×W/n. Note that the aforemen-
tioned notation SPn(·) in (1) is equivalent to PS(H (·)) in (7).
Fig. 3 gives illustrations of the original sub-pixel convolution
and our multi-scale sub-pixel convolution.

D. NEIGHBORHOOD SMOOTHNESS
The neighborhood smoothness constraint is based on the
prior that neighboring pixels with similar appearances in
an image are likely to correspond to close depth values.
In Liu et al.’s work [10], it is presumed that pixels within
a super-pixel have the same depth value and super-pixels
with similar appearances have closer depth values. And they
make use of hand-crafted features to measure the similarity of
adjacent super-pixels. Different from them, we use features
automatically learned by CNN to measure the similarity of
neighboring pixels and the features of each pixel are extracted
in a patch whose center is this pixel. And then, we use
the weighted average of features of a pixel to represent the
appearance of the pixel and define a constraint term in the
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FIGURE 3. (a) illustrates the original sub-pixel convolution proposed
by [41]. (b) outlines our multi-scale sub-pixel convolution, which fuses
more features from different scale branches. The circle with ‘‘I’’ in it
means concatenating features from different branches. And the number
of branches before concatenation may be less or more than 3, depending
on the output scale of the multi-scale sub-pixel convolution. (a) Sub-pixel
convolution. (b) Multi-scale sub-pixel convolution.

loss function, Lsmooth, as,

Lsmooth =
λ3

2

∑
j−i=1

(
yi − yj

)2e−t(ri−rj)2 (8)

Here, λ3 and t are positive constants. i and j are the locations
of two adjacent pixels in a row or a column. ri and rj refer to
appearances of the two pixels, and yi and yj refer to predicted
depth values. For better comprehensibility, we will explain
why we choose such a formulation, and how we implement
it, together with why it should work in the rest of this section.

As (8) shows, there are two parts, namely, L2 and the
weight part. L2 is used to make the predictions of adjacent
pixels closer. However, not all adjacent pixels should own
close depth, e.g. adjacent pixels on depth edges. So weights
are introduced for such situations. Adjacent pixels which look
‘‘different’’ should own a smaller weight whereas similar
pixels should own a larger weight. Therefore, we choose ex as
weights and x should be related to the similarity. We expect
to use low level features, such as contours and gradients,
to formulate the similarity, since those low level features are
different on depth edges but similar on other regions. To our
knowledge, the first several layers of CNNs are able to learn
various low level features [46], [47]. Therefore, we attempt
to explore CNNs to extract the required feature maps.

To get the best feature maps to calculate the similarity of
adjacent pixels, we choose a typical sample and visualize
outputs from the first convolution layer and the first three
DenseBlocks of our network, as well as the combination of
outputs from a specific layer or a DenseBlock in Fig. 4.
As shown in Fig. 4, (a), (b), (c) and (d) display outputs from
the first convolution layer and the first three DenseBlocks,
respectively, and the dimension of them is 1/4, 1/16, 1/64 and

FIGURE 4. Output feature maps from the first convolution layer and the
first three DenseBlocks for a typical sample. (a) displays output feature
maps from the first convolution layer and the dimension of them is
1/4 that of the input. (b) displays output feature maps from the first
DenseBlock and the dimension of them is 1/16 that of the input.
(c) displays output feature maps from the second DenseBlock and the
dimension of them is 1/64 that of the input. (d) displays output feature
maps from the third DenseBlock and the dimension of them is 1/256 that
of the input. (e), (f), (g) and (h) refer to the combinations of output
feature maps in (a), (b), (c) and (d), respectively. The dimensions of those
combinations are 1/4, 1/16, 1/64 and 1/256 that of the input.

1/256 that of the input, respectively. (e), (f), (g) and (h)
display the combinations of outputs in (a), (b), (c) and (d),
respectively. The dimensions of those combinations are 1/4,
1/16, 1/64 and 1/256 that of the input, respectively. As can
be seen, outputs from the first convolution layer and their
combination are the most suitable feature maps to formulate
the similarity of adjacent pixels. Therefore, we take 2× fea-
ture maps (M2×, blue one in Fig. 2) from the main path as
the required feature maps for our neighborhood smoothness
constraint and feed those feature maps to one DenseBlock
with 128 output channels. A convolution layer with a kernel
size of 5×5 follows this DenseBlock and generates 4 channel
output. The 4 channel output is then shuffled into one channel
to up-sample its dimension to the original input’s. Finally,
each value in the output is regarded as the feature of the pixel
in the same location (e.g. ri or rj in (8)).

Actually, our neighborhood smoothness constraint can be
regarded as a pixel level conditional random field (CRF) with
pairwise potentials defined as,

ϕ(yi, yj, ri, rj) = µ
(
yi, yj

)
k
(
ri, rj

)
µ
(
yi, yj

)
=

1
2

(
yi−yj

)2
, k

(
ri, rj

)
= λe−t(ri−rj)

2
(9)

whereµ(yi, yj) represents the compatibility function between
pixel i and j, and k(ri, rj) represents a self-defined weight ker-
nel. Since many works [10], [12], [21], [22], [25], [26], [48]
imply that incorporating CRF into dense prediction model
is a good strategy, our neighborhood smoothness constraint
should work, as well.
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V. EXPERIMENTS
In this Section, we will provide various experiments, includ-
ing ablation studies on different components and comparisons
with state-of-the-art methods on popular datasets, to present
the superiority of the proposed method. In the following,
we will first describe the experimental protocols (or experi-
mental settings) and implementation details, and then provide
the experimental results together with analyses.

A. EXPERIMENTAL PROTOCOL
1) DATASETS
In this paper, we involve two popular datasets which are pub-
licly available andwidely used in the field ofmonocular depth
estimation, namely, Make3D Range Image Dataset [13] and
NYU Depth Dataset V2 [49]. We conduct the ablation study
on NYU Depth Dataset V2 and compare our method with
state-of-the-art approaches on both datasets. Details about the
two datasets are described here.

The NYU Depth Dataset V2 [49] is an indoor scene
RGB-D dataset with 120K frames and corresponding depth
maps. It contains 464 scenes captured by a Microsoft Kinect
with the resolution of 640×480 and those scenes are officially
divided into 249 training scenes and 215 test scenes. Follow-
ing Laina et al.’s work [27], we sample frames with a fixed
step out of each training sequence and acquire approximately
12k images. For better performance, we conduct offline data
augmentation which will be described later and finally get
around 72k samples for training. Since there are obvious
black regions in the ground-truth depth maps, we mask out
pixels with the depth value of 0 and train our model on the rest
pixels. For test, we use the standard test set, which contains
694 images with filled-in depth values, to compare with
previous works. During our experiments, all images with the
corresponding depth maps are down-sampled to 320× 240.
The Make3D dataset [13] is an outdoor scene RGB-D

dataset, containing 534 images with the resolution of
1704 × 2272. Officially, images of this dataset are split into
400 images for training and 134 images for test. We get 9.6K
images via similar offline data augmentation used for NYU
Depth Dataset V2 and resize all images to 345×460. Follow-
ing Laina et al.’s work [27], we further reduce the resolution
of the images by half as the input of our network. As a result
of the limitation of the device for collecting depth map in the
open air, the depth map resolution is restricted to 305×55 and
depth values above 80m are cropped to 80m in this dataset.
Therefore, we report our results using two kinds of criteria,
C1 error and C2 error, as previous works used. C1 errors are
calculated only in the regions with the ground-truth less than
70 meters whereas C2 errors are calculated over the entire
images.

2) DATA AUGMENTATION
To increase the size of the training sets and reduce overfitting,
we follow the method described in [9] and conduct offline
data augmentation on both datasets as follows.

• Scale: Input images and corresponding depth maps are
scaled by s ∈ {1, 1.2, 1.5} and depth values are divided
by s.

• Rotation: Input images and corresponding depth maps
are rotated by a random value r ∈ [−5, 5] degrees and
the empty regions caused by the rotation are masked out
during training. Note that this operation is conducted
only on Make3D.

• Translation: Input images and corresponding depth
maps are randomly cropped to the size of the input.

• Color: Each channel of input images are multiplied
globally by a random value c ∈ [0.85, 1.15]. Note that
this operation is conducted only on Make3D.

• Flips: The input image and its corresponding depth map
in every data pair are flipped to generate a symmetrical
pair.

3) EVALUATION METRICS
The same as prior works, three criteria for errors and one cri-
terion for accuracy are considered for quantitative evaluation.
Specially, they are defined as,

• Average relative error (rel): 1
T

∑
i

|yi−y∗i |
y∗i

.

• Root mean squared error (rms):
√

1
T

∑
i

(
yi − y∗i

)2 .
• Average log10 error (log10): 1

T

∑
i

∣∣log10y∗i − log10yi∣∣ .
• Accuracy with threshold (thr): percentage (%) of yi
s.t. : max

(
yi
y∗i
,
y∗i
yi

)
= δ < thr .

where yi and y∗i are the predicted depth and the ground-truth
depth of the pixel i, respectively, and T is the total number of
pixels in the evaluated image.

4) BASELINES FOR ABLATION STUDY
We set four baselines in the ablation study to clearly validate
the effectiveness of the multi-scale target learning, the multi-
scale sub-pixel convolution and the neighborhood smooth-
ness constraint. Specially, they are elaborated as follows.
• DenseNet-TC (DenseNet with Transposed Convolu-
tion): We trained a DenseNet without the global pool-
ing and the fully connection for depth estimation and
extended it with transposed convolutions to get a fine
resolution of the predicted depth map.

• DenseNet-MT (DenseNet with Multi-scale Targets):
We trained a network similar as DenseNet-TC and added
the multi-scale target learning to it. Specifically, features
from each transposed convolution were fed to an extra
convolutional layer to get a predicted depth map of
a certain scale and those predictions were supervised
respectively.

• DenseNet-SC (DenseNet with Sub-pixel Convolu-
tion): We replaced the transposed convolution in
DenseNet-MT with the original sub-pixel convolution
proposed in Shi et al.’s work [41]. Note that in this
network, the output of each sub-pixel convolution was
supervised directly.

VOLUME 7, 2019 16329



S. Zhao et al.: Super-Resolution for Monocular Depth Estimation With Multi-Scale Sub-Pixel Convolutions

TABLE 1. Components and baselines. ‘‘–’’ means that a method does not
own the component whereas

√
means that a method owns the

component. A: Multi-scale target learning; B: Sup-pixel convolution;
C: Multi-scale fusion; D: Scale branches; E: Neighborhood smoothness.
Note that our multi-scale sub-pixel convolution consists of
component B, C and D.

• DenseNet-SCM (DenseNet with Sub-pixel Convolution
and Multi-scale features): We involved multi-scale fea-
tures into sub-pixel convolutions. However, those fea-
tures come from early layers of the network instead of
scale branches.

• MSCN (Multi-scale Sub-pixel Convolutional Net-
work): The proposed method without the neighborhood
smoothness constraint.

• MSCNNS (Multi-scale Sub-pixel Convolutional Net-
work with a Neighborhood Smoothness constraint): The
proposed method.

For better comprehensibility, we list all related components
in Table 1 and show whether a network owns a component.

B. IMPLEMENTATION DETAILS
We implement our method on the popular CNN platform,
PyTorch.1 Training is done on Ubuntu 16.04 with an NVIDIA
Titan X Pascal GPU. We choose DenseNet-121 as the main
path. We reference the implementation of DenseNet-121 in
the vision project2 and use the pre-trained model to initialize
parameters of the four denseblocks. Other layers of the net-
work are initialized by the mean of xavier [55]. We use Adam
strategy with weight_decay = 0.0005 and set λ1 = 0.5,
λi2 = 1/i, (i = 2, 4, 8), λ3 = 0.01 and t = 2. The batch
size is set to 16 due to the memory limitation. The learning
rate is set to 0.001 at the very beginning and reduced 70%
every M epochs. The value of M depends on the size of the
dataset. Generally, we set it to 6∼10 for NYUv2 Depth and
20∼60 for Make3D.

C. EXPERIMENT RESULTS
1) ABLATION STUDY ON COMPONENTS
We first compare the proposed methodMSCNNS with several
aforementioned baselines to validate the effectiveness of the
multi-scale target learning, the multi-scale sub-pixel convo-
lution and the neighborhood smoothness constraint, respec-
tively. The results are shown in Table 1, from which we could
have the following findings. First, all approaches with the
multi-scale target learning perform better than DenseNet-TC,
indicating that our multi-scale target learning is very effective

1http://pytorch.org/
2https://github.com/pytorch/vision

for depth estimation. Second, DenseNet-SC outperforms
DenseNet-MT, which indicates that the sub-pixel convolution
is more suitable than the widely used transposed convolu-
tion for monocular depth estimation. Third, DenseNet-SCM
outperforms DenseNet-SC with a great increase on per-
formance and MSCN outperforms DenseNet-SCM. Such a
result clearly demonstrates that multi-scale fusion is a good
strategy for this task and our supervised scale branches are
able to provide better multi-scale features. This result is
quite reasonable, since multi-scale information profoundly
benefits keeping details of the scene in the prediction. Fourth,
compared with MSCN,MSCNNS gains obvious performance
increases on all criteria. Considering that the only difference
between MSCNNS and MSCN is that the former is trained
with the neighborhood smoothness regularization term, it can
be concluded that our neighborhood smoothness constraint
further improves the results.

Since there are multiple outputs (O4×
∼ O32× and P8× ∼

P1×) in our network, we display the qualitative results of
those outputs in Fig. 5 and present the quantitative compar-
isons of them in Table 2. From the results and comparisons,
several interesting conclusions can be drawn. First, the per-
formances from O4× to O32× increase sequentially whereas
the figures become less sharp. Such a phenomenon clearly
illustrates that the early layers of the network provide more
information about the contour of the object whereas deeper
layers provide more useful information for depth values.
Thus, there is a trade-off between sharpness and accuracy
using single scale features. Second, P8× ∼ P1× are nearly the
same irrespective of the resolution, which indicates that our
multi-scale sub-pixel convolution overcomes this trade-off
and is able to provide a sharp and accurate prediction. Third,
O32× and P1× share the same backbone network. But P1× is
much sharper than O32×. As mentioned in Sect. IV-A, P1×
adopts our multi-scale sub-pixel convolution as the upsam-
pling strategy whereas O32× employs transposed convolu-
tions. Thus, we can conclude that our multi-scale sub-pixel
convolution is more suitable than the transposed convolution
for depth estimation, and our method is able to get sharp
details in a high resolution prediction.

2) EVALUATION ON NYU DEPTH DATASET V2
In order to show the superiority of MSCNNS , we consider
several state-of-the-art methods on this dataset and compare it
with them using the standard test with 694 images. The results
are listed in Table 4. Moreover, we also make the comparison
on time costs with several methods whose code is publicly
available and the results are summarized in Table 6. The time
cost is divided into two parts, i.e. the preprocessing time and
prediction time, to illustrate the advantages of our method.
Note that all methods are evaluated on the same computer
and accelerated by an NVIDIA Titan X (Pascal) GPU except
Karsch et al.’s method [50].
From those two tables, it can be found that our method

achieves the best or the second best performance on all cri-
teria and runs much faster. It only consumes 1/2 the time
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FIGURE 5. Two test samples in NYU Depth V2. For each sample, there are two rows. The first row (from left to right) is the
RGB image, O4×, O8× and O16× and the second row (from left to right) is O32×, P8×, P4×, P2×, P1× (the final prediction)
and the ground-truth depth map.

FIGURE 6. Qualitative evaluations on NYU Depth v2. Compared with other state-of-the-art methods. Note that the output
resolution of the proposed method is the same as input’s, whereas Eigen et al.’s [9] is 1/16 of the input’s. Eigen and Fergus’s [18]
is 1/4 of the input’s, and Laina et al.’s [27] is 1/4 of the input’s.

of the runner-up and can meet the requirement of real-time
application. Moreover, our training set with 72K images is
smaller than Laina et al.’s [27] with 95K images, as well

as Eigen and Fergus’s [18] with 120K images. Besides,
the size of our model is approximately 100 M, which is
40% that of Laina et al.’s and 1/8 that of Eigen and Fergus’s.
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FIGURE 7. Qualitative evaluations of our approach on Make3D. Fine boundaries of objects in different environments are
provided in our predictions.

TABLE 2. Intermediate output comparison on NYU Depth v2. O4× ∼ O32× are outputs of corresponding scale branches. P8× ∼ P1× are outputs of
corresponding sub-pixel convolutions. Note that P1× is the final output of our method.

TABLE 3. Baseline comparison on NYU Depth v2. DenseNet-TC and DenseNet-MT verify multi-scale target learning. DenseNet-SC and DenseNet-SCM
verify the effectiveness of the multi-scale fusion. DenseNet-SCM and MSCN verify our multi-scale fusion strategy in sub-pixel convolution. MSCN and
MSCNNS verify the neighborhood smoothness constraint.

Compared with super-pixel level CRF based approa-
ches [21], [48], our method is much more efficient and effec-
tive, which illustrates the merit of our multi-scale sub-pixel
convolution and the neighborhood smoothness constraint.

For qualitative evaluation, we provide qualitative results
of several methods in Fig. 6. One thing should be mentioned
that the output resolution of our method is the same as the
output’s, whereas Eigen et al.’s [9] is 1/16 of the input’s.
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TABLE 4. Performance evaluation of state-of-the-art methods on NYU Depth v2. The best scores are highlighted in bold font and the runner-up scores are
underlined.

TABLE 5. Performance evaluation of state-of-the-art methods on Make3D. The best scores are highlighted in bold font and the runner-up scores are
underlined.

TABLE 6. Time evaluation on NYU Depth v2. Our method runs much
faster than other competitors and only consumes appropriately 1/2 the
time of the runner-up.

Eigen and Fergus’s [18] is 1/4 of the input’s, and
Laina et al.’s [27] is 1/4 of the input’s. Thus, our method is
able to output a larger resolution prediction with sharp edges,
as well as to provide more accurate depth values.

3) EVALUATION ON MAKE3D
We evaluate our method using the official test set with
134 images and list the comparison results with several state-
of-the-art approaches in Table 5. It can be observed that our
method outperforms all competitors on all criteria. Moreover,
it should be noted that Make3D is an outdoor depth dataset.
And thus the range of its depth values is much larger than that
of indoor dataset like NYU Depth Dataset V2, which brings
more challenges for the prediction. Nevertheless, our method

makes a great improvement on the metric log10 which refers
to an absolute error on logarithm. Therefore, it can be con-
cluded that our method is superior to predict relatively accu-
rate depth value in spite of a large range of ground truth
values.

We also provide the qualitative evaluations of our method
on Make3D, which are presented in Fig. 7. Since the depth
range is large, we provide the reverse depth map for better
visualization. As shown, ourmethod provides fine boundaries
of objects even in complex environments involving buildings,
shrubs and trees.

VI. CONCLUSION
In this paper, we have exploited image super-resolution con-
cepts and techniques for monocular depth estimation and pro-
posed a CNN-based approach with multi-scale sub-pixel con-
volutions and a neighborhood smoothness constraint. In our
model, there is a main path, a sub-pixel convolution path,
a smoothness branch and four scale branches. The main
path and scale branches are supervised, and generate fea-
tures of different scales. Then, the sub-pixel convolution
path leverages the multi-scale feature fusion and sub-pixel
convolutions to get an accurate depth map. During training,
a novel multi-scale target learning strategy is adopted to train
the sub-pixel convolutions. Moreover, we have proposed a
novel neighborhood smoothness constraint that makes use
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of features from the smoothness branch to further improve
the performance. Our approach achieves the state-of-the-art
results, provides high resolution depth maps with details of
the scenes and runs much faster.

REFERENCES
[1] S. Gupta, P. Arbeláez, R. Girshick, and J. Malik, ‘‘Indoor scene under-

standing with RGB-D images: Bottom-up segmentation, object detec-
tion and semantic segmentation,’’ Int. J. Comput. Vis., vol. 112, no. 2,
pp. 133–149, 2015.

[2] X. Ren, L. Bo, and D. Fox, ‘‘RGB-(D) scene labeling: Features and
algorithms,’’ in Proc. CVPR, 2012, pp. 2759–2766.

[3] A. Eitel, J. T. Springenberg, L. Spinello, M. Riedmiller, and W. Burgard,
‘‘Multimodal deep learning for robust RGB-D object recognition,’’ inProc.
IROS, 2015, pp. 681–687.

[4] A. Zeng, S. Song, M. Nießner, M. Fisher, J. Xiao, and T. Funkhouser,
‘‘3DMatch: Learning local geometric descriptors from RGB-D reconstruc-
tions,’’ in Proc. CVPR, 2017, pp. 199–208.

[5] Z. Wang, H. Liu, X. Wang, and Y. Qian, ‘‘Segment and label indoor
scene based on RGB-D for the visually impaired,’’ in Proc. MMM, 2014,
pp. 449–460.

[6] H. Hirschmuller, ‘‘Accurate and efficient stereo processing by semi-global
matching and mutual information,’’ in Proc. CVPR, 2005, pp. 807–814.

[7] J. Žbontar and Y. LeCun, ‘‘Stereo matching by training a convolutional
neural network to compare image patches,’’ J. Mach. Learn. Res., vol. 17,
pp. 1–32, Apr. 2016.

[8] A. Seki and M. Pollefeys, ‘‘SGM-Nets: Semi-global matching with neural
networks,’’ in Proc. CVPR Workshop, 2017, pp. 21–26.

[9] D. Eigen, C. Puhrsch, and R. Fergus, ‘‘Depth map prediction from a
single image using a multi-scale deep network,’’ in Proc. NIPS, 2014,
pp. 2366–2374.

[10] F. Liu, C. Shen, and G. Lin, ‘‘Deep convolutional neural fields for depth
estimation from a single image,’’ in Proc. CVPR, 2015, pp. 5162–5170.

[11] B. Liu, S. Gould, and D. Koller, ‘‘Single image depth estimation from
predicted semantic labels,’’ in Proc. CVPR, 2010, pp. 1253–1260.

[12] A. Saxena, S. H. Chung, and A. Y. Ng, ‘‘Learning depth from single
monocular images,’’ in Proc. NIPS, 2006, pp. 1161–1168.

[13] A. Saxena, M. Sun, and A. Y. Ng, ‘‘Make3D: Learning 3D scene structure
from a single still image,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 31,
no. 5, pp. 824–840, May 2009.

[14] K. Karsch, C. Liu, and S. B. Kang, ‘‘Depth extraction from video using
non-parametric sampling,’’ in Proc. ECCV, 2012, pp. 775–788.

[15] J. Konrad, M. Wang, and P. Ishwar, ‘‘2D-to-3D image conversion
by learning depth from examples,’’ in Proc. CVPR Workshop, 2012,
pp. 16–22.

[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classifica-
tion with deep convolutional neural networks,’’ in Proc. NIPS, 2012,
pp. 1097–1105.

[17] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for
large-scale image recognition,’’ in Proc. ICLR, 2015, pp. 1–14.

[18] D. Eigen and R. Fergus, ‘‘Predicting depth, surface normals and semantic
labels with a common multi-scale convolutional architecture,’’ in Proc.
ICCV, 2015, pp. 2650–2658.

[19] A. Mousavian, H. Pirsiavash, and J. Košecká, ‘‘Joint semantic segmen-
tation and depth estimation with deep convolutional networks,’’ in Proc.
3DV, 2016, pp. 611–619.

[20] J. Li, R. Klein, and A. Yao, ‘‘A two-streamed network for estimating
fine-scaled depth maps from single RGB images,’’ in Proc. CVPR, 2017,
pp. 3372–3380.

[21] F. Liu, C. Shen, G. Lin, and I. Reid, ‘‘Learning depth from single monoc-
ular images using deep convolutional neural fields,’’ IEEE Trans. Pattern
Anal. Mach. Intell., vol. 38, no. 10, pp. 2024–2039, Oct. 2016.

[22] B. Li, C. Shen, Y. Dai, A. van den Hengel, and M. He, ‘‘Depth
and surface normal estimation from monocular images using regres-
sion on deep features and hierarchical CRFs,’’ in Proc. CVPR, 2015,
pp. 1119–1127.

[23] P. Wang, X. Shen, Z. Lin, S. Cohen, B. Price, and A. L. Yuille, ‘‘Towards
unified depth and semantic prediction from a single image,’’ in Proc.
CVPR, 2015, pp. 2800–2809.

[24] A. Roy and S. Todorovic, ‘‘Monocular depth estimation using neural
regression forest,’’ in Proc. CVPR, 2016, pp. 5506–5514.

[25] D. Xu, E. Ricci, W. Ouyang, X. Wang, and N. Sebe, ‘‘Multi-scale contin-
uous CRFs as sequential deep networks for monocular depth estimation,’’
in Proc. CVPR, 2017, pp. 161–169.

[26] D. Xu, E. Ricci, W. Ouyang, X. Wang, and N. Sebe, ‘‘Monocular depth
estimation using multi-scale continuous CRFs as sequential deep net-
works,’’ IEEE Trans. Pattern Anal. Mach. Intell., to be published, doi:
10.1109/TPAMI.2018.2839602.

[27] I. Laina, C. Rupprecht, V. Belagiannis, F. Tombari, and N. Navab, ‘‘Deeper
depth predictionwith fully convolutional residual networks,’’ inProc. 3DV,
2016, pp. 239–248.

[28] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. CVPR, 2016, pp. 770–778.

[29] N. Neverova, C. Wolf, G. W. Taylor, and F. Nebout, ‘‘Multi-scale deep
learning for gesture detection and localization,’’ in Proc. ECCVWorkshop,
2014, pp. 474–490.

[30] P. Buyssens, A. Elmoataz, and O. Lézoray, ‘‘Multiscale convolutional
neural networks for vision–based classification of cells,’’ in Proc. ACCV,
2012, pp. 342–352.

[31] G. Bertasius, J. Shi, and L. Torresani, ‘‘DeepEdge: Amulti-scale bifurcated
deep network for top-down contour detection,’’ in Proc. CVPR, 2015,
pp. 4380–4389.

[32] Y. Ganin and V. Lempitsky, ‘‘N 4-fields: Neural network nearest neighbor
fields for image transforms,’’ in Proc. ACCV, 2014, pp. 536–551.

[33] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik, ‘‘Hypercolumns for
object segmentation and fine-grained localization,’’ in Proc. CVPR, 2015,
pp. 447–456.

[34] J. Long, E. Shelhamer, and T. Darrell, ‘‘Fully convolutional networks for
semantic segmentation,’’ in Proc. CVPR, 2015, pp. 3431–3440.

[35] P. Sermanet, S. Chintala, and Y. LeCun, ‘‘Convolutional neural networks
applied to house numbers digit classification,’’ in Proc. ICPR, 2012,
pp. 3288–3291.

[36] J. Yang, J. Wright, T. Huang, and Y.Ma, ‘‘Image super-resolution as sparse
representation of raw image patches,’’ in Proc. CVPR, 2008, pp. 1–8.

[37] J. Yang, J. Wright, T. S. Huang, and Y. Ma, ‘‘Image super-resolution
via sparse representation,’’ IEEE Trans. Image Process., vol. 19, no. 11,
pp. 2861–2873, Nov. 2010.

[38] C. Dong, C. C. Loy, K. He, and X. Tang, ‘‘Learning a deep convolutional
network for image super-resolution,’’ in Proc. ECCV, 2014, pp. 184–199.

[39] J. Kim, J. K. Lee, and K. Mu Lee, ‘‘Accurate image super-resolution using
very deep convolutional networks,’’ in Proc. CVPR, 2016, pp. 1646–1654.

[40] J. Kim, J. K. Lee, and K.M. Lee, ‘‘Deeply-recursive convolutional network
for image super-resolution,’’ in Proc. CVPR, 2016, pp. 1637–1645.

[41] W. Shi et al., ‘‘Real-time single image and video super-resolution using an
efficient sub-pixel convolutional neural network,’’ in Proc. CVPR, 2016,
pp. 1874–1883.

[42] C. Ledig et al., ‘‘Photo-realistic single image super-resolution using a
generative adversarial network,’’ in Proc. CVPR, 2017, pp. 105–114.

[43] I. Goodfellow et al., ‘‘Generative adversarial nets,’’ in Proc. NIPS, 2014,
pp. 2672–2680.

[44] S. Xie and Z. Tu, ‘‘Holistically-nested edge detection,’’ in Proc. ICCV,
2015, pp. 1395–1403.

[45] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, ‘‘Densely
connected convolutional networks,’’ in Proc. CVPR, 2017, pp. 2261–2269.

[46] M. D. Zeiler and R. Fergus, ‘‘Visualizing and understanding convolutional
networks,’’ in Proc. ECCV, 2014, pp. 818–833.

[47] J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, and H. Lipson. (2015). ‘‘Under-
standing neural networks through deep visualization.’’ [Online]. Available:
https://arxiv.org/abs/1506.06579

[48] M. Liu, M. Salzmann, and X. He, ‘‘Discrete-continuous depth estimation
from a single image,’’ in Proc. CVPR, 2014, pp. 716–723.

[49] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus, ‘‘Indoor segmenta-
tion and support inference from RGBD images,’’ in Proc. ECCV, 2012,
pp. 746–760.

[50] K. Karsch, C. Liu, and S. B. Kang, ‘‘Depth transfer: Depth extraction from
video using non-parametric sampling,’’ IEEE Trans. Pattern Anal. Mach.
Intell., vol. 36, no. 11, pp. 2144–2158, Nov. 2014.

[51] J. N. Kundu, P. K. Uppala, A. Pahuja, and R. V. Babu, ‘‘AdaDepth:
Unsupervised content congruent adaptation for depth estimation,’’ in Proc.
CVPR, 2018, pp. 2656–2665.

[52] J. H. Lee, M. Heo, K. R. Kim, and C. S. Kim, ‘‘Single-image depth
estimation based on Fourier domain analysis,’’ in Proc. CVPR, 2018,
pp. 330–339.

16334 VOLUME 7, 2019

http://dx.doi.org/10.1109/TPAMI.2018.2839602


S. Zhao et al.: Super-Resolution for Monocular Depth Estimation With Multi-Scale Sub-Pixel Convolutions

[53] Y. Zhang et al., ‘‘Search-based depth estimation via coupled dictionary
learning with large-margin structure inference,’’ in Proc. ECCV, 2016,
pp. 858–874.

[54] A. Atapour-Abarghouei and T. P. Breckon, ‘‘Real-time monocular depth
estimation using synthetic data with domain adaptation via image style
transfer,’’ in Proc. CVPR, 2018, pp. 2800–2810.

[55] X. Glorot and Y. Bengio, ‘‘Understanding the difficulty of training deep
feedforward neural networks,’’ in Proc. AISTATS, 2010, pp. 249–256.

SHIYU ZHAO received the B.S. degree from
the School of Software Engineering, Tongji Uni-
versity, Shanghai, China, in 2017, where he
is currently pursuing the master’s degree. His
research interests are visibility enhancement for
bad weather images, scene understanding, and
machine learning.

LIN ZHANG (M’11–SM’15) received the B.S. and
M.S. degrees from the Department of Computer
Science and Engineering, Shanghai Jiao Tong
University, Shanghai, China, in 2003 and 2006,
respectively, and the Ph.D. degree from theDepart-
ment of Computing, The Hong Kong Polytechnic
University, Hong Kong, in 2011, where he joined
the Department of Computing as a Research Assis-
tant, in 2011. In 2011, he joined the School of Soft-
ware Engineering, Tongji University, Shanghai,

where he is currently an Associate Professor. His current research interests
include the environment perception of intelligent vehicle, pattern recogni-
tion, computer vision, and perceptual image/video quality assessment.

YING SHEN (M’13) received the B.S. and M.S.
degrees from the Software School, Shanghai Jiao
Tong University, Shanghai, China, in 2006 and
2009, respectively, and the Ph.D. degree from the
Department of Computer Science, City University
of Hong Kong, Hong Kong, in 2012. In 2013, she
joined the School of Software Engineering, Tongji
University, Shanghai, where she is currently an
Associate Professor. Her research interests include
bioinformatics and pattern recognition.

SHENGJIE ZHAO (SM’09) received the B.S.
degree in electrical engineering from the Univer-
sity of Science and Technology of China, Hefei,
China, in 1988, the M.S. degree in electrical and
computer engineering from the China Aerospace
Institute, Beijing, China, in 1991, and the Ph.D.
degree in electrical and computer engineering
from Texas A&MUniversity, College Station, TX,
USA, in 2004. He is currently a Professor with
the School of Software Engineering, Tongji Uni-

versity, Shanghai, China. In previous postings, he conducted research at
Lucent Technologies,Whippany, NJ, USA, and the China Aerospace Science
and Industry Corporation, Beijing. His research interests include big data,
wireless communications, image processing, and signal processing. He is a
Fellow of the Thousand Talents Program of China.

HUIJUAN ZHANG received the B.S. and
M.S. degrees from the Department of Com-
puter Science, Xidian University, Shaanxi, China,
in 1993 and 1999, respectively, and the Ph.D.
degree from the College of Computer Science and
Technology, Xidian University, in 2006, where
she joined the Department of Computing, as a
Lecturer, in 1996, and as an Associate Professor,
in 2003. In 2007, she joined the School of Software
Engineering, Tongji University, Shanghai, where

she is currently an Associate Professor. Her current research interests include
mobile computing, pattern recognition, and virtual reality.

VOLUME 7, 2019 16335


	INTRODUCTION
	RELATED WORK AND OUR CONTRIBUTIONS
	RELATED WORK
	CNNs FOR MONOCULAR DEPTH ESTIMATION
	MUTI-SCALE CNNs
	IMAGE SUPER-RESOLUTION APPROACHES

	OUR MOTIVATIONS AND CONTRIBUTIONS

	PROBLEM FORMULATION AND OVERIEW
	MSCNNS: THE PROPOSED METHOD
	NETWORK ARCHITECTURE
	MULTI-SCALE TARGET LEARNING AND THE LOSS
	MULTI-SCALE SUB-PIXEL CONVOLUTION
	NEIGHBORHOOD SMOOTHNESS

	EXPERIMENTS
	EXPERIMENTAL PROTOCOL
	DATASETS
	DATA AUGMENTATION
	EVALUATION METRICS
	BASELINES FOR ABLATION STUDY

	IMPLEMENTATION DETAILS
	EXPERIMENT RESULTS
	ABLATION STUDY ON COMPONENTS
	EVALUATION ON NYU DEPTH DATASET V2
	EVALUATION ON MAKE3D


	CONCLUSION
	REFERENCES
	Biographies
	SHIYU ZHAO
	LIN ZHANG
	YING SHEN
	SHENGJIE ZHAO
	HUIJUAN ZHANG


