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Abstract— On benchmark images, modern dehazing methods
are able to achieve very comparable results whose differences
are too subtle for people to qualitatively judge. Thus, it is
imperative to adopt quantitative evaluation on a vast number of
hazy images. However, existing quantitative evaluation schemes
are not convincing due to a lack of appropriate datasets and
poor correlations between metrics and human perceptions. In
this work, we attempt to address these issues, and we make
two contributions. First, we establish two benchmark datasets,
i.e., the BEnchmark Dataset for Dehazing Evaluation (BeDDE)
and the EXtension of the BeDDE (exBeDDE), which had been
lacking for a long period of time. The BeDDE is used to evaluate
dehazing methods via full reference image quality assessment
(FR-IQA) metrics. It provides hazy images, clear references,
haze level labels, and manually labeled masks that indicate
the regions of interest (ROIs) in image pairs. The exBeDDE is
used to assess the performance of dehazing evaluation metrics.
It provides extra dehazed images and subjective scores from
people. To the best of our knowledge, the BeDDE is the first
dehazing dataset whose image pairs were collected in natural
outdoor scenes without any simulation. Second, we provide a
new insight that dehazing involves two separate aspects, i.e.,
visibility restoration and realness restoration, which should be
evaluated independently; thus, to characterize them, we establish
two criteria, i.e., the visibility index (VI) and the realness index
(RI), respectively. The effectiveness of the criteria is verified
through extensive experiments. Furthermore, 14 representative
dehazing methods are evaluated as baselines using our criteria
on BeDDE. Our datasets and relevant code are available at
https://github.com/xiaofeng94/BeDDE-for-defogging.

Index Terms— Benchmark dataset, dehazing evaluation met-
rics, dehazing baselines, FR-IQA.

I. INTRODUCTION

HAZE, fog, and mist lead to low visibility due to their
scattering and absorption of light. Although they are dif-
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ferent atmospheric phenomena with heterogeneous characteris-
tics and components [1], they can result in similar atmospheric
visibility impairment in images and thus degrade the perfor-
mance of related vision algorithms or systems, e.g., classifica-
tion, detection, segmentation, and advanced driver assistance
systems (ADASs). Consequently, researchers have shown great
enthusiasm for dehazing and a great number of relevant
approaches [2]–[6] have been presented. However, due to a
lack of appropriate metrics and benchmark datasets consisting
of natural hazy images and clear references, how to evaluate
the performance of these methods remains an open issue.

The widely adopted evaluation schemes can be categorized
into three classes. The first class relies on readers’ subjec-
tive judgments on dehazed images. However, these kinds of
schemes restrict themselves to a limited number of evaluation
images and tend to result in contradictions among different
readers. The second class adopts no-reference image quality
assessment (NR-IQA) metrics [11], [12] which are specially
designed for evaluating dehazing methods. However, NR-IQA
is still an open issue, and its metrics are less reliable than
full reference image quality assessment (FR-IQA) metrics. The
third class is the most prevalent one. It simulates hazy images
from clear images based on Koschmieder’s law [13] and then
employs FR-IQA metrics, such as the peak-signal-to-noise
ratio (PSNR) and structural similarity index measure (SSIM)
[10], to evaluate dehazing algorithms. However, this strategy is
also questionable. First, these kinds of schemes usually adopt
indoor images with scene depth. However, as mentioned in
[13], Koschmieder’s law assumes that the surface of the earth
is a uniform horizontal plane and that the linear dimensions
of an object are small compared to its distance from an
observer. Apparently, indoor scenes can hardly satisfy these
assumptions. Second, there is a certain gap between real hazy
images and simulated images, and a dehazing method that
fits such images well might not necessarily fit natural images
well. Third, the widely used FR-IQA metrics are designed to
evaluate general image distortions such as noise and blur, and
thus, they might not be the most suitable ways to evaluate
dehazing methods.

As mentioned above, although dehazing evaluation has been
explored for some time, appropriate datasets and suitable
metrics are still lacking. In this work, we attempt to objectively
and reasonably address these issues.

First, we overcome the difficulty of collecting real-world
images under different weather conditions and provide a
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dataset called the BEnchmark Dataset for Dehazing Evaluation
(BeDDE), which had been lacking for a long period of time,
for the evaluation of dehazing algorithms. The BeDDE con-
tains 208 pairs of natural images, and each image pair consists
of a natural hazy image and a well-aligned clear reference. The
raw images of the BeDDE were collected from 23 provincial
capital cities in China. For each raw image pair, the hazy image
and the corresponding clear image were roughly registered.
Due to slight changes in viewpoints and contents during data
collection, all raw image pairs are aligned, and then, their
common regions of interest (ROIs) are delineated by manually
labeled masks. The registered ROIs between the hazy images
and their clear references make it possible to explore FR-IQA
metrics to assess the quality of dehazing results. Notably,
the evaluation with masks is statistically reliable because our
masks cover key foreground objects and the BeDDE involves
a sufficient number of images. In addition to masks, based
on the haze density, we manually classify the hazy images
of the BeDDE into three haze levels, “light”, “medium” and
“heavy”. To the best of our knowledge, although some datasets
[14]–[16] in this field provide real-world hazy and haze-free
image pairs, they collected their hazy images in artificial hazy
environments that had certain problematic gaps with natural
scenes. The drawbacks of these datasets are further discussed
in Sect. II-C. Therefore, as a dehazing evaluation benchmark
dataset, the BeDDE is the first dataset whose hazy images and
clear references are all collected from natural outdoor scenes.

Second, we select 167 hazy images from 12 cities in
the BeDDE and generate 1670 dehazed images by feeding
the selected images into 10 representative dehazing methods.
Among those images, we group the hazy images by cities
and group the dehazed images by their corresponding hazy
inputs. Additionally, we provide subjective scores (also called
the mean opinion scores (MOSs) of different individuals) to
indicate the visibility for the hazy images in each hazy group
or the realness for the dehazed images in each dehazing group.
With all these images and scores, we build the EXtension of
the BeDDE (exBeDDE) to assess the performance of dehazing
evaluation metrics.

Third, we find that some dehazing results can be good in
visibility but have artifacts, while others are akin to natural
images but have more haze. If we consider visibility to be
more important, the former dehazing results are better and vice
versa. Therefore, under these circumstances, it is hard for us to
make consistent judgments, and the performance of dehazing
methods mainly depends on the given weight between visi-
bility and realness. Typical samples are shown in Fig. 1. The
result of the All-in-One Dehazing Network (AOD-Net) [5]
is more visually pleasing but has more remaining haze. In
contrast, the result of the dark channel prior (DCP) [2] includes
less haze but involves halos and color distortions. Several
general FR-IQA metrics make contradictory evaluations of
these samples, and different people might draw opposite
conclusions as well. Therefore, it is difficult to judge dehazing
quality via one criterion. To handle this problem, we suggest
that dehazing methods should be assessed in two separate
aspects, i.e., visibility and realness, and propose two FR-IQA
criteria, the visibility index (VI) and the realness index (RI),

Fig. 1. Dehazing results should be evaluated in terms of visibility and
realness. (a) and (b) are the clear reference and the hazy image, respectively.
(c) and (d) are the dehazing results of two methods, the AOD-Net [5] and
DCP [2], respectively. Below each image are the scores of 6 metrics. “A”∼“F”
represent the 6 metrics, i.e., VI, RI, VSI [7], GMSD [8], FSIM [9], and SSIM
[10]. The best value for each metric is highlighted in boldface. Note that VI
and RI are the two proposed criteria in this work.

to evaluate dehazing methods in the two aspects, respectively.
Fig. 1 offers a glimpse of the effectiveness of the VI and
the RI. (b), (c) and (d) increase in visibility and decrease in
realness. The VI and RI provide the correct orders. In Sect. V,
we conduct extensive experiments on the exBeDDE to test
the superiority of the proposed criteria to general FR-IQA
metrics and existing no-reference dehazing evaluation metrics.
Additionally, evaluations of 14 dehazing methods with our
criteria on BeDDE are provided as baselines.

The remainder of this paper is organized as follows. Sect. II
reviews the related work. Sect. III introduces our established
benchmark datasets BeDDE and exBeDDE in detail. Sect. IV
presents the proposed VI and RI for dehazing evaluation.
Experimental results are reported in Sect. V. Finally, Sect. VI
concludes this paper.

II. RELATED WORK

In this section, we briefly review several well-known FR-
IQA metrics and current evaluation schemes for image dehaz-
ing. Then, we introduce recent efforts to construct dehazing
datasets.

A. Advances in FR-IQA

Pixel-based metrics, e.g., the mean square error (MSE) and
PSNR, correlate poorly with human perceptions, and thus,
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human visual system (HVS)-based IQA metrics have been
explored. The most well-known metric is the SSIM proposed
by Wang et al. [10]. It considers that the HVS is highly adapted
to extract the structural information from the visual scene,
and thus, leverages the luminance, contrast and structural
information to calculate the similarity. In a later work of
Wang et al., multiscale (MS) information was introduced in
the SSIM, and MS-SSIM [17] was proposed. In [18], Wang
and Li introduced a novel quality score pooling strategy based
on information content weighting (IW) and improved the
MS-SSIM by proposing the IW-SSIM.

Different from the variants of the SSIM, Zhang et al.’s work
[9] held the view that the HVS understood an image mainly
based on its low-level features and proposed two feature simi-
larity indices, the FSIM and FSIMc, which involved the phase
congruency, gradient magnitude features and chrominance fea-
tures. Later, they replaced the phase congruency features with
saliency maps and proposed a new metric named the visual
saliency-induced index (VSI) [7]. In Liu et al.’s work [19],
exploiting the prior that gradients convey important visual
information and are crucial to scene understanding, the authors
proposed a gradient similarity-based metric (GSM). However,
Xue et al. [8] found that gradient maps were sensitive to
image distortions while different local structures in a distorted
image had different degrees of problematic degradations.
Accordingly, they proposed the gradient magnitude similarity
deviation (GMSD), which calculated the standard deviation of
the gradient magnitude similarity (GMS) map as the similarity
score. In [20], Zhang et al. explored assessing image quality
by deep learning and proposed the learned perceptual image
patch similarity (LPIPS) metric, which adopted features from
pretrained neural networks to compare the distorted image and
the reference.

B. Current Dehazing Evaluation Schemes

As mentioned above, there are three classes of evaluation
schemes for image dehazing. The first class encourages an
article to present dehazed images or other intermediate outputs
(e.g., transmission maps) generated by different algorithms,
and it resorts to the subjective judgments of readers only.
Early dehazing studies [21], [22] preferred this strategy, but
they used different hazy images, making the comparison
less convincing. In [3], Fattal collected the most frequently
used hazy images in previous dehazing studies [23]–[26]
and provided a benchmark dataset with 23 hazy images for
subjective judgments. However, these images have similar
visibility conditions, and a sole evaluation of them might lead
to a preference to handle hazy images with certain conditions.
Additionally, some dehazed images or outputs are too similar
to each other for people to judge.

The second class uses specially designed NR-IQA metrics.
In [11], Hautière et al. considered the contrast restoration
of dehazed images and proposed three indicators, i.e., e,
r , and σ . Specifically, e assesses the ability of a dehazing
method to restore the edges. r evaluates the quality of contrast
restoration by a dehazing method, and σ computes the number
of saturated pixels (black or white) in the dehazed image.

Later, Choi et al. [12] proposed another no-reference assess-
ment method, called the fog aware density evaluator (FADE),
which focuses on the characteristics of hazy images includ-
ing low contrast, faint color, and shifted luminance. Some
dehazing studies [27]–[30] adopted these NR-IQA metrics to
evaluate their models. However, as mentioned above, those
metrics limit themselves to certain kinds of distortions, such as
distorted contrast and luminance, whereas different dehazing
methods may involve various types of distortions. Moreover,
Ma et al. [31] found that these no-reference metrics correlated
poorly with human perceptions. As a result, for this task,
NR-IQA metrics are less reliable.

The third class explores FR-IQA metrics to evaluate dehaz-
ing methods. Due to a lack of real-world image pairs, the
third class usually simulates hazy images from clear images
based on Koschmieder’s law [13]. In [3], Fattal used 11
clear images with depth maps provided by [32] to simulate
hazy images with ground-truth transmission maps, and the
L1 distance between the estimated transmission map and the
ground-truth is calculated as the metric. Some dehazing studies
[33]–[36] have adopted Fattal’s dataset as their test set. In
addition, more studies [5], [6], [37], [38] have employed
existing indoor datasets with depth maps, e.g., the NYU2
[39] and Middlebury datasets [40], [41], to handle the lack
of essential depth information in the simulation. Then, these
studies adopted FR-IQA metrics, such as the MSE, PSNR
and SSIM [10], to evaluate dehazing methods on pairs of
clear images and restored images. However, there are some
remaining issues. First, as mentioned above, indoor scenes do
no actually satisfy the premise on which Koschmieder’s law
is established. Second, the gap between real hazy images and
simulated images was ignored. Third, the employed FR-IQA
metrics were designed to evaluate general image distortions.
However, regarding dehazing evaluation, their effectiveness
was not verified.

C. Efforts to Construct Dehazing Datasets

To handle issues in exploiting FR-IQA metrics for the
evaluation of dehazing methods, there are a few studies that
consider establishing appropriate dehazing datasets. Using
SiVICTM software, Tarel et al. constructed two synthetic
outdoor datasets, namely, the Foggy Road Image DAtabase
(FRIDA) [42] and FRIDA2 [43], to test dehazing methods.
The FRIDA and FRIDA2 contained 90 synthetic images of
18 urban road scenes and 330 synthetic images of 66 diverse
scenes, respectively, and they provided both homogeneous and
heterogeneous fog. However, their images were at low resolu-
tions and did not look realistic. Later, based on Koschmieder’s
law, Ancuti et al. [44] simulated hazy images using clear
images and depth maps from both the NYU2 and Middlebury
datasets. With these images, they built a dehazing dataset
called D-HAZY. Apparently, this dataset followed the same
idea of haze simulation as other studies and had the aforemen-
tioned problems. To illustrate their drawbacks, typical images
of D-HAZY and synthetic images of the FRIDA and FRIDA2
are shown in Fig. 2.
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Fig. 2. Typical samples from D-HAZY [44] and synthetic images from
the FRIDA [42] and FRIDA2 [43]. (a) and (b) come from the FRIDA and
FRIDA2, respectively. (c) and (d) are from D-HAZY. Note that many dehazing
studies use images similar to (c) and (d) as training and testing data.

More recently, Li et al. [45] established a dataset named
REalistic Single-Image DEhazing (RESIDE) which provided
indoor and outdoor images with simulated haze for the training
and testing of dehazing models. The indoor images also came
from the NYU2 and Middlebury datasets. Thus, they had the
same problems as D-HAZY did. The outdoor images were
collected from the Internet, and their depth maps were esti-
mated from those monocular images using Liu et al.’s model
[46]. However, depth estimation from a monocular image
was highly ill-posed, and thus, the acquired depth maps were
unreliable, leading to poor simulation. As compensation for
the dataset’s drawback, they proposed an indirect evaluation
scheme. In their scheme, state-of-the-art object detection algo-
rithms were used to detect the objects of interest on dehazed
images that were generated by different dehazing methods
from real hazy images, and then, the mean Average Precisions
(mAPs) of those detection algorithms were calculated as the
scores of the dehazing methods. In [47], Sakaridis et al. added
synthetic fog to images from Cityscapes [48] and established
a dataset named Foggy Cityscapes. However, the depth in
Cityscapes was not complete, and thus, the quality of the
simulated hazy images could not be guaranteed. Therefore,
it is also inappropriate to evaluate on Foggy Cityscapes. To
better illustrate their drawbacks, outdoor sample images of
RESIDE and Foggy Cityscapes with the corresponding depth
maps are exhibited in Fig. 3.

There are some studies [14]–[16], [49] focusing on collect-
ing image pairs from real-world scenes, but most of them rely
on artificial hazy scenes that have certain problematic gaps
compared with natural hazy scenes. Ancuti et al. constructed
O-HAZE [14], which provides 45 pairs of hazy outdoor images
and corresponding references. They used two haze machines
and a fan to produce fog or haze. However, the generated
haze can cover only an area much smaller than that covered
by natural haze. Moreover, haze machines produce only water
vapor, whereas natural haze is a complex compound of vapor
and other particles (e.g., aerosol, sulfur dioxide and nitrogen

Fig. 3. Outdoor samples from RESIDE [45] and Foggy Cityscapes [47]. The
left column is from RESIDE. The right column comes from Foggy Cityscapes.
(a) and (b) are the original clear images. (c) and (d) display depth maps.
(e) and (f) are simulated images. As shown, the depth map of RESIDE is
inaccurate, and that of Foggy Cityscapes is incomplete. Both defects result in
poor simulation quality.

dioxide). Unlike vapor, those particles affect the extinction
coefficient of the atmosphere by both absorbing and scattering
light. Therefore, the hazy images cannot fully represent the
true nature of fog or haze. Ancuti et al. adopted the same
method of constructing O-HAZE to build an indoor dataset,
I-HAZE [15], which consists of 35 indoor image pairs. In
[16], Bijelic et al. employed a delicate fog chamber [50]
to simulate haze scenes and established a large dataset with
hazy and haze-free image pairs. However, the chamber is too
small in size and limited in scene variety compared with real
outdoor environments. Additionally, this chamber is only able
to generate haze with water droplets and thus has similar
problems as O-HAZE and I-HAZE.

In Table I, we summarize the characteristics of the BeDDE
and other datasets with paired images to illustrate their differ-
ences.

III. THE BEDDE & THE EXBEDDE: REAL-WORLD

BENCHMARK DATASETS FOR DEHAZING EVALUATION

The BeDDE is a real-world dataset containing hazy images
and the corresponding clear references for dehazing studies. Its
extension, the exBeDDE, includes dehazed images generated
by dehazing methods and the MOSs of these images. In this
section, we will present overviews of the two datasets and the
way in which we establish them.

A. Dataset Overview

The BeDDE contains 208 image pairs collected from 23
provincial capital cities in China. For each city, one clear
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Fig. 4. The clear reference and hazy images with different visibility conditions taken from Chengdu, a major city in China. (a) is the clear image. (b)∼(e)
are hazy images whose visibility conditions become sequentially worse, and their labeled haze levels are presented below.

image and several hazy images from the same place are
provided. For each image pair, the hazy image is well aligned
with the corresponding clear image via a 2D projective trans-
formation, and a manually labeled mask is provided. This
mask is used to delineate regions with the same contents in
these two images, which we call the ROI of this pair and which
are involved in the scoring of dehazing methods. In addition
to clear reference images and masks, another outstanding
advantage of the BeDDE is its diversity of visibility conditions.
To exploit this advantage, we manually classified 208 hazy
images of the BeDDE into three haze levels, “light”, “medium”
and “heavy”, based on their haze densities. To illustrate this
classification, Fig. 4 provides several images of Chengdu with
their haze levels.

The exBeDDE is the extension of the BeDDE and is
designed for the assessment of dehazing evaluation metrics.
It contains 167 hazy images from 12 cities in the BeDDE and
1670 dehazed images generated by 10 dehazing methods using
these hazy images. These images are divided into groups for
different assessment purposes. The hazy images are grouped
by the cities where they were taken to measure the ability
of visibility evaluation. The dehazed images are grouped by
the original hazy images from which they were derived to
assess the ability of realness evaluation. For each group, MOSs
indicating the quality of the images are provided. The scores
of the images in a hazy group are determined by visibility.
For dehazed images, their scores are determined mainly by
realness and partly by visibility.

B. Pipeline to Establish the BeDDE

There are five steps in the pipeline of the establishment of
the BeDDE: data acquisition, image registration, data cleaning,
mask labeling, and haze level labeling.

1) Data Acquisition: In this step, an image of a fixed place
was collected at a time between 8:00 and 9:00 each day
for a period of 40 days. Such collections were conducted
simultaneously at 34 provincial capitals in China in one year,
and the representative scenes in those cities were chosen as
the collection sites. All images were taken by professional
photographers. To increase the variety, the photographers were
required to take photos with their own cameras and favorable
settings, but for each city, the device and setting were fixed
and remained the same during the collection. We put these
parameters (e.g., the device model, aperture value, exposure
time, focal length, ISO speed, metering mode, and white
balance mode) in a separate document and release them with

TABLE I

CHARACTERISTICS OF THE BEDDE AND OTHER DEHAZING

DATASETS WITH PAIRED IMAGES

our datasets. Owing to the 46 photographers, we acquired 1269
high-resolution images as raw data.

2) Image Registration: Although the images of a city were
taken in the same place, slight changes in viewpoints were
inevitable. Therefore, for each city, we chose one image as the
reference, which was in overcast weather and provided good
visibility. If there was no appropriate reference for a city, we
simply dropped all images of this city. Afterwards, we aligned
all the other images to this reference by a standard image
registration procedure [51], which is composed of keypoint
detection, feature extraction and matching, transformation
matrix estimation, and transformation application. Specifically,
we used speeded up robust features (SURF) [52]. Since there
were only slight changes in the viewpoints, we adopted a 2D
projective matrix as the transformation model which can be
formulated as,

[x, y, 1] = [u, v, 1] · T (1)

where T is a 3 × 3 transformation matrix and [u, v, 1] and
[x, y, 1] are the homogeneous coordinates of a pixel in images
before and after registration, respectively.

3) Data Cleaning: In this step, we first filtered out images
whose environmental conditions, such as sun position and
color appearance, are obviously different from the selected
reference. Thus, except for haze density, the differences in
environmental conditions between the hazy images and refer-
ences were indistinguishable to human eyes. Then, we filtered
out undesired images that were poorly aligned with the refer-
ences. To better visualize the registration quality and facilitate
our selection, we created an overlaid image by assigning the
grayscale version of the reference and that of the hazy image
to different channels of a blank image (zero values in RGB
channels). With such an overlay, poorly aligned edges became
salient. In Fig. 6, an overlaid image for a poorly aligned pair
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Fig. 5. Samples of different hazy scenes with their subjective scores. It is difficult to judge haze levels between two scenes such as (a) and (c) due to their
scale varieties. However, we can tell that, in visibility, (a) is better than (b) and that (c) is better than (d). The mean opinion score for each image is provided.
A higher score indicates a better quality. Note that our scores are meaningful only in the same group.

Fig. 6. An overlaid image for a poorly aligned pair. Some poorly aligned
edges are highlighted by a red box and a blue box.

is displayed. As we can see, the registration quality is quite
easy to judge in the overlaid image. With this technique, we
manually filtered out poorly aligned image pairs.

As mentioned above, there were two stages in our selection.
In each stage, three persons individually judged the same
image pair. Our selection was quite strict and adopted only
pairs that were regarded as good samples by all three persons.
Eventually, we selected 208 image pairs out of 1269 candidates
to establish the BeDDE, with the number of hazy images for
each city ranging from 1 to 26.

4) Mask Labeling: Although the images of a city were
well aligned, there were still contents that could be different
between them, such as vehicles, pedestrians, trees and water.
Examples of such differences can be seen in Fig. 7. To handle
this problem, we manually labeled a mask to delineate regions
with the same contents between two images from a pair,
i.e., the ROI of this pair. To acquire high-quality masks, two
individuals were involved in the labeling process for each
image pair. One labeled the whole mask and the other checked
the mask and refined it. In the evaluation phase, we calculated
only the score for ROIs to rank dehazing methods.

5) Haze Level Labeling: In this step, based on the haze
density of an image, a value (1, 2 or 3) was manually assigned
to this image. Each image was scored by ten people and the
average score was calculated. Then, the average score was
mapped to one of three levels as the haze level label of this
image, based on the following rule: [1, 1.5) is mapped to
“light”, [1.5, 2.5) to “medium” and [2.5, 3) to “heavy”.

C. Establishment of the exBeDDE

To assess dehazing evaluation metrics, we need images with
different haze levels, dehazed images, and their scores given
by people. Fortunately, the BeDDE provides hazy images

Fig. 7. Examples with different contents in spite of a good alignment.
(a) and (b) are the clear reference and the hazy image in a pair of BeDDE,
respectively. (c) is the mask of this pair. (d) is an overlaid image for this pair,
and the blue region is the ROI of this pair. The red box highlights the major
differences between (a) and (b).

with different visibility conditions, and dehazed images can
be generated by different dehazing methods. However, human
perceptions of haze are vulnerable to the contents of the scene,
especially when there are obvious scale varieties in scenes. As
shown in Fig. 5, it may be difficult to judge whether (a) is
better than (c) in visibility, but it is much easier to order (a)
and (b) (or (c) and (d)) by visibility conditions. Following
this idea, we built the exBeDDE with different groups of
images. Specifically, we selected hazy images from 12 cities
with the highest number of images and grouped them by
cities as hazy groups. For the dehazed images, we grouped
them by the original hazy images as dehazing groups. Such
a grouping strategy for dehazed images was reasonable and
eased our scoring. The reason is that we just need to compare
different dehazing methods using the same hazy image each
time, and a superb evaluation metric ought to perform well on
our dehazing groups.

Finally, we obtained 12 hazy groups with 167 images and
167 dehazing groups with 1670 images. In each dehazing
group, 10 dehazed images were generated by 10 representative
dehazing methods, i.e., fast visibility restoration (FVR) [27],
DCP [2], Bayesian defogging (BayD) [25], color attenuation
prior (CAP) [53], Non-Local image dehazing (NLD) [54],
the multiscale convolutional neural network MSCNN [55],
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DehazeNet [4], AOD-Net [5], the densely connected pyramid
dehazing network (DCPDN) [6], and the gated fusion network
(GFN) [56]. The first 5 methods are prior-based approaches
without training, while the last 5 ones are learning-based.

After groups were established, we invited 10 volunteers to
rank images in each group. Two images of the same group
were shown at a time to each subject (a volunteer). If the two
images came from a hazy group, the subject was asked to order
them by the degree of haze based on his or her own perception,
which ensured that the images in hazy groups were ranked
by visibility only. If the two images were from a dehazing
group, the subject was initially required to order them by the
number of distortions and artifacts. If the subject thought both
images were very close in realness and was unable to tell the
difference between them, he or she was required to judge by
the haze degree. In this way, the images of dehazing groups
were ranked by realness first and by visibility second. With
all the orders from all the subjects, we obtained the overall
ranks of the images in each group. We converted the rank of
an image in a group into its MOS by the following mapping
function:

score = 1

M

M∑
i=1

(1 − ni

N
) (2)

Here, ni is the ranked order of this image in this group given
by the i th subject. M is the number of volunteers. N is the
number of images in this group. In one group, the higher the
score is, the better the image is. To demonstrate, scores of
4 samples are provided in Fig. 5. Note that our scores are
defined in groups and should never be used between groups.

IV. THE VISIBILITY INDEX AND THE REALNESS INDEX

We propose two criteria, the VI and the RI, to assess
dehazing results in visibility and realness, respectively. This
section concretely discusses them.

A. Our Visibility Index

To better understand our VI, we begin with some essentials
about the haze effect in the image. In atmospheric science,
under certain constraints, Koschmieder’s law [13] is widely
used to describe the relationship among the apparent lumi-
nance, intrinsic luminance, extinction coefficient, and observ-
ing distance. The apparent luminance refers to the intensity
of the observed object accepted by our eyes or camera. The
intrinsic luminance means the light just reflected by the object.
The extinction coefficient is a factor that describes the degree
of fog or haze. The observing distance refers to the distance
between the observer and the object.

In our case, Koschmieder’s law can be defined as,

I (x) = J (x) t (x) + A (1 − t (x)) . (3)

Here, x is a pixel of the image. I (x) and J (x) refer to
the apparent luminance and the intrinsic luminance of x,
respectively. A is the global skylight which represents ambient
light in the atmosphere. t (x) is the transmission of the intrinsic
luminance in the atmosphere and can be further modeled as,

t (x) = e−βd(x) (4)

where β is the extinction coefficient, and d (x) is the observing
distance of x.

Our visibility index evaluates the quality of a hazy or
dehazed image using the similarity of visibility between the
image and its clear reference. Such a similarity is calculated by
the transmission and gradients. First, based on Koschmieder’s
law, the transmission is highly related to the haze degree,
and thus, the similarity between transmission maps of the
hazy image and the reference can be used to assess the haze
level. Given T1(x) and T2(x), the transmission values of the
clear image and the hazy image at pixel x, the similarity of
transmission ST (x) is defined as,

ST (x) = 2T1(x) · T2(x) + C1

T 2
1 (x) + T 2

2 (x) + C1
(5)

where C1 is a given positive constant to increase stability.
We calculate the transmission map using DCP [2] which

states that in most of the nonsky patches, at least one color
channel has some pixels whose intensity is very low and close
to zero. Based on DCP, we obtain the dark channel at both
sides of Eq. 3 and obtain the result as,

I dark (x) = J dark (x) t (x) + A (1 − t (x)) (6)

where I dark(x) and J dark(x) are the dark channels of images
I and J at pixel x, respectively. Since J dark(x) → 0,

t (x) = 1 − I dark (x)

A
(7)

Here, t (x) can represent the transmission map of any image.
For the acquisition of A, we followed the DCP approach [2] to
predict it since when the input image has cloudy sky regions,
this method can generate high-quality predictions and fits the
BeDDE. With the estimated A and Eq. 7, we obtain T1(x) and
T2(x) for the clear reference and the hazy image, respectively.
Note that we do not adopt a widely used guided filter [57] to
smooth transmission maps because we find that it makes no
contribution to the performance of the VI and requires extra
computation.

In addition to transmission, we find that the gradients of
an image decrease as the extinction coefficient β in Eq. 4
increases. Supposing that x1 and x2 are two adjacent pixels in
an image that are not located on the depth border, by applying
Eq. 3 and Eq. 4 to x1 and x2, we obtain the following,{

I (x1) = J (x1) e−βd(x1) + A
(
1 − e−βd(x1)

)
I (x2) = J (x2) e−βd(x2) + A

(
1 − e−βd(x2)

) (8)

Since x1 and x2 are adjacent, their observing distances d(x1)
and d(x2) are very close and can be replaced by an approx-
imation value dappr . Then, the difference between I (x1) and
I (x2) can be approximated as,

I (x1) − I (x2) ≈ (J (x1) − J (x2))e
−βdappr . (9)

As shown in Eq. 9, the difference between I (x1) and I (x2)
varies as β varies. Therefore, the value of the gradient can be
a good indicator of the extinction coefficient or haze level.

Previous FR-IQA studies have revealed that the gradient
modulus (GM) is an effective feature for exploring gradient
information. Thus, we adopt it in this work as well. The GM of
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Fig. 8. Flowchart of the computation of our visibility index. I1 is the clear reference image. I2 is the hazy image. The mask is used to delineate regions
with the same content between I1 and I2.

image I is computed as G(x) =
√

G2
x(x) + G2

y(x), where x is

a pixel of I , and G2
x (x) and G2

y(x) are partial derivatives of I
at x. Given G1(x) and G2(x), the GM values of the haze-free
and hazy images, the similarity at pixel x, SG(x), is defined
as,

SG (x) = 2G1(x) · G2(x) + C2

G2
1(x) + G2

2(x) + C2
(10)

where C2 is another given positive constant.
Finally, we take both transmission and the GM into con-

sideration and combine ST (x) and SG(x) to obtain the overall
visibility similarity of the hazy image and its clear reference,
SV (x), which is defined as follows,

SV (x) = SG(x) · [ST (x)]α (11)

where α is the parameter designed to adjust the relative
importance between transmission and the GM. According to
Eq. 3, haze will be more noticeable in regions with smaller
transmission values. Therefore, we use Tm(x) = max(1 −
T1(x), 1 − T2(x)) to weight the importance of SV (x) to obtain
the final visibility score of the hazy image. Our visibility index
is defined as,

V I =
∑

x∈� SV (x) · Tm(x)∑
x∈� Tm(x)

(12)

where � means the ROI delineated by a mask. Fig. 8 illustrates
the flowchart of the computation of our VI for visibility
evaluation.

B. Our Realness Index

As mentioned above, many dehazing methods introduce
artifacts or distortions that degrade image quality. Therefore,
although the original hazy images are natural images that
do not have these degradations, we should also consider

the realness of the dehazing results to thoroughly evaluate
a dehazing method. Fortunately, FR-IQA for artifacts or
distortions has already been extensively studied. Thus, we
follow relevant studies by exploiting the similarity between
the dehazed image and the clear reference in feature spaces to
evaluate the realness of the dehazed image. Specifically, we
adopt two potent features proposed in FR-IQA studies, i.e.,
phase congruency (PC) [58] and the chrominance information
of LMN color space [59], which is optimized for the HVS
[60].

PC was first defined in [58] and first introduced into the field
of IQA by Zhang et al.’s FSIM [9]. In this work, we directly
employ the PC(x) (the PC of pixel x) used in the FSIM for
dehazing evaluation. However, PC(x) is computed from the Y
channel (luminance channel) of the YIQ color space without
the chrominance information of RGB images. To involve this
information, we follow the VSI [7] and exploit the M and N
channels from LMN color space [59], [60]. Therefore, given
the clear reference I1(x) and the hazy image I2(x), we first
convert them into YMN color space as follows,⎡

⎣ Y
M
N

⎤
⎦ =

⎡
⎣ 0.299 0.587 0.114

0.30 0.04 −0.35
0.34 −0.6 0.17

⎤
⎦

⎡
⎣ R

G
B

⎤
⎦ . (13)

Then, we follow the FSIM and VSI to compute the sim-
ilarities of PCs and chrominance features. For PCs, given
PC1(x) of I1(x) and PC2(x) of I2(x), the similarity, SPC (x),
is calculated as,

SPC (x) = 2PC1 (x) · PC2 (x) + C3

PC2
1 (x) + PC2

2 (x) + C3
(14)

where C3 is a positive constant. For chrominance features,
supposing that M1(x) and N1(x) are computed from I1(x) and
M2(x) and N2(x) are derived from I2(x), the similarity SC (x)
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Fig. 9. Flowchart of the computation of our realness index. I1 is the clear reference image. I2 is the hazy image. The mask is employed to point out regions
with the same content between I1 and I2.

is calculated as,

SC (x) = 2M1 (x) · M2 (x) + C4

M2
1 (x)+M2

2 (x)+C4
· 2N1 (x) · N2 (x)+C4

N2
1 (x) + N2

2 (x)+C4
(15)

where C4 is a positive constant. Similar to our VI, SPC (x) and
SC (x) are combined to obtain the overall similarity at point x,
SR (x), as follows,

SR (x) = SPC (x) · [SC (x)]β (16)

where β is a parameter used to adjust the relative importance
between PC and chrominance.

Finally, we adopt PCm (x) = max(PC1(x), PC2(x)) intro-
duced in the FSIM as weights for the importance of different
positions. Our RI is ultimately defined as,

RI =
∑

x∈� SR(x) · PCm(x)∑
x∈� PCm (x)

(17)

where � means the ROI delineated by a mask. Fig. 9 demon-
strates the flowchart of the computation of the RI for realness
evaluation.

V. EXPERIMENTS AND DISCUSSIONS

A. Experimental Protocol

1) Efficacy of Features in the VI and RI: This experiment
aimed to justify the feature selections of our VI and RI. In
this experiment, we tested the abilities of different features
to evaluate visibility and realness, including the transmission
feature and 5 widely adopted features in recent FR-IQA
metrics. In each test, one feature was assessed on both the
hazy and dehazing groups of the exBeDDE. For each feature,

given the feature map of the hazy image F1(x) and that of the
reference F2(x), we computed the similarity map as,

SF (x) = 2F1(x) · F2(x) + CF

F2
1 (x) + F2

2 (x) + CF
. (18)

where CF is a positive constant. The final score was calculated
by averaging the similarity map for the ROI of this pair.

2) Efficacy of the VI and RI: This experiment was designed
to illustrate the superiority of our criteria. In this experiment,
we compared them on the exBeDDE with 7 state-of-the-art
general FR-IQA metrics and 4 dehazing evaluation NR-IQA
metrics. Implementations released by the original authors or
official versions of MATLAB were used. If any, the parameters
of these metrics were set to default.

3) Dehazing Baselines: In this experiment, we evaluated
14 representative dehazing methods on the BeDDE with the
measurement of three metrics, e.g., the VI, RI and LPIPS
[20]. Official implementations of those dehazing methods were
used. All parameters were set to default, and trained models
for CNN-based methods were provided by the original authors.
We report the evaluation results of these methods as dehazing
baselines so that they can be exploited by future dehazing
research.

4) Assessment of the Metrics’ Performance: In the first
two experiments, the performances of IQA features or indices
were assessed by 4 commonly used performance metrics, i.e.,
the Spearman rank-order correlation coefficient (SRCC), the
Kendall rank-order correlation coefficient (KRCC), the Pear-
son linear correlation coefficient (PLCC), and the root mean
squared error (RMSE). The SRCC and KRCC can measure
the prediction monotonicity of an IQA index. However, they
consider the rank of data points only and ignore the relative
distances between data points. Thus, the PLCC and RMSE
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TABLE II

COMPARISONS OF DIFFERENT FEATURES IN HAZY GROUPS OF THE EXBEDDE. THE SRCC AND KRCC ARE CONSIDERED AS A WHOLE. THE TOP TWO
PERFORMANCE VALUES IN TERMS OF THE SUM OF THE TWO METRICS ARE HIGHLIGHTED IN RED AND BLUE

were used to evaluate the distances between subjective scores
and the objective scores after a nonlinear regression. Following
previous studies [8], [9], the nonlinear regression mapping
function suggested in [61] was used in our experiments. It
is defined as,

f (x) = β1(
1

2
− 1

1 + eβ2(x−β3)
) + β4x + β5 (19)

where βi , i = 1, 2, 3, 4, 5 are parameters to fit. Since the 4
metrics have become the standard for assessing the perfor-
mance of IQA indices, we do not discuss them in depth here.
More details about them can be found in [8], [18].

5) Implementation Details of the VI and RI: In all exper-
iments, we fixed all hyperparameters of our criterion. That
is, for the VI, C1 = 0.45, C2 = 160, and α = 0.4. For
the RI, C3 = 0.85, C4 = 130, and β = 0.02. These values
are empirically determined based on previous FR-IQA studies
[7]–[9].

B. Feature Evaluation

In this experiment, we consider the transmission feature
(Trans) and 5 widely used IQA features, i.e., the GM [8],
PC [9], visual saliency (VS) [7], the I and Q channels of
YIQ color space (ChromIQ) [9], and the M and N channels
of LMN color space (ChromMN) [7]. Their performances
are assessed on the hazy groups and the dehazing groups
of the exBeDDE. The hazy groups were used to assess
their abilities to evaluate visibility, while the dehazing groups
were used to measure their abilities to evaluate realness.

Table II and Table III provide the test results on the hazy
groups and the dehazing groups, respectively. For each city and
each feature, the KRCC and SRCC are provided. Moreover,
the average performance of each feature is supplied. We take
the sum of the KRCC and SRCC as the overall performance
and sequentially highlight the top two performance values in
red and blue.

As shown in Table II, Trans and the GM are the two features
with the best fit for the visibility evaluation. This result is not
surprising since both features can be well explained by the
imaging model, Koschmieder’s law, introduced in Sect. IV-A.
Additionally, in Table III, PC and the ChromMN obtain the
top two performance values in realness evaluation, which is
strong evidence supporting our feature selections for the RI.
Additionally, both positive and negative values are valid for the
KRCC and SRCC, but the judgment of a good feature should
be consistent, that is, always positive or negative. Therefore,
although the ChromIQ may achieve good results in some cities
in Table II, it cannot be regarded as a reasonable feature for
evaluating visibility.

C. Metric Comparison

In this experiment, we illustrate the advantages of the
proposed two criteria for dehazing evaluation. Since there was
no specially designed FR-IQA metric for the evaluation of
dehazing methods, we compared our criteria with 7 state-of-
the-art FR-IQA metrics designed for the general IQA task
and 4 no-reference dehazing evaluation metrics. The FR-IQA
metrics are LPIPS [20], the VSI [7], the GMSD [8], the
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Fig. 10. Samples and scores of different IQA metrics. The images of (a) are clear references, and the images of (b) are hazy images. (c)∼(e) are dehazing
results generated by MSCNN [55], DCPDN [6] and DCP [2]. The VI, RI, LPIPS [20] and FADE [12] scores are below each image. Additionally, for images
in the first row of (b)∼(e), GMSD scores are 0.177, 0.138, 0.127 and 0.106. VSI scores are 0.928, 0.960, 0.949 and 0.951. FSIMc scores are 0.797, 0.859,
0.877 and 0.893. FSIM scores are 0.798, 0.861, 0.878 and 0.893. SSIM scores are 0.726, 0.699, 0.612 and 0.792. PSNR scores are 23.28, 17.75, 16.93 and
19.14. For images in the second row of (b)∼(e), GMSD scores are 0.144, 0.145, 0.136 and 0.144. VSI scores are 0.912, 0.926, 0.927 and 0.920. FSIMc
scores are 0.847, 0.841, 0.852 and 0.835. FSIM scores are 0.848, 0.852, 0.857 and 0.848. SSIM scores are 0.659, 0.752, 0.731 and 0.728. PSNR scores are
13.70, 20.00, 16.27 and 18.94. Note that the lower LPIPS, FADE or GMSD scores are, the better. For other metrics, the higher scores are, the better.

TABLE III

COMPARISONS OF DIFFERENT FEATURES IN DEHAZING GROUPS OF THE EXBEDDE. THE SRCC AND KRCC ARE CONSIDERED AS A WHOLE. THE TOP

TWO PERFORMANCE VALUES IN TERMS OF THE SUM OF THE TWO METRICS ARE HIGHLIGHTED IN RED AND BLUE

FSIM [9], the FSIMc [9], the SSIM [10] and the PSNR.
The no-reference metrics are FADE [12], e [11], r [11] and
σ [11]. In our comparison, we applied masks for all the
FR-IQA metrics so that they were not affected by inconsistent
regions of image pairs. Regarding the NR-IQA metrics, we

exploited the whole hazy image without a mask to maximize
the information that they obtained so that they could achieve
their best performance.

We report the average SRCC, KRCC, PLCC, and RMSE
for the hazy and dehazing groups of the exBeDDE. Table IV
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Fig. 11. Scatter plots of the MOSs (subjective scores) against the objective scores predicted by various IQA metrics on the hazy group of the city Chengdu.
The PLCC score for each metric is provided under each figure.

provides the comparisons between our VI and other IQA
metrics on hazy groups. Note that the results of e, r , and
σ do not appear in this table because they require both hazy
and dehazed images but there are only hazy images in the
hazy groups. Table V presents the results of our RI and other
metrics on exBeDDE’s dehazing groups. In Table VI, we also
present the results of the realness evaluation on dehazing
groups with different haze levels. Note that the haze level
of a dehazing group is the same as the level of the source
hazy image of this group. To illustrate the results, the samples
and scores of different IQA metrics are exhibited in Fig. 10.
In addition, Fig. 11 shows scatter plots of subjective scores
against objective scores predicted by the VI and other IQA
metrics on the hazy group of Chengdu.

Table IV and Table V show that our VI outperforms all
the competitors by a large margin in terms of visibility
evaluation, while the RI achieves the leading performance in
the realness evaluation as well. Such results clearly suggest

TABLE IV

COMPARISONS BETWEEN OUR VISIBILITY INDEX AND OTHER IQA MET-
RICS IN HAZY GROUPS OF THE EXBEDDE. THE TOP THREE PERFOR-

MANCE VALUES ARE HIGHLIGHTED IN RED, BLUE AND BOLDFACE

that the proposed two criteria are more suitable for evaluating
dehazing methods. In addition, LPIPS also achieves excellent
performance on dehazing groups. In terms of the SRCC and
KRCC, it even outperforms the RI. Considering these results,
we regard this metric as a good alternative to our RI and
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Fig. 12. Results of 14 dehazing methods for two BeDDE samples. The VI score and the RI score for each method are displayed below each image.

TABLE V

COMPARISONS BETWEEN OUR REALNESS INDEX AND OTHER IQA MET-
RICS IN ALL THE DEHAZING GROUPS OF THE EXBEDDE. THE TOP

THREE PERFORMANCE VALUES ARE HIGHLIGHTED IN RED, BLUE

AND BOLDFACE

report the LPIPS scores of different dehazing methods as
dehazing baselines in Sect. V-D. In addition, although LPIPS
[20] and FADE [12] have good performances for the realness
evaluation, they fail to achieve similar performances for the

visibility evaluation. This phenomenon further supports our
hypothesis that dehazing evaluation should be considered from
two separate aspects due to its dual characteristics.

As shown in Fig. 10, the images in the first row of (b)∼(e)
are increasingly clear in visibility. Our VI is able to rank them
correctly, while the majority of other metrics fail. Moreover,
(b) contains natural images without degradations. The images
of (c) and (d) bear slight degradations with some artifacts.
Additionally, the images of (e) suffer serious degradation
with obvious halos. Our RI can judge these differences and
provide results consistent with human perceptions, whereas
other metrics seem to be less plausible. In Fig. 11, our VI
obtains a better PLCC value, and the predicted objective scores
correlate better with the subjective scores (or MOSs). All
these results demonstrate the superiority of the VI and RI for
dehazing evaluation.

D. Dehazing Baselines

In this experiment, we provided the VI, RI and LPIPS [20]
scores of 14 dehazing methods on the BeDDE as baselines for
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TABLE VI

COMPARISONS BETWEEN OUR REALNESS INDEX AND OTHER IQA METRICS IN DEHAZING GROUPS OF DIFFERENT HAZE LEVELS. NOTE THAT
THE HAZE LEVEL OF A DEHAZING GROUP IS THE SAME AS THE LEVEL OF THE SOURCE HAZY IMAGE OF THIS GROUP. THE TOP THREE

PERFORMANCE VALUES ARE HIGHLIGHTED IN RED, BLUE AND BOLDFACE

TABLE VII

QUANTITATIVE COMPARISONS OF DEHAZING METHODS ON IMAGES OF DIFFERENT HAZE LEVELS. TOP THREE PERFORMANCE VALUES ARE HIGH-
LIGHTED IN RED, BLUE AND BOLDFACE. NOTE THAT THE MSCNN, DEHAZENET, AOD-NET, DCPDN AND GFN ARE CNN-BASED METHODS.

“HAZE” REFERS TO THE ORIGINAL HAZY IMAGES. “ALL IMAGES” REFERS TO ALL HAZY IMAGES

related studies. These methods are FVR [27], DCP [2], BayD
[25], CAP [53], NLD [54], MSCNN [55], DehazeNet [4],
AOD-Net [5], DCPDN [6], GFN [56], the disentangled dehaz-
ing network (DisentGAN) [62], the patch quality comparator
(PQC) [36], the Enhanced Pix2pix Dehazing Network (EPDN)
[63], and GridDehazeNet [64]. In addition, the evaluation
results of original hazy images are provided. Their average
scores on hazy images of different haze levels are presented
in Table VII as quantitative comparisons. The dehazing results
of two samples from the BeDDE along with their scores
are shown in Fig. 12 as qualitative comparisons. From these
results, we have several interesting findings.

First, non-CNN methods, such as FVR [27] and NLD [54],
demonstrated in Fig. 12, are more likely to over-enhance the
contrast of hazy images. Thus, they produce many artifacts
that seriously degrade the realness of the restored images. In
contrast, CNN-based methods are able to produce results that
are close to natural images. Therefore, almost all CNN-based
methods outperform the non-CNN-based methods in terms of
the RI.

Second, the recently proposed CNN-based GFN [56] per-
forms worse than the other CNN-based dehazing methods in
terms of both the VI and the RI. There are several potential
causes. On the one hand, the GFN fuses three traditional image
enhancement techniques (i.e., white balance, contrast enhance-
ment, and gramma correction) together to generate the dehazed

image based on the weights provided by CNNs. However, tra-
ditional enhancement techniques are not suitable for dehazing
because they are unable to effectively handle the degradation
caused by haze which is highly correlated with the depth of
the scene. On the other hand, the training set and the test set of
the GFN are all simulated using the indoor images of NYU2.
Therefore, GFN may perform well on its own test set due to
overfitting, but it fails to handle real images of the BeDDE.

Third, DCP [2] achieves the best performance in terms of
the VI, even though CNN-based methods seem to produce
more appealing images. This result is still reasonable because
we have been accustomed to seeing natural phenomena such as
fog and haze and our eyes are more sensitive to distortions in
images. In regard to judging the image quality without special
requirements, we are more likely to notice artifacts than haze.
However, if we focus on what we can see clearly in the scene,
the output images of DCP might be better.

VI. CONCLUSION

In this paper, we focus on how to evaluate the performance
of dehazing algorithms and establish two benchmark datasets,
the BeDDE and exBeDDE. The BeDDE is the first dataset in
this field to consist of real-world hazy images and the cor-
responding clear references. As an extension of the BeDDE,
the exBeDDE provides subjective scores for both hazy and
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dehazed images and is designed to assess dehazing evaluation
metrics. Being aware of the dual characteristics of dehazing,
we propose two criteria, the VI and the RI, to evaluate dehaz-
ing methods in visibility and realness, respectively. Through
extensive experiments, the effectiveness of the VI and RI
is verified and guaranteed. Moreover, the evaluation results
of 14 dehazing methods using our criteria are provided as
baselines for relevant studies. In the future, we will enlarge the
BeDDE with more hazy and haze-free pairs. Moreover, we will
consider more advanced ways to evaluate dehazing methods,
such as merging the VI and RI into a robust holistic index.
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