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Abstract—In recent years, how to achieve stable localization
and construct high-quality dense maps in large-scale scenes
has become a research highlight. In large-scale scenes, for the
consideration of the mapping accuracy and efficiency, multi-agent
systems rather than single-agent ones are usually employed. Cur-
rently, as far as we know, collaborative VI-SLAM (Visual Inertial
Simultaneous Localization And Mapping) systems applicable to
multi-agent systems are still sporadic, and systems those can
achieve a good balance among the localization accuracy, the
mapping density, and the transmission efficiency are temporarily
lacking. In this paper, we propose a novel centralized collabora-
tive VI-SLAM framework, namely TES-CVIDS (Transmission
Efficient Sub-map based Collaborative Visual-Inertial Dense
SLAM). In TES-CVIDS, instead of the original RGBD images,
the compact sub-maps are transmitted, effectively reducing the
transmission data redundancy. After that, the server completes
key-frame processing, hierarchical pose-graph optimization, and
global dense map construction in three separate threads. Besides,
thanks to our depth search mechanism, the geometry information
of all key-frames can be recovered on the server-end. Thus, sub-
maps can be regenerated after the global pose-graph optimization
to maintain the consistency between the localization and the
mapping. Both the qualitative and the quantitative experimental
results corroborate the superior performance of our TES-CVIDS.
To make our results reproducible, the source code has been
released at https://cslinzhang.github.io/TES-CVIDS-MainPage/.

Index Terms—Multi-agent, transmission efficient, dense map-
ping, visual-inertial odometry.

I. INTRODUCTION

IN numerous automation fields, ranging from augmented
reality [1], [2] to autonomous driving [3], [4], an accurate

and profound understanding of the surrounding environment
is typically essential. As a reliable solution to achieve such
an understanding, SLAM (Simultaneous Localization And
Mapping) has made significant progress over the past decade
or so [5]–[7]. Among all of the research sub-branches in this
field, visual-inertial SLAM, VI-SLAM in short, has drawn
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increasing interests of researchers in recent years [8]–[10] due
to its stable tracking performance and cost-effective sensor
configurations. Currently, VI-SLAM systems have been widely
integrated to UAVs (Unmanned Aerial Vehicle), wheeled
robots, smartphones and many other types of devices. Un-
fortunately, since the transformations among the reference
coordinate systems of different agents cannot be obtained,
most of these systems are inadequate for the multi-agent
systems without complex extensions. In reality, the robots or
devices are sometimes put into use in the form of clusters or
formations, such as drone formations and wearable motion
capture systems. In such cases, these single-agent-oriented
systems no longer work, and collaborative SLAM frameworks
designed for the multi-agent systems must be employed in-
stead.

Different from the standard single-agent-oriented SLAM
systems, to share and exchange the information necessary for
localization and mapping, the communication among multiple
agents are essential for collaborative SLAM systems. Actu-
ally, most existing collaborative SLAM systems are sparse,
meaning that only the sparse feature points and correspond-
ing descriptors need to be transmitted. Thus, the bandwidth
pressures in such systems can typically be ignored. In recent
years, so as to support decision-making tasks like navigation
and obstacle avoidance, SLAM systems are often required to
be able to yield dense maps rather than just sparse feature maps
in both academia and industry. As a sub-branch, collaborative
SLAM systems are naturally pinned on similar expectations.

In dense collaborative SLAM systems, the volume of data
that needs to be shared among different agents far exceeds that
in sparse systems, resulting in a significant increase in band-
width pressure. Currently, existing dense collaborative SLAM
systems mostly select to transmit RGBD images of key-
frames directly or after a straightforward image compression.
However, such transmission modes create great bandwidth
pressure. Even if images are compressed, the improvement is
usually a drop in the bucket. Aside from these frameworks that
transmit images directly, there is also some work that transmits
sub-maps instead of utilizing the image based transmission.
Such a mode can effectively eliminate the inter-frame data
redundancy and reduce the bandwidth pressure. Nevertheless,
since original RGBD images are not shared among different
agents, updating the shared sub-maps without additional com-
munication costs when the poses of key-frames change after
global optimization becomes quite challenging. Therefore,
these schemes usually assume that the relative poses among
key-frames in the same sub-map are absolutely accurate,
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and only optimize the relative poses among different sub-
maps during the global pose optimization, which undoubtedly
influences the localization accuracy of the system.

Thus far, as far as we know, most of the current exist-
ing collaborative VI-SLAM systems cannot fully satisfy the
requirements in localization accuracy, mapping density and
transmission efficiency simultaneously. As an attempt to fill
in the aforementioned research gaps, we propose a novel
collaborative dense VI-SLAM system, namely TES-CVIDS.
Our contributions can be mainly summarized as follows.

1) A novel collaborative dense VI-SLAM system, TES-
CVIDS, is proposed, which follows a centralized client-
server architecture. To improve the communication ef-
ficiency between all clients and the central server in
TES-CVIDS, the sub-map based transmission instead
of the image based one is used, which significantly
relieves the pressure on the transmission bandwidth of
the system. The server disperses the tasks of key-frame
processing, pose-graph optimization and global dense
map construction into three different threads and the
latter two tasks are both running in backend threads,
guaranteeing the real-time processing of TES-CVIDS.

2) A novel space-efficient and outlier-aware probabilistic
TSDF (Truncated Signed Distance Function) sub-map
representation is designed. In our proposed representa-
tion, the 3D space is firstly divided into thousands of
chunks, and occupied chunks are further divided into
quantities of voxels, which greatly saves the storage
space compared to the fully voxel-based representation.
Besides, we model the distributions of the TSDF values
both stored in voxels and corresponding to depth obser-
vations, enabling the probabilistic incremental updates
of our sub-map representation and ensuring its robust-
ness to outlier observations.

3) An efficient two-stage segmented pose-graph optimiza-
tion pipeline is proposed and integrated to TES-CVIDS.
In our pipeline, a skeleton sub-graph of the global pose
graph to be optimized is extracted, and the remaining
frames are naturally divided into multiple sequences. In
the first stage of the pipeline, only the skeleton sub-graph
is optimized by non-linear optimization. Afterward, the
poses of key-frames in remaining sequences are up-
dated by an efficient EM-based (Expectation-Maximum)
smooth algorithm in the second stage. By integrating
our novel pose-graph optimization pipeline, TES-CVIDS
achieves a superior localization performance in both the
speed and the accuracy.

4) A key-frame depth search strategy with adaptive step
sizes is proposed. The strategy simulates the rendering
process and can recover both the depth structure and
the color information of key-frames from sub-maps
efficiently. The search processes of all pixels in the re-
covered RGBD images are executed in parallel, and the
step lengths are determined adaptively to ensure efficient
convergence. When the relative poses among key-frames
in a sub-map change significantly after the global pose-
graph optimization, the depth search processes for these

key-frames are activated. Then the sub-map is updated
according to the new poses of key-frames to ensure
the consistency between the localization results and the
global dense maps.

To make the reported results in this paper fully reproducible,
we have publicly released our source code and data at https:
//cslinzhang.github.io/TES-CVIDS-MainPage/.

II. RELATED WORK

A. Dense V-SLAM systems

In 2011, Newcombe et al. proposed a RGBD dense SLAM
framework, namely KinectFusion [11]. In KinectFusion, ICP
(Iterative Closest Point) [12] is employed to align the global
map and the point cloud of the current frame scanned by the
RGBD sensor for tracking. In [13], Endres et al. proposed
a feature point based RGBD SLAM system, RGBDSLAMv2.
Instead of matching the point cloud of different frames, Endres
et al. selects to extract sparse features from RGB images
and then matches them, which is a commonly utilized idea
in monocular SLAM systems. Both of these two frameworks
are able to achieve real-time dense reconstruction, but as
pioneering work, their accuracy and stability in localization
and mapping are not satisfactory. To improve localization ac-
curacy, Concha and Civera proposed RGBDTAM [14], which
introduces the visual direct method [15] and the photometric
error to RGBD SLAM. However, such a design also brings
some negative effects to the system, such as the sensitivity to
changes of light conditions. In 2017, a milestone work, namely
BundleFusion [16], was presented. In BundleFusion, tracking
is conducted in a coarse-to-fine way. Initially, the poses of key-
frames are obtained via the sparse feature matching, and then
the coarse estimation is further refined by jointly minimizing
both the photometric error and the point-to-plane geometry
error. In [17], Sun et al. proposed Plane-Edge-SLAM, in
which both surfaces and edges are extracted from the RGB
images with the assistance of the depth information. After
the extraction, the surfaces and the edges are utilized to
generate the corresponding geometry constraints in the pose
estimation process so as to compensate for the lack of visual
features. Different from the aforementioned schemes, BAD-
SLAM [18] presented by Schops et al. selects to use the
surfel map rather than the TSDF or point cloud one. In
BAD-SLAM, the 3D points captured by the RGBD camera
are used to minimize geometry distances between them and
their corresponding nearest surfels in the map. This approach
enables the simultaneous adjustment of the key-frames’ poses
and the positions of surfels. In 2019, Shan et al. [19] designed
a dense VI-SLAM system based on VINS-Mono [9]. By
using the RGBD camera, in addition to the dense mapping
capabilities, both initialization and tracking in their system
become much more stable compared to VINS-Mono [9].

Compared with the dense mapping based on RGBD cam-
eras, owing to the affordable manufacturing cost and the
lightweight structure of the sensor, the problem of monocular
dense mapping in an online manner has also garnered signif-
icant research interest in the past decade. Many remarkable
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work, such as [20]–[23], have been presented. However, com-
pared with RGBD-based or stereo-based systems, the map-
ping stability and accuracy of monocular systems are usually
obviously inferior. Fortunately, with the rapid development
in deep learning, significant progress has been made in the
field of monocular depth estimation in recent years [24]–[27].
By integrating these approaches, RGBD SLAM systems can
usually run successfully even if only a monocular camera
is used. Thus, currently, how to obtain depth maps, whether
through hardware or algorithms, is relatively unimportant for
RGBD SLAM systems.

B. Collaborative V-SLAM Systems

The earliest collaborative V-SLAM system can be traced
back to the work of Forster et al. in [28], which followed
a traditional structure-from-motion pipeline. As a seminal
work, its implementations are relatively straightforward and
have obvious limitations in both accuracy and robustness.
In the same year, another milestone collaborative SLAM
system namely CoSLAM [29] was proposed. In CoSLAM,
the influence on the localization accuracy brought by dy-
namic objects is considered, and the map points are classified
into static points and dynamic ones. CoSLAM demonstrates
superior robustness to the dynamic environment. However,
in CoSLAM, all agents are required to be strictly time-
synchronized, which undoubtedly increases the hardware cost
and limits its application scopes. In 2016, Deutsch et al.
creatively abstracted the client-end of the collaborative SLAM
system and proposed a loosely coupled framework [30]. In
such a system, the odometry running on each agent is regarded
as a black box, ignoring detailed inner implementations. Such
a mechanism brings an outstanding hardware adaptation ability
to the system. Nevertheless, since it is a 2D SLAM system, the
current advanced 3D visual odometries can’t be integrated with
it. CCM-SLAM [31] presented by Schmuck et al. is a tightly-
coupled centralized monocular collaborative SLAM system
with outstanding localization accuracy. It possesses a relatively
modern architecture and shows superior localization perfor-
mance. In [32], a fully distributed SLAM system, namely
DOOR-SLAM, was proposed, which is based on peer-to-peer
communication and does not require full connectivity among
the robots. In recent years, many researchers have focused on
upgrading sensors from monocular cameras to visual-inertial
camera suites to improve localization stability, and some
remarkable work has been published [8]–[10]. However, it’s a
pity that most of these systems only support the single-agent
mode. To address this issue, CVI-SLAM [33] was developed
as a collaborative SLAM system specifically designed for
monocular visual-inertial suites, following a similar design
as CCM-SLAM [31], but with the equipped sensor on each
agent replaced by a visual-inertial suite. The upgraded sensors
significantly improve the final localization accuracy of CVI-
SLAM [33].

Apart from the aforementioned sparse systems, there are
also some dense ones. C2TAM [34] proposed by Riazuelo et
al. is a cloud framework for collaborative SLAM based on
RGBD cameras. Golodetz et al. also proposed a collaborative

RGBD SLAM system in [35]. It supports multiple users
to interactively reconstruct dense voxel-based models of the
large-scale environment. In [36], the first fully distributed
multi-robot system for dense metric-semantic SLAM, namely
Kimera-Multi, was presented. Kimera-Multi is capable of
building accurate 3D metric-semantic meshes while being
robust to incorrect loop closures and requiring less computa-
tion than other distributed SLAM backends. CVIDS [37] pro-
posed by Zhang et al. is the first collaborative visual-inertial
SLAM framework that supports dense mapping without the
depth sensor. It exhibits superior accuracy performance in
both the localization and the mapping. The aforementioned
dense schemes can usually achieve accurate localization and
high-quality mapping. However, all of them require real-time
transmission of RGBD images from the clients to the server,
which puts significant pressure on network bandwidth.

III. SYSTEM OVERVIEW

The overall framework of TES-CVIDS is illustrated in
Fig. 1. The client-end of TES-CVIDS runs on each agent
and can theoretically be integrated with any existing VIO
(Visual-Inertial Odometry). On each agent, 2D features and
corresponding descriptors, sparse 3D map points and poses
in the local reference coordinate system of key-frames are
packed and then sent to the central server for collaborative lo-
calization. Besides, the RGB images captured by the equipped
camera, the poses yielded by the local VIO and the depth maps
(either captured directly or estimated by algorithms) are fed to
the local mapping module to construct a local sub-map in our
proposed space-efficient and outlier-aware probabilistic TSDF
form. More details about our sub-map representation can be
found in Sect. IV. Once the volume of the current sub-map
achieves the preset threshold, it is converted to a compact data
package and then transmitted to the central server. After that,
a new sub-map is constructed.

The communication module on the server-end of TES-
CVIDS is mainly responsible for unpacking the data received
from the client-end of all agents, including both key-frame
messages and sub-map messages. Once unpacked, the data is
then fed to the co-localization module and the global mapping
module. For these two modules, we will introduce them in
detail in Sect. V and Sect. VI, respectively.

IV. COMPACT SUB-MAP REPRESENTATIONS

In the client-end of TES-CVIDS, both RGB images and
depth maps collected by each agent over a period of time
are encoded into the sub-map using our proposed compact
representations before the transmission, so as to eliminate the
inter-frame information redundancy and relieve the bandwidth
pressure. To achieve this goal, we model both the distribution
of the TSDF value in each voxel and the observation model
of the depth values with respect to the corresponding voxels’
TSDF values in a probabilistic way. Besides, we also offer
the recursive state update equation, which is used when new
RGBD frames are obtained. Therefore, our proposed sub-
map representation can be updated incrementally just like the
standard TSDF one.
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Fig. 1. The overall architecture of TES-CVIDS. Features, poses of key-frames and sub-maps are packed and then sent to the server from the client by the
client handler. Then the co-localization module aligns the local pose graph of each agent to the global one and conduct global pose-graph optimization using
our two stage pipeline. Besides, the dense mapping module runs concurrently in a separate thread to fuse the received sub-maps to the global one. Finally,
via the marching cube process, the dense structure of the scene can be represented in the mesh form.

A. Outlier-aware Probabilistic TSDF Sub-map

Given a sequence of frames {F1, ...,Fr}, the TSDF value
τ̃v of a voxel v observable in these frames can be deter-
mined by corresponding TSDF observations τ1v , ..., τ

r
v of these

frames. Furthermore, regardless of how the depth map and
corresponding TSDF values are obtained (i.e., through sensors
or algorithms), outliers are bound to occur. For instance,
stereo-based depth estimations usually perform inadequately
in weak-texture regions, while ToF depth cameras often fail
to yield usable depths for the edges and corners of observed
objects. In view of this, we use ρv to represent the probability
to get inlier TSDF observations at v. Assuming independent
observations, the posteriori of τ̃v and ρv is given as,

p(τ̃v, ρv|τ1v , ..., τ rv) ∝ p(τ̃v, ρv)

r∏
i=1

p(τ iv|τ̃v, ρv), (1)

where p(τ̃v, ρv) is the prior distribution. For ease of repre-
sentation, the posteriori p(τ̃v, ρv|τ1v , ..., τ iv) is represented as
pi(τ̃v, ρv). Then the recurrence relationship of the posteriori
can be expressed as,

pi(τ̃v, ρv) ∝ pi−1(τ̃v, ρv)p(τ
i
v|τ̃v, ρv). (2)

Motivated by the compact representation proposed in [38],
the likelihood probability distribution p(τ iv|τ̃v, ρv) can be
modeled as a combination of a normal distribution (repre-
senting inlier measurements) and a uniform one (representing
outlier measurements), which can be expressed as,

p(τ i
v|τ̃v, ρv) = ρvN (τ i

v|τ̃v, (≀iv)2) + (1− ρv)U(τ i
v|τmin, τmax),

(3)
where τ̃v and ≀iv are the expectation and the standard deviation
of the observation model, respectively, and τmin (τmax) stands
for the minimum (maximum) possible TSDF value. In our
implementations, τmin and τmax are set to −τtruc and τtruc,

respectively, where τtruc is the truncation distance of the map.
How to determine τ̃v and ≀iv will be discussed in Sect. IV-B.

Eq. 2 depicts the recurrence relationship of the posteriori
distribution. Unfortunately, multiplying by a Gaussian distribu-
tion, the Gaussian-uniform mixture distribution does not keep
its original form. Thus, some approximations are necessary to
achieve an incremental update. Specifically, the posteriori in
Eq. 2 is approximated by the product of a Beta distribution
and a normal one, which is formulated as,

pi(τ̃v, ρv) ≈ q(τ̃v, ρv|aiv, biv, µi
v, σ

i
v) = BetaivN i

v, (4)

where aiv and biv controls the Beta distribution Betaiv , and µi
v

and σi
v are the expectation and the stadard deviation of the

Gaussian distribution N i
v , respectively. For each time a new

observation is received, the parameters in the posteriori alter,
including aiv , biv , µi

v and σi
v , but the form of the distribution

remains, which allows to update the posteriori incrementally.
It’s worth mentioning that, the inlier measurement ratio ρv
can be determined by aiv and biv since they control the Beta
distribution Betaiv = Beta(ρv|aiv, biv).

B. Observation model of TSDF values

In this subsection, we will introduce how to determine τ̃v
and ≀iv utilized in Eq. 3, which are the expectation and the
standard deviation of TSDF values in our observation model,
respectively. The illustration of our observation model is given
in Fig. 2. For a voxel v, its nearest occupied voxel on the ray
from the sensor origin oi to v is defined as vi

n, and v’s nearest
occupied voxel is defined as vn. In our observation model, a
valid and necessary assumption is that, the expectation of vi

n

is just vn. Thus, we have,

τv = f(D,T ) = D(KTP v)− [TP v]d, (5)
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Fig. 2. The illustration of the TSDF observation model adopted in TES-
CVIDS. There are mainly three parts of the “inaccuracy” in our observation
model, including the inaccuracy of the camera pose, the inaccuracy of
the depth sensor and the inaccuracy brought by approximating vn to vi

n,
corresponding to Σεi , ≀d and ≀trunc in the figure, respectively.

where K and T are the intrinsics matrix and the pose of the
camera, respectively, D is the depth map, and P v is the 3D
coordinate of v and symbol [∗]d stands for the depth value
(coordinate in z axis) of the inner 3D point. Then τ̃v can be
considered as the signed distance τ̃ iv between v and vi

n, and
thus we have,

τ̃v = τ̃ iv = f(Di,T i), (6)

where Di and T i are the depth map and the pose of the camera
in F i, respectively.

Next, we will define the standard deviation ≀iv of our
observation model. We consider that the inaccuracy of the
measurement τ iv mainly consists of three parts, the inaccuracy
of pose T i, the inaccuracy of the depth sensor and the
inaccuracy brought by approximating vn to vi

n. Then, ≀iv can
be modeled as,

(≀iv)2 = (J τ̃v
εi )Σεi(J τ̃v

εi )
T + (≀d)2 + (≀trunc)2, (7)

where J τ̃v
εi is the jacobian of τ̃v to the pose vector εi corre-

sponding to T i in Lie algebra form, Σεi is the convariance
matrix of εi, ≀d and ≀trunc are the standard deviation of the
Gaussian white noise brought by the defect of the “depth
sensor” and by approximating τ̃v to τ̃ iv , respectively. It’s worth
mentioning that, the “depth sensor” here is a broad concept
and it can also represent any depth estimation algorithm. In
our implementations, Σεi is initialized to a constant matrix
according to the accuracy of the local odometry, and ≀d and
≀trunc are proportional to the depth measurement and the
absolute value of the signed distance, respectively. As for the
jacobian J τ̃v

εi , it can be obtained using the chain rule as,

J τ̃v
εi =

∂τ̃v

∂Di
· ∂D

i

∂pi
v
T
· ∂pi

v

∂(εi)T
, (8)

where pi
v is the projection of voxel v on the depth map Di. By

approximating the second term ∂Di/∂pi
v
T with the intensity

gradient of Di at pi
v , which can be computed by the Sobel

operator, the jacobian J τ̃v
εi can be easily obtained. Till now,

we have deduced the final form of the standard deviation ≀iv
of the observation model.

C. Chunk-wise Voxel Management

To support scalable reconstruction, voxels are not managed
directly in TES-CVIDS. Instead, the reconstructed scene is
evenly divided into small chunks, with each chunk consisting
of a cluster of adjacent voxels. Mathematically, a chunk can
be considered as a set of voxels, that is, chunk CP located
at P = [XP , YP , ZP ]T with an edge length of k can be
represented as,

CP = {vP ′ |P ⪯ P ′ ≺ P + S}, (9)

where P ′ is the position of voxel vP ′ , and S is the size of
chunk CP which can be represented as,

S = [ksv, ksv, ksv]
T , (10)

where sv is the resolution of the sub-map (the edge length
of a voxel). Thus, it’s easy to know that a chunk consists
of k3 voxels in sum. In TES-CVIDS, the operations of create,
modify and search are all initially conducted at the chunk level
and then at the voxel level, which effectively improves the
computational efficiency and reduces the usage of the storage.

D. Submap Encoding

Before being sent to the server, the sub-map is encoded into
a compact representation so as to improve the transmission
efficiency. First, the voxels with a low inlier ratio ρv are
eliminated. In our implementations, the ratio threshold is set
to 0.5. After the screening, the sub-map is converted from our
proposed probabilistic form to the standard TSDF one. Specifi-
cally, by defining the voxel before and after the conversion as v
and vt, the TSDF value τvt of vt is just the discrete sampling
of v’s TSDF expectation µv . After the discrete sampling, τvt

can be stored in an integer form rather than the floating point
one. In our implementations, the sampling step is set to 1e−4,
which equals to 0.1mm. Since only reliable voxels remain
after eliminating high-outlier-ratio ones, vt’s weight is set to
be constant and won’t be transmitted.

Except for the aforementioned basic encoding pipeline,
TES-CVIDS also supports the compression of the sub-map
based on tensor-train [39], which can further effectively com-
press the encoded sub-map. As a mature tensor compression
scheme, it will not be discussed in detail in this paper. It’s
worth mentioning that tensor-train can achieve a high compres-
sion ratio theoretically, but it is a form of lossy compression.
Therefore, we recommend utilizing such compression only if
the available bandwidth is insufficient.

V. CO-LOCALIZATION MODULE

The co-localization module of TES-CVIDS incorporates
several mechanisms from CVIDS [37], including the con-
struction and registration of key-frames, the BoW-based loop
closure detection (LCD), the alignment of local reference
coordinate systems (CSs), the determination of data associ-
ations in the global pose graph, and the four-DoF pairwise
consistency evaluation of all loop closure measurements. Nec-
essary engineering modifications and extensions have been
made to adapt these mechanisms to TES-CVIDS. Besides, to
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Fig. 3. The illustration of our proposed two-stage segmented pose-graph
optimization pipeline utilized in TES-CVIDS. In the first stage, the LM-based
optimization is used to optimize the skeleton of the pose-graph, and in the
second stage, our proposed EM-based smoothing is adopted to optimize the
remaining frames in parallel.

further enhance both the accuracy and the efficiency of the
localization, we further propose a novel two-stage segmented
pose-graph optimization pipeline and integrate it to TES-
CVIDS. In the first stage of our pipeline, a skeleton sub-graph
of the global graph is extracted and then optimized. After that,
in the second stage the remaining key-frames are assigned to
quantities of segments and their poses are updated via our EM-
based pose smoothing in parallel. The illustration of the our
proposed two-stage pose-graph optimization pipeline is given
as Fig. 3.

A. Skeleton Extraction of the Pose Graph

In TES-CVIDS, it is somewhat challenging to efficiently
achieve the convergence by optimizing the large-scale global
pose-graph directly using the non-linear optimization. Fortu-
nately, the local VIO of each agent can yield relatively accurate
short-term pose estimations in most cases, errors in the global
pose graph mainly accumulate at nodes associated with loop
closures or where the local VIO performs unsatisfactorily. As
an attempt to improve the speed and the accuracy simultane-
ously, in the first stage of our pose-graph optimization pipeline,
we extract a skeleton sub-graph of the global pose graph and
just optimize the poses in this sub-graph rather the entire
global graph. Before extracting the skeleton, some special key-
frames which compose the basic structure of the skeleton sub-
graph should be selected firstly, which are,

1) The key-frames that are connected to others in loop
closures.

2) The key-frames that are connected to others with inac-
curate associations.

Since each data association connects two key-frames, the se-
lected key-frames can be considered as a quantity of key-frame
pairs. As for how to distinguish inaccurate data associations,
it will be discussed in Sect. V-B. After selecting the basic
structure, each pair of the selected key-frames, their adjacent
key-frames and adjacent key-frames of adjacent key-frames
form a segment of the skeleton. If two segments have common
key-frames, they are further merged.

B. Discrimination of Inaccurate Data Associations

Existing VIOs can achieve stable short-term tracking in
most cases. However, at some special moments, there may be
obvious localization errors due to light changes, motion blur,

(a) (b) (c)

Fig. 4. Sketch maps of three different connection modes in the pose-graph
optimization pipeline of TES-CVIDS. The sketches of the dense connection,
the sparse connection and the skip connection are displayed from (a) to (c).

IMU jamming, etc., which ultimately introduce inaccurate data
associations. If the global pose graph is directly optimized,
these inaccurate associations will obviously affect the overall
localization accuracy. Therefore, we propose a discriminant
index specifically designed for VIOs to effectively identify
these inaccurate associations for targeted processing later.

Currently, mainstream VIOs usually solve the poses by uti-
lizing both visual and inertial information in a joint framework.
However, in reality, one source of the information sometimes
may be noisy, resulting in an inaccurate pose estimation.
Therefore, the pose estimation of a key-frame should be con-
fident enough and consistent with both the visual information
and the inertial one. Otherwise, the data association between
this key-frame and its former one can be considered inaccurate.
In TES-CVIDS, two adjacent key-frames are considered to be
connected inaccurately if the latter key-frame F i satisfies any
of the following criteria,

1) No enough visual data are used in its pose estimation.
2) Pose estimation is inconsistent with visual observations.
3) The inertial data used in pose estimation is insufficient.

Next, we will explain these three criteria in detail one by one.
Since it’s both complex and time-consuming to compute

the specific position distribution of each map point, the dis-
tributions of all map points are assumed to be the same fixed
one. Hence, for criterion 1), it is sufficient to check if the
number of map points that are visible for F i is less than
the threshold tmp. Similarly, criterion 2) equals to check if
the average reprojection error of each point is less than the
threshold trep. For the last criterion which pertains to the
inertial data, we build the indicator based on the preintegration
volume Ii−1,i between F i and its previous key-frame F i−1,
and the mathematical form of criterion 3) can be given as,

Log(∥Σi−1,i
ine ∥F ) < tine, (11)

where Σi−1,i
ine is the covariance matrix corresponding to Ii−1,i,

tine is the threshold and ∥∗∥F stands for the Frobenius norm.
The Frobenius norm of the covariance matrix usually varies
exponentially. That is why we convert it to the log domain.

Through quantitative evaluations, we find among all criteria,
criterion 3) is the most important. Thus, in TES-CVIDS, we
use fixed and relatively loose thresholds for the first two
criteria and an adaptive one for criterion 3). Specifically, tmp

and trep are set to 10 and 4.0, respectively, and tine can be
adaptively determined as,

tine = Avg(Logine) + σine, (12)

where Avg(Logine) is the average value of the inertial indi-
cator of all key-frames in the global pose graph and σine is
the corresponding standard deviation.
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C. Pose-graph Optimization of the Skeleton Sub-graph
Before the optimization of the skeleton sub-graph, the con-

nection relationships among the nodes in the sub-graph need to
be established. In this regard, three types of connection modes
are defined, namely dense connection, sparse connection and
skip connection, which are illustrated in Fig. 4. For key-frames
in the same segment without inaccurate data associations,
they are connected using dense connections, which means
that each key-frame is associated with sequential edges to
its five previous key-frames, so as to maintain the accurate
local structure of the global pose graph. Each segment of
the skeleton is just connected to its adjacent two segments
in the sparse connection mode. Besides, in the segment with
inaccurate associations, the skip connections are used. In
the skip connection mode, inaccurate data associations are
ignored and sequential edges do not “stride across” these
associations. Instead, considering two key-frames connected
by the inaccurate association as a pair, a sequential edge
between the previous frame to the former one of the pair and
the subsequent frame to the latter one is added. Once the nodes
and the connections of the skeleton sub-graph are determined,
the poses of corresponding key-frames can be optimized using
any non-linear optimization scheme. In TES-CVIDS, the LM
(Levenberg-Marquadt) scheme [40] is adopted.

D. Parallel Pose Smoothing
As aforementioned, once the skeleton sub-graph is extracted

and optimized, the remaining key-frames can be naturally
divided to multiple segments, and each segment can be ef-
ficiently updated in parallel. Since the graph in each seg-
ment follows a simple linear structure, it is somewhat time-
consuming to use the non-linear optimization. Instead, we
resort to an EM-based pose smoothing scheme, which is also
utilized in [37]. Taking a segment Sj as an example, which
can be represented as,

Sj = {F i|Ij < i < Ij +N j}, (13)

where Ij is the index of the first key-frame in Sj and N j is
the number of key-frames in the segment. In Sj , we select
to use the dense connection mode mentioned in Sect. V-C.
Besides, except for the key-frames in Sj , the poses of key-
frames FIj−1 and FIj+Nj+1 are also involved in the pose
smoothing, while their poses are set to be fixed and won’t be
updated. The pose smoothing problem amounts to,

min
T j

Ij+Nj+1∑
i=Ij

∑
(i,k)∈Ei

||e(T i,T k, T̂ ik)||22, (14)

where Ei is the set of key-frames’ indices that are connected
to F i, T i (T k) stands for the pose of the keyframe Fi (Fk),
T̂ ik is the constraint of the relative pose between Fi and Fk,
T j represents all poses of corresponding key-frames in Sj

and e(T i,T k, T̂ ik) is the four-DoF (the yaw angle and the
translation) error that can be defined as,

e(T i,T k, T̂ ik) = [eyawik , (etik)
T ]T

eyawik = θyawk − θyawi − θ̂yawik

etik = Ri(tk − ti)− t̂ik,

(15)

where θyawi , θyawk and θ̂yawik are corresponding yaw angles
of poses T i, T k and T̂ ik, respectively, Ri is the rotation
matrix of T i, and ti, tk and t̂ik are translation vectors of
corresponding poses. For the pose smoothing process, an
important inequality is given as,

||e(T i,T k, T̂ ik)||22 ≤ 1

2
(||ei(T i, T̂ ik)||22 + ||ek(T k, T̂ ik)||22),

(16)
where ei(T i, T̂ ik) and ek(T k, T̂ ik) are defined as,

ei(T i, T̂ ik) = [θyawi + θ̂yawik − E θ̂
yaw
ik ,Ri(ti − E t̂ik)− t̂ik]

T

ek(T k, T̂ ik) = [θyawk − E θ̂
yaw
ik ,Ri(tk − E t̂ik)]

T ,
(17)

where E θ̂
yaw
ik and E t̂ik can be any constant. For ease of

representation, we use ei and ek to represent ei(T i, T̂ ik) and
ek(T k, T̂ ik), respectively. According to Eq. 16, an approxi-
mated version of Eq. 14 can be obtained as,

min
T j

Ij+Nj+1∑
i=Ij

∑
(i,k)∈Ei

(||ei||22 + ||ek||22). (18)

It can be easily proved that, the optimal solutions of Eq. 14
and Eq. 18 will be the same when,

E θ̂
yaw
ik = (θ̃yawi + θ̃yawk − θ̂yawik )/2

E t̂ik = (t̃i + t̃k −RT
i t̂ik)/2,

(19)

where θ̃yawi , θ̃yawk , t̃i and t̃k are all optimal solutions of Eq.
14. Since these optimal solutions are unavailable, the EM
framework [41] is adopted to smooth all poses iteratively. In
the E-step, we utilize the current values of all frame poses to
compute E θ̂

yaw
ik and E t̂ik. Then in the M-step, since each

error term in Eq. 18 is only related to the pose of one
frame, we can obtain the analytical optimal solution and then
update the corresponding pose. By updating the poses of all
keyframes and the approximated optimal solutions alternately,
the smoothed poses will converge efficiently.

VI. GLOBAL DENSE MAPPING MODULE

Once the communication module on the server-end receives
and unpacks the sub-map sent by a client, the sub-map is
added to the task list of the global dense mapping module. In
such a module, a separate back-end global mapping thread is
running to perform the global dense mapping task. During
each loop of the thread, all sub-maps in the task list are
traversed, and sub-maps who have already been aligned to
the global coordinate system are linked to corresponding key-
frames. Then these sub-maps can be fused to the global map.
Furthermore, the global poses of key-frames may change after
the global pose-graph optimization. In such a case, sub-maps
whose inner structure differ significantly from the initial state
are regenerated to ensure the consistency between mapping
and localization. Since the RGBD images are not transmitted
to the central server, they are recovered based on the sub-map
and the poses of key-frames via our proposed adaptive-step
depth search process.
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A. Sub-map Fusion

The sub-map of a client can be fused to the global TSDF
map as long as the local reference coordinate system of
the client has been aligned with the global one. The sub-
map is transformed into the global coordinate system, and
then the corresponding voxels in the global map are updated.
Specifically, for a voxel vP s

located at P s in the local
coordinate system of the sub-map, its 3D position P g in the
global coordinate system can be obtained according to the
transformation matriz from the local coordinate system to the
global one. Then, in each of the neighbouring eight voxels of
P g in the global map, the TSDF value of vP s

and the distance
between P g and the center of the voxel are stored. Finally, the
TSDF values of the corresponding voxels in the global map
are updated using trilinear interpolation.

B. Global Map Regeneration

Once the global pose-graph optimization is activated, the
global map should be adjusted accordingly. If no more than
25% of the sub-maps need to be updated, these sub-maps will
be eliminated from the global map via inverse fusion and re-
fused to the global map. Otherwise, the global map will be
regenerated by all sub-maps. Regarding how to update a sub-
map, there are three cases. If both the pose of the sub-map
and its inner pose structure change little, the sub-map will not
be updated. If the pose of the sub-map changes significantly
while its inner structure remains unchanged, the content of
the sub-map will not be updated, but the sub-map will need to
be re-fused into the global map according to the new pose.
If the inner structure of the sub-map undergoes significant
changes, the sub-map will be regenerated according to the
updated poses and the RGBD maps recovered by our depth
search scheme, which will be discussed in Sect. VI-C. In TES-
CVIDS, we use the pose of the first key-frame in the sub-map
to represent the pose of the sub-map, and use the relative poses
between the first key-frame and multiple uniformly sampled
latter key-frames to model its inner structure.

C. Depth Search with Adaptive Step Length

With the sub-map represented in the TSDF form and the
pose of a key-frame in this sub-map, the corresponding RGBD
maps of the key-frame can be efficiently recovered via a depth
search process. Specifically, for each pixel p on the map,
an epipolar ray can be cast from the sensor origin o to the
normalized 3D point P n corresponding to p. An ideal solution
to recover RGBD maps is searching along the ray until the first
occupied voxel vo is encountered. Then, the depth of the key-
frame at p can be set to the Euclidean distance between o and
the position of vo, and the corresponding color can also be
found in vo. Unfortunately, although the searching process of
each pixel can be run in parallel, it is still time-consuming.
Thus, instead of utilizing a voxel-by-voxel searching scheme,
an adaptive-step searching strategy is used in our TES-CVIDS.
This strategy involves conducting the search first at the chunk
level and then at the voxel level, using an adaptive step length.

Before the depth search, some preparations are necessary.
As discussed in Sect. IV-C, TES-CVIDS manages voxels in

Algorithm 1 Determination of DNCs
Input: A set C comprising all chunks stored in the sub-map,

a dictionary O comprising the occupancy states of these
chunks.

Output: A map D representing the DNCs of all chunks,
where D(C) is the DNC of chunk C.

1: for chunk C in C do
2: D(C)← DNCMAX

3: end for
4: Construct Queue Q
5: for chunk C in C do
6: Add (C, 0) to Q if O(C) is true
7: end for
8: while Q is not empty do
9: Pop Q to get the pair (C, d)

10: if D(C) > d then
11: D(C)← d
12: for chunk Cn in all neighbour chunks of C do
13: Add (Cn, d+ 1) to Q
14: end for
15: end if
16: end while
17: return D

a chunk-wise manner. If a chunk is not empty and contains
some voxels, it can be considered as an “occupied chunk”.
Under such a definition, for each chunk an integer d is assigned
to store the DNC (Distance to Nearest occupied Chunk) of
the chunk, which indicates the number of chunks between its
nearest occupied chunk and itself. For example, the DNC of an
occupied chunk is assigned 0, while the DNCs of its twenty-
six neighboring chunks which are not occupied are assigned
1. The pseudo-code for determining the DNCs of all chunks
is provided in Algorithm 1.

After obtaining the DNCs of all chunks, the chunk-level
search is activated to find the next occupied chunk through
which the search line passes. A search point P s is initialized
at the origin O of the camera and moves along the search
line as the search depth increases. Assuming that the search
point currently lies in chunk C, the search step is set to the
value for the search point to “enter” the next dC-th chunk,
where dC is the DNC of C. Once the search point enters an
occupied chunk, the search is executed at the voxel-level. The
TSDF values of the voxels are then utilized as the guidance
information to determine the step length of the search. When
the search point lies in voxel v, the search step sv is set to,

sv = max(|dv| −
1

2
dmin, dmin), (20)

where dv is the TSDF value of v and dmin is the edge
length of the voxel. Defining voxels whose absolute TSDF
values and neighbouring voxels’ ones are all lower than 2dmin

as occupied voxels, the voxel-level search is conducted until
the search point lies in an occupied voxel or enters the next
chunk. In the former case, the depth search process of pixel
p is terminated, and the corresponding RGBD values can
be obtained. In the latter case, if the new chunk the search
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Fig. 5. The localization results of TES-CVIDS and other two counterparts (CVIDS [37] and VINS-Mono [9]) on Sequence 4 and Sequence 5 of the Euroc
MH dataset. (a) shows the results on Sequence (4) and (d) corresponds to Sequence 5. To show the differences of trajectories more clearly, two enlarged local
regions of (a) are offered in (b) and (c), while (e) and (f) are the enlarged regions of (d).

point enters is occupied, the voxel-level search continues.
Otherwise, the chunk-level search is conducted instead. It is
worth mentioning that if the current searched distance is larger
than the maximum valid distance, the search is also terminated,
and the RGBD values of p are considered unrecoverable.

VII. EXPERIMENTAL RESULTS

A. Experimental Setup

We evaluated the performance of our system mainly in two
aspects, the localization and the mapping. On the aspect of the
localization, Euroc MH (Machine Hall) dataset [42] was used
for the evaluations, which includes accurate trajectory ground-
truth obtained by motion capture systems. In this dataset, there
are five sequences collected by a micro air vehicle (simulated
five agents), which is equipped with a global shutter camera of
Aptina MT9V034, and a six-axis IMU of MEMS ADIS16448.
RMSE (Root Mean Squared Error) [43] was taken as the
metric, which can be given as,

eRMSE = (
1

M

M∑
i=1

||trans(Q−1
i Pi)||2)

1
2 ,Qi,Pi ∈ SE(3),

(21)
where trans(.) represents the translation part of the pose, M
is the number of all frames, and {Qi}Mi=1 and {Pi}Mi=1 are
ground-truth and estimated poses of all frames, respectively.

TABLE I
RMSES OF COMPARED VISUAL-INERTIAL LOCALIZATION SCHEMES ON

EUROC MH DATASET (cm)

VINS-Mono VIORB CVI-SLAM CVIDS TES-C
MH 01 12.00 7.50 8.50 3.86 3.71
MH 02 12.00 8.40 6.30 3.64 3.57
MH 03 13.00 8.70 6.50 7.01 7.48
MH 04 18.00 21.70 29.30 12.92 9.14
MH 05 21.00 8.20 8.10 14.53 10.37

Weighted
Average 14.40 10.39 10.91 7.48 6.69

While on the mapping aspect, it was not proper to also use
the Euroc MH dataset [42] since it only includes gray-scale
images, and neither RGB images nor depth-maps are provided.
Therefore, to show the mapping results and the corresponding
bandwidth costs of TES-CVIDS, three groups of RGBD
images and the corresponding inertial data in different scenes
were collected by us using the Azure Kinect DK camera suites.
In each group of data, four sequences were included, collected
by four different agents. It’s worth mentioning that, for the
evaluation on the Euroc MH dataset in which depth maps are
not offered, VINS-Mono [9] was utilized as the local odometry
on the client end, while for the evaluation on our own collected
dataset the VINS-RGBD [19] was chosen for better robustness
and stability.
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Fig. 6. The absolute trajectory errors along with time of TES-CVIDS and
other two counterparts (CVIDS [37] and VINS-Mono [9]) on Sequence 4 and
Sequence 5 of the Euroc MH dataset. (a) shows the results on Sequence (4)
and (b) corresponds to Sequence 5.

B. Qualitative Experimental Results

Collaborative Localization Effect. To qualitatively demon-
strate the localization performance of TES-CVIDS, the local-
ization results of TES-CVIDS on two “difficult” sequences of
the Euroc MH dataset [42], Seuqence 4 and 5, were given in
Fig. 5, and the absolute trajectory errors along with time on
these two sequences were offered in Fig. 6. For comparison,
the corresponding results of CVIDS [37] and VINS-Mono [9]
were also provided. From Fig. 5 and Fig. 6, it can be seen
that, the yielded trajectories of TES-CVIDS are much more
consistent with the ground-truth ones compared with VINS-
Mono [9] and CVIDS [37]. This indicates that TES-CVIDS
exhibits a superior localization accuracy, which is attributed
to the integration of our proposed hierarchical pose-graph
optimization pipeline. For more details about the quantitative
evaluation, please refer to Sect. VII-C.
Typical Sub-maps and Global Dense Maps. To evaluate
the mapping performance of TES-CVIDS, we collected data
from three different scenes using the Azure Kinect DK camera
suites, which were handheld or carried by wheeled robots,

and then fed the RGBD images and the inertial data to TES-
CVIDS to reconstruct the scenes densely in an online manner.
The final results were presented in Fig. 7, where the mapping
results of the three different scenes were shown from top to
bottom. Besides, for each scene, we also selected a typical sub-
map to clearly display the details of the reconstruction results.
From Fig. 7, it is evident that high-quality dense reconstruction
results in large-scale scenes can be obtained, indicating the
superior mapping accuracy performance of our TES-CVIDS.

C. Quantitative Experimental Results

Collaborative Localization Accuracy. The quantitative eval-
uation of the collaborative localization accuracy of TES-
CVIDS was conducted using the Euroc MH dataset [42]. In
evaluation, TES-CVIDS ran under the five-agent configuration,
and both RGB images and inertial data from each sequence
of the dataset (from MH 01 to MH 05) were fed to a single
agent. The estimated trajectories of all agents were recorded,
and the corresponding RMSEs were computed and provided
in Table I. Besides, in Table I, the RMSE results of other
main competitors, including VINS-Mono [9], VIORB [10],
CVI-SLAM [33] and CVIDS [37], were also offered. From
the table, it can be observed that TES-CVIDS exhibits the
lowest weighted average RMSE of all sequences among all
competitors, corroborating that our TES-CVIDS possesses an
outstanding localization performance.
Network Traffic. Three sequences of our collected data
(Sequence 1∼3 as shown in Fig. 7 (a)∼(c), respectively) were
used to analyze the network traffic between the agents and the
server in TES-CVIDS. The collected data were fed to TES-
CVIDS, which employs sub-map based data transmission,
and the required average bandwidth cost to complete collab-
orative localization and dense reconstruction was recorded.
For comparison, the image based transmission was used as
a baseline. Besides, since TES-CVIDS integrates the tensor-
train based sub-map compression module, the network traffic
of TES-CVIDS activating such a compression module was
also evaluated. Fig. 8 shows the network traffic of these
three transmission modes between the server and the agents
over the runtime. From Fig. 8, it can be seen that TES-
CVIDS exhibits much lower bandwidth cost owing to the
sub-map based transmission strategy employed compared to
using the conventional image based transmission method,
implying the better flexibility and robustness to the network
condition. Additionally, by activating the tensor-train based
compression module, the bandwidth cost of TES-CVIDS can
be significantly further reduced.
Time Cost Analysis. Since the performance of the client-end
of TES-CVIDS is determined by the utilized odometry, we
mainly focused on analyzing the time costs of the server-end
thread by thread. First, we evaluated the speed performance
of the main thread and the global mapping thread. In the
main thread of TES-CVIDS, the average time cost of TES-
CVIDS to complete the tracking and the loop closure detection
is about 29.7ms, and fusing the sub-map to the global one
in the global mapping thead takes approximately 20.2ms per
frame. Since the global mapping thread runs in parallel with
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Fig. 7. Typical samples of reconstructed dense maps. From (a) to (c), the results correspond to three different scenes. And in each group, the yielded point
cloud map of TES-CVIDS is shown on the left, the reconstructed mesh is given in the middle and a typical sub-map is offered on the right.
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Fig. 8. The bandwidth costs of TES-CVIDS under a four-agent mode in
different scenes using different transmission modes, including image based
transmission, sub-map based transmission and compressed sub-map based
transmission using tensor train.

the main thread, and both the depth recovery and the sub-
map recomposition are not always required, TES-CVIDS can
achieve a frame rate of more than 30 fps.

Next, we offer the speed evaluation results of the local-
ization thread, in which our two-stage pose-graph optimiza-
tion pipeline is integrated. Specifically, we recorded the time
consumption to complete the global optimization of the pose-
graph consisting of different number of frames, since the time
consumption is directly related to the number of optimized
variables involved in the optimization. The results are plotted
as the red curve in Fig. 9. From Fig. 9, it can be observed that
TES-CVIDS can complete the global pose-graph optimization
within 0.6s even if up to 3,500 frames are involved. It is there-
fore evident that TES-CVIDS exhibits outstanding efficiency
in both the localization and the mapping.
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TABLE II
RMSES OF OUR SCHEME ON EUROC MH DATASET UNDER DIFFERENT

LOCALIZATION CONFIGURATIONS (cm)

SP-VIDS LM-VIDS TES-CVIDS
MH 01 4.36 5.52 3.71
MH 02 3.98 5.24 3.57
MH 03 7.99 8.17 7.48
MH 04 9.22 14.42 9.14
MH 05 10.82 13.22 10.37

Weighted
Average 7.13 8.62 6.69
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Fig. 9. Time costs of our two-stage pose-graph optimization pipeline and its
other two compared variants using different numbers of involved frames.
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Fig. 10. Typical samples of sub-maps represented by our proposed probabilis-
tic TSDF form and the standard TSDF form. In each group of the results, the
dense mesh extracted from the probabilistic TSDF sub-map is shown on the
left, while the result corresponds to the standard TSDF map is on the right.
Besides, for each group, locally enlarged regions are shown on the bottom.

TABLE III
REPROJECTION DEPTH ERRORS (cm) AND ERROR RATIOS OF COMPARED

MAP REPRESENTATIONS ON DIFFERENT SCENES

Scenes S1 S2 S3

Error Ratio Error Ratio Error Ratio

Standard 5.77 2.49% 5.41 2.34% 7.35 3.38%
Ours 5.49 2.37% 5.24 2.27% 6.68 3.07%

D. Ablation Study

Ablation Study for the Localization. The localization per-
formance of TES-CVIDS is mainly reflected in two aspects:
speed and accuracy. To verify the superior performance of our
current localization configurations, we compared TES-CVIDS
with other two baseline variants using both the RMSEs on
each sequence of the Euroc MH dataset [42] and the time costs
of the global pose-graph optimization. The compared variants
were: 1) SP-VIDS: The standard pose-graph optimization was
utilized to substitute our two-stage one; 2) LM-VIDS: The
Levenberg-Marquadt method, a typical non-linear optimization
scheme, rather than our EM-based smoothing was adopted in
the second stage of our optimization pipeline. The RMSEs
were summarized in Table II and the relationships between
the time costs and the number of frames involved in the
optimization were illustrated in Fig. 9. From the results, it can
be seen that TES-CVIDS outperforms its other two variants in
terms of both accuracy and speed, implying that our proposed
two-stage optimization pipeline is crucial in guaranteeing the
localization performance of TES-CVIDS.
Ablation Study for the Sub-map Representation. In the
client-end of our TES-CVIDS, our proposed probabilistic
TSDF representation was utilized. To verify the effectiveness
of such a representation, some typical samples of sub-maps
represented by both our proposed probabilistic TSDF form
and the standard TSDF form were shown in Fig. 10. As
shown in the figure, substituting the standard TSDF map
with our proposed representation, the outliers in the sub-
maps can be eliminated effectively. Besides, we also recorded
the reprojection depth errors of these two compared map
representations in each scene of our own collected dataset to
evaluate the effectiveness of our representation quantitatively.
The evaluation results were offered in Table III. It’s worth
mentioning that, to make the comparison more intuitive,
we also provided the ratio of reprojection depth error to
the average ground-truth depth. From Table III, it can be
seen that the mapping accuracy of our TES-CVIDS can be
obviously enhanced by integrating our proposed outlier-aware
probabilistic TSDF representation.

VIII. CONCLUSION

In this paper, we studied a practical problem, collaborative
localization and dense mapping for the multi-agent systems,
and proposed a novel collaborative dense SLAM framework,
namely TES-CVIDS. In TES-CVIDS, features and poses are
packed and then sent to the central server from the client-end.
Besides, RGBD images and corresponding poses are utilized
to construct sub-maps, which are in the form of our proposed
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outlier-aware probabilistic TSDF representation. Instead of
utilizing the most common image based transmission, the
sub-maps are sent to the server and then be bound with
corresponding key-frames. At the server-end, after aligning the
local coordinate systems of different agents, the co-localization
can be complete accurately and efficiently using our two-stage
pose-graph optimization pipeline. Based on the accurate poses
in a unified reference coordinate system of all key-frames,
TES-CVIDS fuses the received sub-maps and reconstructs the
scene densely. One eminent feature of TES-CVIDS is that,
based on our proposed adaptive depth search mechanism, sub-
maps can be recomposed to maintain the consistency between
localization and mapping in the event of key-frame pose
changes. The experimental results corroborate the superior
performance of TES-CVIDS.
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