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MC-VEO: A Visual-Event Odometry With Accurate
6-DoF Motion Compensation

Jiafeng Huang , Shengjie Zhao , Senior Member, IEEE, Tianjun Zhang , and Lin Zhang , Senior Member, IEEE

Abstract—Nowadays, robust and accurate odometries, as the
foundation technology of navigation systems, gains significance
in autonomous driving and robotic navigation fields. Although
odometries, especially visual odometries (VOs), have made sub-
stantial progress, their application scenarios are still limited by the
normal cameras’ frame rate limitations and their low robustness to
motion blur. The event camera, a recently proposed bionic sensor,
seeks to tackle these challenges, offering new possibilities for VO
solutions to overcome extreme environments. However, integrat-
ing event cameras into VO faces challenges like the RGB-event
modality gap and the requirement for efficient event processing.
To address these research gaps to some extent, we propose a novel
visual-event odometry, namely MC-VEO (Motion Compensated
Visual-Event Odometry). Specifically, by introducing the temporal
Gaussian weight into the standard contrast maximization frame-
work, we propose the first effective 6-DoF motion compensation
method that generates deblurred event frames from event data
without additional sensors. The generated frames then be aligned
with the RGB images through Event Generation Model (EGM)
in MC-VEO, so as to overcome the RGB-event modality gap.
Additionally, during the optimization of the EGM-based motion
estimation algorithm, our decoupling and pre-calculation, matrix
representation, and parallel solving further accelerate the per-point
processing of events, which enables MC-VEO to show satisfactory
speed performance even when facing large amounts of events and
candidate points. The superior performance of MC-VEO is evalu-
ated by both qualitative and quantitative experimental results. To
ensure that our results are fully reproducible, all the relevant data
and codes have been released publicly.

Index Terms—Visual-event odometry, SLAM, contrast maxi-
mization, motion compensation, data fusion.

Manuscript received 15 August 2023; revised 19 September 2023; accepted
6 October 2023. Date of publication 10 October 2023; date of current version
23 February 2024. This work was supported in part by the National Natural
Science Foundation of China under Grants 62272343, 61973235, and 61936014,
in part by the Shanghai Science and Technology Innovation Plan under Grant
20510760400, in part by the Shuguang Program of Shanghai Education De-
velopment Foundation and Shanghai Municipal Education Commission under
Grant 21SG23, and in part by the Fundamental Research Funds for the Central
Universities. (Corresponding author: Lin Zhang.)

The authors are with the School of Software Engineering, Tongji Uni-
versity, Shanghai 201804, China, and also with the Engineering Re-
search Center of Key Software Technologies for Smart City Percep-
tion and Planning, Ministry of Education, Shanghai 201804, China
(e-mail: 2010195@tongji.edu.cn; shengjiezhao@tongji.edu.cn; 1911036@
tongji.edu.cn; cslinzhang@tongji.edu.cn).

https://cslinzhang.github.io/MC-VEO/MC-VEO.html.
Color versions of one or more figures in this article are available at

https://doi.org/10.1109/TIV.2023.3323378.
Digital Object Identifier 10.1109/TIV.2023.3323378

I. INTRODUCTION

A S IMPORTANT tools in fields such as autonomous driv-
ing [1], robot navigation [2], virtual reality [3] and aug-

mented reality [4], accurate and reliable odometries play impor-
tant roles in autonomous navigation systems [5], [6]. Among
them, Visual Odometry (VO) refers to the technique that es-
timates the location and motion of a camera by extracting
and tracking visual features in consecutive images, which has
the advantages of low sensor cost and wide applicability [7].
Unfortunately, due to the poor robustness of traditional optical
cameras to motion blur, VO systems often perform poorly in fast
motion environments. Unlike traditional cameras that capture
intensity images at a fixed rate, event cameras [8], [9], [10] are
biomimetic sensors that captures pixel-level brightness changes
in real time, providing high temporal resolution and low latency
for applications requiring fast and dynamic visual perception. An
event camera can measure the asynchronous brightness changes
of each pixel, called “event”. Such an operating mechanism
provides excellent performance characteristics for event cam-
eras, such as low latency, high time resolution (microseconds)
and low power consumption (milliwatts instead of watts). Nu-
merous studies have investigated the significant potential of
event cameras in addressing visual tracking [11], [12], [13]
and other related problems [14], [15], [16], [17] in challenging
scenes.

Currently, the use of event cameras to design or to improve
odometries has become a research hotspot, but creating an
event-based odometry presents significant challenges. The main
difficulties lie in two aspects: the motion compensation and the
speed-accuracy balance. On the aspect of motion compensation,
for most of the event-based odometries, the motion blur due to
the camera’s self-motion [18] usually occurs during the accumu-
lation of events to create event frames [19], [20], [21], [22], [23].
The differences between the distributions of the raw events and
the motion compensated ones are shown in Fig. 1. It can be seen
that the event frame formed by directly accumulating the raw
events is blurry and has trailing edges, which seriously affects
the accuracy of subsequent applications such as event-based
VOs. Unfortunately, at present, existing 6-DoF compensation
methods for 3D motion most rely on the assistance of additional
sensors such as Inertial Measurement Unit (IMU) [24], [25],
and methods that only use the event camera are still lacking.
On the other aspect, event odometries based on geometric
alignment [15], [26], [27], [28] have relatively low localiza-
tion accuracy, while several recent works [17], [29], [30] have
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Fig. 1. Differences between the distributions of the raw events and the motion compensated ones (blue: positive events; red: negative events). The event camera
rotates around the main optical axis of the lens, and the scene observed is a wall with some simple shapes. (a) Is the distribution of the raw events in the
spatio-temporal space. (b) Is the event frame formed by the accumulation of raw events. (c) and (d) are the motion compensated results correspond to (a) and (b),
respectively.

demonstrated the use of Event Generation Model (EGM) [8],
[31], which describes the photometric relationship between ab-
solute brightness and brightness changes (i.e. events), brings
significant performance gain in accuracy [14], [17]. However,
the motion estimation algorithm using EGM is computationally
expensive, resulting in a relatively slow processing speed for
related solutions. Currently, there are no solutions that can strike
a good balance between accuracy and speed.

As an attempt to fill in the aforementioned research gaps
to some extent, a novel visual-event odometry, namely MC-
VEO, is proposed in this article. Specifically, the first pure
event-based 6-DoF motion compensation method is proposed
to address the problem of motion blur in event frames gen-
eration. Unlike the approaches mentioned in [24], [25], our
method no longer relies on additional sensors. Furthermore, an
efficient EGM-based motion estimation algorithm is proposed,
which can align the generated clear event frames with image
frames and avoid the problem of high computational complex-
ity [17], [30], resulting in a balance between accuracy and
efficiency in MC-VEO. Our contributions are summarized as
follows:

1) The first pure event-based 6-DoF motion compensation
method based on improved contrast maximization frame-
work is proposed. As far as we know, this is the first 6-DoF
motion compensation method that relies solely on events
and does not require additional sensors. In addition to
event-based odometry, this method can also be applied
to a variety of other research fields that require clear
event frames, such as event-based feature tracking [26],
motion segmentation [32], ego-motion estimation [18],
video reconstruction [33], and more.

2) An efficient motion estimation algorithm based on EGM
is designed. The optimization process of the objective
function is decoupled into two stages, which reduces the
computational cost of the overall solution by precalculat-
ing the “independent variables”. The per-point processing
of events is accelerated by our matrix representation and
parallel solving method. This strategy significantly short-
ens the time required for the convergence of the motion
estimation algorithm.

3) A novel visual-event odometry, namely MC-VEO, that
incorporates our 6-DoF motion compensation method

is proposed. MC-VEO exhibits excellent localization
accuracy performance, particularly on high-resolution
fast-motion sequences. Extensive qualitative and quanti-
tative experiments on multiple benchmark datasets show
that our MC-VEO outperforms SOTA event-based or
image-based VOs.

The remainder of this article is organized as follows.
Section II introduces the related work. Section III presents the
overall framework of our odometry. Details for evaluation on
publicly available datasets are presented in Section IV. Section
V concludes the article.

II. RELATED WORK

Motion compensation is usually an important component of
raw data processing and pose estimation in event-based visual
odometry, and the contrast maximization framework provides a
theoretical basis for event-based motion compensation. In this
section, we review the studies related to motion compensation,
contrast maximization and event-based visual odometry in three
subsections, respectively.

A. Motion Compensation

As discussed in Section I, there are two main types of motion
compensation algorithms: IMU-assisted ones and event-only
ones. The former ones are usually used in event-based Visual-
Inertial Odometry (VIO). For example, in [24], [25], the IMU
measurement values and their linear interpolation are utilized to
correct the coordinates of each event, resulting in the generation
of motion compensated event frames. This type of method relies
on the data from accurately calibrated IMU and cannot be
applied in pure event-based visual odometry. The latter ones
often employ the contrast maximization framework to estimate
and correct the motion of the event camera. For example, in [18],
the authors only consider the rotating motion of the event camera
and estimate the constant angular velocity by maximizing the
variance of the image brightness. In [45], the contrast maxi-
mization framework is utilized to estimate the 8-DoF constant
motion parameters, considering the homographic motion in
the plane scene. The idea of contrast maximization provides
a theoretical foundation for event-based motion compensation
algorithms. A more accurate contrast maximization framework
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TABLE I
OVERVIEW OF EXISTING EVENT-BASED VISUAL ODOMETRIES

and motion model can enhance the effectiveness of motion
compensation and further improve the accuracy of subsequent
algorithms.

B. Contrast Maximization

The idea of contrast maximization is first proposed by Gal-
lego and Scaramuzza [18] when introducing their event camera
rotation estimation algorithm. This method helps to accurately
estimate the angular velocity of the event camera under the
condition of high-speed motion (close to 1,000 degrees/second).
The concrete theoretical concept of the contrast maximization
is firstly summarized in [45], where the unified framework is
also proposed to solve various computer vision problems based
on event cameras, such as motion estimation and optical flow
tracking. In this framework, a group of events is warped to the
image plane along the motion trajectory, and the trajectory is
estimated and optimized by evaluating the resulting Image of
Warped Events to restore the trajectory most suitable for the
original event set. Zhu et al. [28] employ contrast maximization
as a loss function to train unsupervised neural networks to
estimate optical flow, depth, and self-motion. Stoffregen and
Kleeman [46] examine the selection of reward function for
contrast maximization, propose the classification of different
rewards, and show how to build a more robust reward for noise
and aperture uncertainty. Furthermore, Peng et al. [47] apply
global contrast maximization to the front-parallel motion esti-
mation of an event camera and derive the global optimal solution
of this general non-convex problem. Later, Peng et al. [48] use
the branch-and-bound method to derive the recursion upper and
lower bounds for six different contrast estimation functions,
which are utilized to solve the optimal solution of the global
contrast maximization problem.

C. Event-Based Visual Odometry

Event-based Visual Odometry (VO) technology is still in
an immature stage, and the number of relevant schemes is

limited. Some representative works in this field are summarized
in Table I. The table columns indicate following aspects: 1)
the year of the proposal; 2) the DoF of the motion; 3) whether
tracking is performed; 4) whether depth estimation is performed;
5) the type of applied scenes; 6) the sensor configuration; and 7)
any additional constraints or requirements. From an applicability
standpoint, early event-based VO works typically have strict
limitations on camera motion styles and scene scales. How-
ever, recent works have gradually released these limitations and
shifted towards general natural 3D scenes, in which the flexible
6-DoF motion is supported.

In 2016, Kim et al. [14] propose the earliest complete event-
based visual odometry, which includes three probabilistic filters
that predict camera motion, light brightness gradient, and inverse
depth of the scene, respectively. This work assumes constant
brightness and linear gradient, and achieves simultaneous mo-
tion tracking and 3D scene reconstruction, but requires GPU due
to the huge computational burden. Rebecq et al. [15] propose
EVO, an event-based VO that does not require light brightness
reconstruction and can work on a simple CPU. EVO [15] in-
cludes two parallel pipelines: the tracking pipeline based on
image-to-model alignment and the mapping one for event-based
3D reconstruction. Unfortunately, the localization and mapping
accuracy of it are relatively poor due to its unstable event-based
bootstrap and feature detection method. Zuo et al. [16] propose
DEVO, which generates semi-dense depth maps by warping
the corresponding depth values of the extrinsically calibrated
depth camera and updates the camera pose through geometric
3D-2D edge alignment. It shows comparable performances to
state-of-the-art RGB-D camera-based alternatives in regular
conditions. Hidalgo-Carrió et al. [17] propose EDS, the first
scheme to use direct method for 6-DoF VO using both event
and color information. EDS [17] uses sparse 3D points to predict
the brightness increments of pixels through an ordinary optical
camera and estimates camera motion by comparing them with
event-based brightness increments in error. While its use of EGM
results in higher tracking accuracy compared to other schemes, it
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Fig. 2. (a) Is the overall pipeline of our proposed MC-VEO. The events obtained from the event camera are divided into groups, and after motion compensation,
clear event frames are formed. The images obtained from the color camera go through keyframe judgment and candidate point selection to predict and form the
brightness increments. The event generative model is used to correlate measurements from events and images. The front-end predicts camera motion by minimizing
the brightness increment error of both two kinds of measurements. The camera pose and velocities as well as the depth of sparse candidate points are refined
by photometric bundle adjustment at the back-end to sustain the VO system’s good performance. (b) Is the detailed flowchart of the key component (motion
compensation module) in MC-VEO.

also results in a larger computational load, making optimization
much slower.

III. PIPELINE OF MC-VEO

This section describes the overall pipeline of our MC-VEO,
which is summarized in Fig. 2(a). First, we briefly review
the working principle of the event camera in Section III-A.
Next, we introduce our event-based 6-DoF motion compensation
method and the preprocess on image frames in Section III-B and
III-C, respectively. Then, how the efficient motion estimation
algorithm based on EGM works in the front-end is introduced
in Section III-D. Finally, the back-end of the MC-VEO system
is introduced in Section III-E.

A. The Working Principle of Event Camera

The observation of each pixel by the event camera is inde-
pendent and asynchronous. When the event camera detects that
the logarithmic brightness intensity of a pixel uk = [xk, yk]

T

changes exceeding a specified amount C (called contrast sen-
sitivity) [8] at timestamp tk, it will produces an event ek

.
=

(uk, tk, pk):

ΔI (uk, tk)
.
= I (uk, tk)− I (uk, t

′
k) = pkC, (1)

where I is the logarithmic brightness intensity, the polarity
pk ∈ {+1,−1} represents the sign of the brightness change
(Brighten or darken), and t′k is the timestamp of the last event
generated on uk. It is worth mentioning that the event times-
tamps tk usually have a resolution of microseconds. Different
from ordinary optical cameras, an event camera does not output

images at a constant rate but instead a stream of asynchronous
events in spatio-temporal space.

B. Event-Based 6-DoF Motion Compensation

Our proposed pure event 6-DoF motion correction method
is implemented based on an improved contrast maximization
framework, which is described as follows.

Improved contrast maximization framework: Given the lo-
cation and timestamp of each event in a group and initialized
warping parameters, each event can be warped backward along
a point-trajectory into a reference view with a timestamp tref.
Since events are more likely to appear near high-gradient edges,
the correct warping parameters can be found by adjusting the
event frame in the reference view, which is called the Image
of Warped Events (IWE), to form the sharpest possible edge
graph. Unlike [18] and [11], we extend the warping function
from rotational-only motion to the more general Euclidean
transformation.

To demonstrate this approach, let E .
= {ek}Ne

k=1 be a set of
events within a time interval T .

= {tk}Ne

k=1, whereNe represents
the event group size. We defineω and θ as the angular and linear
velocities of the event group, respectively. The warping function
for a single event in such a group is defined as follows:

w (uk,ω,θ, δtk |T)=T

[
expso(3) (ω̂δtk) θδtk

0T 1

][
u′k
1

]
.

(2)

Here, δtk is the time difference between the event timestamp
tk of the event ek and the reference timestamp tref, i.e., δtk =
tk − tref, T is the Euclidean transformation matrix representing

Authorized licensed use limited to: TONGJI UNIVERSITY. Downloaded on February 24,2024 at 02:54:15 UTC from IEEE Xplore.  Restrictions apply. 



1760 IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. 9, NO. 1, JANUARY 2024

camera pose in tref, the hat operator ω̂ ∈ R3×3 represents the
cross product matrix of ω, expso(3)(·) refers to exponential
mapping from so(3) to SO(3), and u′k = [x′k, y

′
k, z

′
k]

T ∈ R3

is an inverse-projected point from uk to the camera coordinate
system. To abbreviate the notation, we omitted the back pro-
jection operation on the homogeneous coordinates of the event
points.

The IWE is generated by accumulating warped events at each
discrete pixel position for the time interval [t1, tNe

]:

I raw (u,ω,θ | T)=

Ne∑
k=1

αkpkδd (u−w (uk,ω,θ, δtk | T)) ,

(3)
where the Dirac delta function δd selects the appropriate pixel. It
is worth mentioning that here we omitted the projection function
for projecting events from camera coordinates to image coordi-
nates for brevity. Unlike conventional accumulation methods,
we accumulate weighted polarities αkpk ← pk to obtain IWE,
where

αk =
3√
πNe

e−0.5(
tk−tref
Ne/6 )

2

. (4)

Based on the assumption that events with closer timestamps
have more similar warping velocities, the Gaussian weights
emphasize events whose timestamp is close to tref, resulting in a
more accurate IWE compared to the unweighted case (αk = 1).
Subsequently, the values of motion parameters ω and θ can be
accurately measured by evaluating the contrast of the improved
IWE.

Motion compensation: To compensate the motion blur in the
event frame, an accurate IWE is needed. In the front-end of
our MC-VEO, we choose to maximize the squared Frobenius
norm of the IWE I raw for the interval [t1, tNe

] by optimizing
the velocities ω and θ using the Root Mean Square Propagation
(RMS-prop) optimizer:

maximize
ω,θ

‖I raw (ω,θ | T)‖2 , (5)

where ‖ · ‖2 denotes the squared Frobenius norm. The cost
function measures the contrast of the IWE, which is equivalent
to the sum of squares reward in [46]. Its Jacobian is computed as
follows (6) shown at the bottom of this page. Here,∇I(uk,ω,θ)
is the gradient of brightness I(uk,ω,θ) at coordinate uk,
fx and fy are the focal lengths of the event camera, and x̄k

and ȳk are the normalized coordinates satisfying x̄k = x′k/z
′
k

and ȳk = y′k/z
′
k. Through our motion compensation process,

accurate event frames are generated as pseudo measurements of
brightness increments. The pseudocodes of the motion compen-
sation are given in Algorithm 1.

Algorithm 1: Algorithm for Motion Compensation.

Input: The set of events E .
= {ek}Ne

k=1, The intrinsic matrix
K, The maximum number of iterations maxIter

Output: A contrast maximized event frame I
1: initial ω = 0, θ = 0, it = 0, ν = 0
2: set tref = t1, dr = 0.995, lr = 0.05, ε = 10−8

3: while it ≤ maxIter do
4: for each k∈ [1, Ne] do
5: compute pk by back projecting uk of event ek
6: δtk = tk − tref

7: R = expso(3)(ω̂δtk)
8: t = θδtk
9: p′k = Rpk + t

10: compute w(uk,ω,θ, δtk) by projecting p′k

11: αk = 3√
πNe

e−0.5(
tk−tref
Ne/6

)2

12: compute I by (3)
13: end for
14: compute ∇I by using Sobel operation on I
15: compute Jacobian J by (6)
16: G = JT δt
17: ν = dr × ν + (1− dr)GTG

18:
[
ω
θ

]
=
[
ω
θ

]
− lrG√

ν+ε

19: it = it+ 1
20: end while
21: return I

C. The Preprocess on Image Frames

For RGB images, the preprocess performed by MC-VEO
mainly includes two steps, candidate points selection and
keyframe selection.

Candidate points selection: When preprocessing RGB im-
ages, in order to reduce the occupation of computational re-
sources while maintaining accuracy in image processing, it is
important to carefully select informative pixels from keyframes.
This can be achieved by selecting pixels with high gradients,
which are typically associated with the edges of the scene
within an image. To ensure that these selected pixels are evenly
distributed across the image plane, the image is divided into rect-
angular blocks of a fixed size, and a certain percentage of pixels
with the highest brightness gradient within each block are chosen
(usually between 10%− 15% of the total number of pixels in
the image). The pixels with the strongest gradients coincide with
those where events are triggered, as events correspond to moving
edges. As the camera moves, the set of keyframe pixels and event
pixels begin to diverge, and the camera motion and the scene
depth would be estimated to maintain their correspondence.

d ‖I (ω,θ)‖2

d(ω,θ)
=

Ne∑
k=1

2I (uk,ω,θ)∇IT (uk,ω,θ)Mδtk,

M =

[
−x̄kȳkfx

(
1 + x̄2

k

)
fx −ȳkfx fx/z

′
k 0 −x̄kfx/z

′
k

−
(
1 + ȳ2k

)
fy x̄kȳkfy x̄kfy 0 fy/z

′
k −ȳkfy/z′k

]
. (6)
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Keyframe selection: Our VO system generates a keyframe
when either the number of selected points decreases by 20%–
30% since some points fall out of the field of view (FOV) or
the event camera’s relative rotation with respect to the keyframe
exceeds a predetermined threshold.

After the creation of a new keyframe, we populate its inverse
depth estimates using those from past keyframes. The set of
selected pixels is first back-projected to the 3D space and then
projected onto the new keyframe. For the remaining pixels,
we initialize their inverse depth values using nearest neighbors
with a k-d tree, which has proven to be a simple and effective
approach [17]. In the back-end of our VO system, inverse
depth refinement is carried out to improve the accuracy of the
estimations.

D. The Efficient Motion Estimation Algorithm Based on EGM

In the front-end of our MC-VEO, we create pseudo mea-
surements from the events through event-based 6-DoF motion
compensation introduced in Section III-B. Additionally, we
further utilize (8) to build measurements from the preprocessed
image frames. Our primary objective in the front-end is to
estimate the VO state by minimizing the brightness increment
error between these two measurements according to EGM. As
shown in Fig. 2(a), The proposed efficient motion estimation
algorithm based on EGM is composed of increments generation
and brightness increment error minimization.

Event Generation Model: EGM describes the relationship
between events and image brightness as follows. Directly ac-
cumulating the set of events E in the period of time interval T
can generate a brightness increment frame ΔI(u):

ΔI(u) =
∑
tk∈T

pkCδd (u− uk) , (7)

which is very close to the generated IWE, with only the differ-
ence in contrast sensitivity C.

From the perspective of intensity images, when the time
interval Δt = tNe

− t1 is small, Taylor’s expansion can be used
to approximate the increment in (1). Further substituting the
brightness constancy assumption gives that the change in image
brightness ΔĨ is caused by brightness gradients ∇Ĩ moving
with velocity v on the image plane [29], [49]:

ΔĨ(u) ≈ −∇ĨT
(u)Δu = −∇ĨT

(u)v(u)Δt. (8)

Brightness increments from image frames: To build the measure-
ments from the image frame, the increments generation compo-
nent of MC-VEO selects only pixels on the image contours at the
keyframes for brightness increments calculation as given in (8).
The spatial gradient of the logarithmic normalized brightness of
the keyframe Ĩ is computed using the Sobel operator. The 2D
image-point velocity v(u) in (8) can be expressed in terms of
the camera’s angular and linear velocities V , and the depth du

of the 3D point with respect to the camera [50]:

v(u) = J(u, du)V . (9)

Here, J(u, du) is the 2× 6 feature sensitivity matrix, defined
as follows (10) shown at the bottom of this page. The definitions
of variables in this matrix are consistent with (6). Merging (9)
and (8) gives the predicted brightness change as,

ΔĨ(u) ≈ −∇ĨT
(u)J(u, du)V Δt. (11)

It is worth mentioning that the velocity V are global variables
shared by all image pixels u of the same keyframe. As shown
in Fig. 2(a), the depth du is an input to the front-end from the
back-end. The initialization process for the depth estimate will
be described in Section III-E later.

Acceleration: Unlike [30] and [17], we accelerate the iterative
optimization process to minimize computational complexity so
as to improve the optimization speed. Firstly, for all sparse key-
points on a single image frame, we make brightness increment
prediction during the iteration process as (11), which is the

product of the gradient vector ∇ĨT
(u), the feature sensitivity

matrix J(u, du), the velocity vector V and the time difference
Δt. Along with the optimization evolvement, only the velocity
V is optimized, while the image brightness gradient values

∇Ĩ(u) and matrix J are set fixed. Thus, the product of∇ĨT
(u)

and J of all utilized pixels can be precomputed via the tensor
product before the optimization to avoid repetitive calculations.

In addition, in the event part, each event point should be
warped with a different δtk corresponding to each event in
(2), which brings a high computational load. For speed up,
we describe an accurate warping method in a matrix form that
does not require computation of (2) for each event. For k-th
event ek

.
= (uk, tk, pk), δtk = tk − tref. In order to compute

the warping accurately, we adopt the Rodrigues Formula and
the second-order approximation of the warping function can be
achieved by the Taylor expansion of trigonometric functions as
follows:

−→w(uk,ω,θ,δtk |T)= R

{
cos(|ω|δtk)I + sin(|ω|δtk)

ω̂

|ω|

+(1− cos(|ω|δtk))
(

ω̂

|ω|
2

+ I

)}
u′k

+ t+ θδtk

≈ R

(
I + δtkω̂ +

1

2
δt2kω̂

2

)
u′k + t+ θδtk,

(12)
where R and t are the rotation matrix and the translation
vector corresponding to the Euclidean transformation matrix
T, respectively, the hat operator ω̂ ∈ R3×3 represents the cross
product matrix ofω, andu′k = [x′k, y

′
k, z

′
k]

T ∈ R3 is an inverse-
projected point from uk to the camera coordinate system. The

J(u, du) =

[
x̄kȳk −

(
1 + x̄2

k

)
ȳk −1/du 0 x̄k/du(

1 + ȳ2k
)

−x̄kȳk −x̄k 0 −1/du ȳk/du

]
. (10)
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proposed warping function (12) can be easily implemented in
matrix representation based parallel computing, avoiding per-
event calculation in (2).

Brightness increment error minimization: Camera tracking by
means of minimizing errors in brightness increment is carried
out on the latest keyframe. The events are partitioned into groups,
and event frames as given in (7) are generated using the motion
compensation method. The camera tracking is formulated as a
joint optimization problem over the camera motion parameters,
including the 6-DoF pose T and its velocity V :

(δT ∗,V ∗) = arg min
δT ,V

∥∥∥∥∥ ΔĨ

‖ΔĨ‖2
− ΔI

‖ΔI‖2

∥∥∥∥∥
γ

, (13)

where the error is the Huber norm γ of the difference between
normalized brightness increments (ΔI from the events and
ΔĨ from the keyframe). Norms are computed over a sparse
set of pixels, which are the aforementioned selected pixels in
the keyframe. The camera pose T is parameterized using a
3-vector and a quaternion, while the velocityV is parameterized
using a 6-vector. The Levenberg–Marquardt algorithm is used
to minimize (13).

The output of the front-end consists of the coarse estimated
camera motion (relative to the keyframe) of each event packet.
These outputs are then passed on to the back-end for further
nonlinear refinement (as discussed in Section III-E).

E. Back-End

The back-end of our MC-VEO system is responsible for
refining the camera poses and 3D structure through photometric
bundle adjustment (PBA). The objective function that we aim
to minimize is composed of the sum of errors between the pixel
intensities of a given keyframe and those of other keyframes in
which the same 3D point is visible:∑

i∈KF

∑
u∈P i

∑
j∈KFΠ(u)

‖KF i(u)−KF j (u
′)‖γ . (14)

Here, i runs over all keyframesKF ,u runs over all selected pix-
elsP i in keyframe i, and j runs over all keyframes in which point
u is visible (Π(u) refers to the keyframe where the 3D point
corresponding tou is visible).u′ is the corresponding point tou
on the j-th keyframe. The Huber norm γ is used to downweight
the influence of outliers, by which errors exceeding a certain
threshold are discarded. Errors are computed within an 8-pixel
patch centered on each image point, under the assumption of a
uniform depth estimate for all pixels within the patch. To achieve
a balance between accuracy and computational efficiency, we
employ a sliding window estimator that keeps seven keyframes
at a time [51]. On average, the back-end utilizes between 2,000
and 8,000 points. Motivated by [51], a coarse depth initializer is
also utilized for system bootstrap.

IV. EXPERIMENTS

A. Methods for Comparison

We compared our proposed MC-VEO with the following
competing methods.

� EVO [15] is a semi-dense VO approach that combines an
event-based tracking approach based on image-to-model
alignment with an event-based 3D reconstruction algo-
rithm in a parallel fashion. EVO [15] does not exploit EGM
since it neither uses frames nor recovers image brightness.

� USLAM [25] is an indirect monocular method that fuses
events, frames and IMU measurements. Its front-end con-
verts events into frames by motion compensation using the
IMU’s gyroscope and the median scene depth. Then FAST
corners [52] are extracted and tracked separately on the
event frames and the grayscale frames, and then passed to a
geometric feature-based back-end. The IMU is tightly used
in the front-end for event frame creation, and so removing
it is not possible without breaking the robustness of the
method.

� EDS [17] is a direct monocular visual odometry using
events and frames. Its front-end predicts per-pixel bright-
ness increments and compares them to the events via the
brightness increment error to estimate camera motion. The
method recovers a semi-dense 3D map using photometric
bundle adjustment in its back-end.

� ORB-SLAM3 [53] is the system able to perform vi-
sual, visual-inertial and multi-map SLAM with monocu-
lar, stereo and RGB-D cameras, using pin-hole and fish-
eye lens models. It is not only a feature-based tightly-
integrated visual-inertial SLAM system that fully relies on
Maximum-A-Posteriori (MAP) estimation but a multiple
map system that relies on a novel place recognition method
with improved recall.

� DSO [51] is a direct and sparse formulation for visual
odometry. It combines a fully direct probabilistic model
(minimizing a photometric error) with consistent and joint
optimization of all model parameters, including geometry
represented as inverse depth in a reference frame and
camera motion.

� VINS-MONO [54] is a monocular visual-inertial state es-
timator. A tightly-coupled, nonlinear optimization-based
visual-inertial odometry is designed by fusing pre-
integrated IMU measurements and feature observations. It
also performs four DoF pose graph optimization to enforce
global consistency.

� DROID-SLAM [55] is a deep learning based visual SLAM
system. It consists of recurrent iterative updates of camera
pose and pixelwise depth through a Dense Bundle Adjust-
ment layer.

Among the methods compared, EDS [17] and ORB-
SLAM3 [53] are the state-of-the-art approaches for the event
odometry and the visual odometry, respectively.

B. Datasets and Metrics

Our MC-VEO and compared methods (introduced in Sec-
tion IV-A) were tested on two datasets, including the RPG Stereo
DAVIS1 and the EDS dataset2. The RPG Stereo DAVIS [56] was

1The RPG Stereo DAVIS: https://rpg.ifi.uzh.ch/ECCV18_stereo_davis.
html [56].

2The EDS dataset: https://rpg.ifi.uzh.ch/eds.html [17].
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collected with a hand-held DAVIS-240 C (240× 180) stereo
event camera in an indoor environment, and the EDS dataset [17]
was collected using a custom-made beamsplitter with a Proph-
esee Gen3 (640× 480) event camera and a FLIR color camera.
The ground truth poses of these two datasets were both given by
motion capture systems. The RPG Stereo DAVIS dataset [56]
is a benchmark widely used in related studies, while the EDS
dataset [17] is a recently proposed high-resolution large-scale
challenging dataset that includes cases of violent camera shaking
and no texture scenes (wall corners, pure white ceiling, etc.).

To assess the performance of the full VO method, we report
ego-motion estimation results using standard metrics: RMSE
(Root Mean Squared Error) of Absolute Translation Error (cm)
and Rotation Error (deg). The Absolute Translation Error can be
given as,

ATERMSE =

(
1

M

M∑
i=1

∥∥trans (Q−1i Pi

)∥∥2) 1
2

,

Qi,Pi ∈ SE(3), (15)

where {Qi}Mi=1 and {Pi}Mi=1 are groundtruth and estimated
poses, respectively. The trans(·) represents the translation part
of the pose. M is the total number of poses in each trajectory.
The Rotation Error can be given as,

RERMSE =

(
1

M

M∑
i=1

| anglei |2
) 1

2

,

anglei = logSO(3)

(
rot
(
Q−1i Pi

))
,

Qi,Pi ∈ SE(3). (16)

The rot(·) represents the rotation part of the pose. The
logSO(3)(·) is the inverse of expso(3)(·) (Rodrigues Formula).
The anglei represents the i-th rotation angle. We used the tool-
box from [57] to evaluate the poses given by different odometry
solutions. The experimental platform is a laptop with a CPU
model of AMD Ryzen 5 4600 U with Radeon Graphics.

C. Qualitative Results

Fig. 3 shows the comparisons of event frames generated by
our motion compensation method and some other competitors.
The raw intensity frame and the brightness increment are shown
on the left for reference. The brightness increment frame here
is predicted using (11) to align with the event frame in the
system for the pose estimation. On the right, from top to bottom,
event frames generated by direct accumulation, edge lighten in
EDS [17] and our method are listed. It can be seen that in the
case of direct accumulation, the event frames exhibit severe edge
blurring (such as the edges of dolls and tables), which is clear in
the brightness increment. The edge lighten strategy in EDS [17]
can alleviate this situation to some extent, while our motion
compensation scheme restores the event frame closest to the
brightness increment of the raw image.

Fig. 4 shows the qualitative comparison of our MC-VEO
and some representative odometries on three test sequences
from [56] (first three columns) and a sequence from [17] (last

Fig. 3. Comparisons of a typical event frame generated by different methods.
The intensity image frame and the brightness increment of the image are listed on
the top for reference. Below them, from top to bottom, the event frames generated
by direct accumulation, edge lighten in EDS [17] and our motion compensation
method are listed, respectively. The event density is approximately 0.6 event per
pixel.

column). From Fig. 4, it can be seen that, EVO [15] gives a
sparse depth estimate and contains obvious outliers. DSO [51]
generates a complete semi-dense depth map, but in sequence
“all_characters”, it shows severe estimation errors (the relative
depth of the foreground and background is not correct). In
comparison, MC-VEO forms a highly colorful semi-dense depth
structure and can accurately estimate the depth at most contour
pixels.

D. Quantitative Results

Table II and Table III report quantitative results of the com-
parison of our method with other VOs in term of Absolute
Translation Error (cm) and Rotation Error (deg), respectively, on
sequences from the datasets [17], [56]. The optimal results are
highlighted in bold, while the runner-up results are highlighted
with an underline. The input data for the odometries may be
events (E), image frames (F) or inertial measurements (I). The
first four rows of both tables are results from The RPG Stereo
DAVIS dataset [56] while the last three rows from the EDS
dataset [17]. Due to the severe distortion of sensor output in
challenging scenarios of the EDS dataset [17], all compared
works cannot fully complete the sequence. In order to obtain
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Fig. 4. Qualitative comparison on three test sequences from [56] (bin, desk, and monitor) and a sequence from [17] (all_characters). Each row depicts the
pseudo-colored inverse depth maps generated by corresponding methods (red represents near and blue for far). It is worth mentioning that since the timestamps of
event frames formed by different methods are not completely aligned, we chose to show results with relatively close perspectives.

TABLE II
ABSOLUTE TRANSLATION ERRORS (CM) OF MC-VEO AND COMPARED VOS ON THE DATASETS [56] AND [17]

TABLE III
ROTATION ERRORS (DEG) OF MC-VEO AND COMPARED VOS ON THE DATASETS [56] AND [17]

reliable quantitative comparison results on this high-resolution
dataset, we can only use fragments that can be completed by
most methods. The sequence marked with * represents taking
partial fragments of the sequence to enable most methods to
successfully complete.

From Table II, it can be seen that MC-VEO outperforms all
other baseline methods on translation accuracy, even without
assistance of inertial measurements. It is worth mentioning that
the USLAM [25] and the EVO [15] cannot be completed on
sequence rocket_earth_light and rpg_building, respectively. The
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TABLE IV
ABLATION STUDIES ON THE ACCURACY OF MC-VEO

TABLE V
ABLATION STUDIES ON THE SPEED OF MC-VEO

former suffers from insufficient feature points which leads to
loss of tracking, while the latter cannot smoothly bootstrap from
the event stream. Besides, MC-VEO is also superior to all other
baseline methods in terms of rotation error according to Table III.
In high-resolution and challenging sequences (last three rows),
MC-VEO is far ahead of other methods due to the integration
of our 6-DoF motion compensation and EGM-based motion
estimation. In these three sequences, the motion of the camera
is fast, and the insufficient frame rate of the RGB camera affects
the performance of frame-based VO method. For other existing
event-based methods, they face serious challenges due to the
low Signal Noise Ratio of event cameras, as high-resolution
sequences bring more event noise than low-resolution ones [58],
[59]. Our MC-VEO effectively eliminates the influence of event
noise and distinguishes outliers when aligning events in mo-
tion compensation, while also utilizing EGM-based method to
fully utilize event information to estimate camera’s fast motion.
On low-resolution sequences, MC-VEO achieves rotational ac-
curacy comparable to the frame-based SOTA method, ORB-
SLAM3 [53].

E. Ablation Study

In order to verify the performance gain brought by our motion
compensation module and accelerated iterative solving module
on the accuracy and speed, ablation experiments on these two
modules were conducted. The experimental results are presented
in Tables IV (in term of Absolute Translation Error (cm) and
Rotation Error (deg)) and V (in term of total time cost (s)). For
each column in these two tables, “None” refers to not using these
two modules, “Compensation” refers to using only the motion
compensation module, “Acceleration” refers to using only the
accelerated iterative solving module, and “Both” refers to using
both of them. Besides, in Table V, “Ratio” refers to the total time
reduction rate.

Table IV shows the impact of the two aforementioned modules
on system accuracy. Only results on high-resolution sequences
are presented, as the differences in accuracy are not significant
on low-resolution ones. Table V shows the impact of these two

modules on speed by comparing the total time taken to complete
tracking on each sequence. From Table IV and Table V, it can
be seen that by integrating our motion compensation module
and accelerated iterative solving module, both the accuracy
and the speed of our MC-VEO can be significantly improved,
corroborating the effectiveness of them.

F. Limitations and Discussions

Although our MC-VEO has achieved pleasing results in eval-
uated datasets, we found that the textures of the scene have
an obvious influence on MC-VEO’s performance. When the
scene texture is weak, the information contained in the image
is relatively scarce. In this case, the candidate point selection
strategy of MC-VEO would be affected and could not be able
to extract high-quality feature points, resulting in relatively
poor performance. Thus we will continue to devote efforts in
finding more robust feature extraction method to alleviate such
a negative impact.

V. CONCLUSION

In this article, we proposed a novel visual-event odometry
solution, namely MC-VEO. In MC-VEO, a novel 6-DoF motion
compensation method based on an improved contrast maximiza-
tion framework is utilized to create pseudo measurements from
the event. By minimizing the brightness increment errors be-
tween these measurements and the measurements predicted from
image frames, the relative poses of event frames and keyframes
are estimated. Thanks to our novel motion compensation method
and accelerated iterative solving module, MC-VEO achieved a
good balance between accuracy and speed. Experimental results
corroborated MC-VEO’s superiority over the state-of-the-art
competitors in this area.
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