
O
bjective image quality assess-

ment (IQA) aims to develop

computational models that can

measure image quality consis-

tently in subjective evaluations. With the now

widespread use of digital imaging for represen-

tation and communication, IQA has become an

essential, yet challenging problem. Potential

applications exist in the image processing and

computer vision fields, such as image acquisi-

tion, transmission, compression, restoration,

and enhancement. Because subjective IQA

methods cannot be readily and routinely used

in many scenarios (such as real-time and auto-

mated systems), it is necessary to develop ob-

jective IQA metrics to automatically and

robustly measure an image’s quality. Based

on the availability of nondistorted reference

images, IQA approaches can be classified into

three categories: full-reference IQA (FR-IQA),

reduced-reference IQA (RR-IQA), and no-refer-

ence IQA (NR-IQA).

In this article, we propose a general-purpose

opinion-aware NR-IQA method that utilizes

quality-aware filters (QAFs). Our method fol-

lows a training-test framework. In the training

stage, we first construct a filter dictionary by

performing sparse filtering1 on a set of local

descriptor vectors extracted from image patches

with different quality levels. We then use a

training dataset consisting of a set of distorted

images and their associated subjective scores to

train the regression model. For any training

image, we first represent it as a set of local

descriptors and then, by performing local

descriptor encoding and feature pooling, finally

obtain a quality-aware feature vector to repre-

sent the image. Next, we adopt a random for-

est2 to train the regression model, mapping

from the feature vectors to the subjective

scores. In the test stage, given a test image, a

quality-aware feature vector is extracted and

then fed into the learned regression model to

predict the image’s perceptual quality.

The key components of QAF are the sparse

filtering and random forest. Sparse filtering is

typically used to create a filter dictionary,

which maps the original data to good feature

representations for classification tasks by opti-

mizing exclusively for sparsity in the feature

distribution. Here, we apply sparse filtering to

a set of local descriptors extracted from image

patches to develop a QAF dictionary. The term

“quality aware” means that one filter in the

dictionary exists for each feature with a certain

distortion degree and vice versa. Using this dic-

tionary for image encoding with max pooling,

we can obtain an effective image representa-

tion for quality prediction. The random forest

is an ensemble learning method that operates

by constructing a multitude of decision trees

during the training stage and predicting new

data by averaging the predictions of all the

trees. Because this prediction process is close

to the subjective IQA process, we use the

random forest instead of a support vector

machine (SVM) as the regression model to

map the feature vectors to the subjective qual-

ity scores. SVMs with various kernels are com-

monly used in existing NR-IQA methods for

regression, but in our experiments, we found

that the random forest achieved significantly

better results.
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Previous Image Quality
Assessment Approaches
For simplicity, most early NR-IQA algorithms

assume that the image under consideration is

affected by one or several types of distortion,

such as blocking, ringing, blur, and compres-

sion. Generally, these approaches extract distor-

tion-specific features that relate to the loss of

visual quality. They can perform blind IQA only

when the type of distortion is known before-

hand. Hence, the applicability of these kinds of

methods is limited.

In contrast, the goal of general-purpose non-

distortion-specific (NDS) NR-IQA approaches is

to predict an image’s quality without any prior

knowledge of the distortion type. Depending

on the availability of subjective scores when

training the prediction model, existing NDS

NR-IQA approaches can be classified as either

opinion-aware or opinion-unaware.

A majority of the existing NR-IQA methods

are opinion-aware approaches, which means

that they are trained on a dataset consisting of

both distorted images and the associated sub-

jective scores. These works generally share a

similar architecture. In the training stage, fea-

ture vectors are extracted from the distorted

images, and then a regression model is learned

to map the feature vectors to the associated

human subjective scores. In the testing stage, a

feature vector is extracted from the test image

and then fed into the learned regression model

to predict an image’s quality score.

One representative opinion-aware NR-IQA

method is the two-step framework.3,4 Anush

Moorthy and Alan Bovik proposed a two-step

framework called BIQI (Blind Image Quality

Index).3 In BIQI, given a distorted image, scene

statistics are at first extracted to explicitly clas-

sify the distorted image into one of several

known distortions. Then, the same set of statis-

tics is used to evaluate the distortion-specific

quality. Following the same paradigm, the

authors later extended BIQI to develop DIIVINE

(Distorted Identification-Based Image Verity

and Integrity Evaluation Index).4 Both BIQI

and DIIVINE assume that the distortion types

in the test images should be covered by the

training dataset, which is obviously not true in

many practical applications.

Opinion-aware approaches that do not fol-

low a two-step framework typically follow two

trends:3 natural scene statistics (NSS) -based

and training-based methods. NSS methods are

based on the assumption that the quality

distortions in images will affect certain statisti-

cal properties in natural scenes. For example,

Michele Saad, Alan Bovik, and Christophe

Charrier proposed BLIINDS (Blind Image Integ-

rity Notator Using DCT Statistics) by assuming

that the statistics of discrete cosine transform

(DCT) features will vary in a predictable way as

image quality changes.6 Later, they proposed

BLIINDS-II7 as an extension of their previous

work. Anish Mittal, Anush Moorthy, and Alan

Bovik proposed using locally normalized lumi-

nance coefficients in the spatial domain to pre-

dict image quality.8 Their design rationale was

that the presence of distortion will affect the

regular structure of the image’s coefficients.

Training-based methods aim to design

quality-relevant features that can capture the

factors that may impact distortion. Most of

these training-based approaches need to design

numerous handcrafted features. Peng Ye and

David Doermann proposed a codebook-based

framework called CBIQ (Codebook Based Image

Quality Index) to train the regression model.5

Their codebook-based framework was com-

monly applied to image classification tasks.

Later, using the same framework, Ye and his

colleagues improved CBIQ by employing fea-

tures trained via unsupervised feature learning,

and the resulting NR-IQA metric was named

CORNIA (Codebook Representation for No-

Reference Image Assessment).9 CORNIA has

proven effective in dealing with many distor-

tion types. Another proposed model extracts

three sets of features based on the statistics of

natural images, distortion textures, and blur/

noise.10 That approach then trains three regres-

sion models for each feature set, and finally a

weighted combination of the models is used to

estimate image quality.

Unlike opinion-aware methods, opinion-

unaware approaches do not require training on

databases associated with human scores.

Wufeng Xue, Lei Zhang, and Xuanqin Mou

simulated a virtual dataset11 in which the qual-

ity scores of distorted images are estimated by

the full reference IQA algorithm feature similar-

ity (FSIM).12 They then proposed a quality-

aware clustering method to train a set of

centroids for each quality level and used these

centroids as a codebook to infer the quality of

each patch in a given image. However, their

method can only deal with four specific types

of distortions: Gaussian noise, Gaussian blur,

JPEG compression, and JPEG2000 compression.

Thus, strictly speaking, their work is not aIE
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general-purpose NR-IQA metric. The NIQE

method extracts a set of local features from an

image and fits the feature vectors by a multi-

variate Gaussian (MVG) model.13 A test image’s

quality is predicted by the distance between its

MVG model and the MVG model learned from

a set of pristine images. However, NIQE uses a

single MVG model to describe an image and

loses much useful information when character-

izing image quality. Until now, according to the

experiments conducted on LIVE14 and CSIQ15

databases, the prediction accuracy of opinion-

unaware methods was lower than that of

opinion-aware methods.

QAF Framework
Figure 1 illustrates the QAF pipeline. The key

components in our proposed NR-IQA frame-

work are the extraction of local descriptors, the

construction of a QAF dictionary, local feature

encoding and pooling, and regression.

Extracting Local Descriptors

In our approach, an image is represented by a

set of local descriptors, each of which is

extracted from a randomly sampled patch.

With respect to the local descriptor extraction,

we resort to mean subtracted contrast normal-

ized (MSCN) coefficients,16 the products of

pairs of adjacent MSCN coefficients,13 and the

responses of Gabor filters.5

The MSCN procedure can be seen as a nor-

malization process with respect to local bright-

ness and contrast, which can be described as

q x; yð Þ ¼ Iðx; yÞ � l x; yð Þ
r x; yð Þ þ 1

;

where I is a given grayscale image, x and y are

spatial coordinates, and

Quality-aware filter learning Regression model training and testing

training images

Extracted patches

Test imagemUnlabeled images

Sampling Sampling Sampling

n extracted patches

n local descriptor vertorsLocal descriptor vertors

Regression model

Quality score
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Local descriptor encoding
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[g*1,g*2,...,g*m] g* = (θ1,θ2,...,θc)

Local descriptor extraction

extracted patchesk

k local descriptor vectors

c quality-aware filters

Local descriptor extraction

Sparse filtering

Figure 1. Pipeline

of the proposed

no-reference image

quality assessment

(NR-IQA) metric

quality-aware filter

(QAF). The key

components are local

descriptor extraction,

QAF dictionary

construction, local

feature encoding and

pooling, and

regression.
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r x; yð Þ

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXK

a¼�K

XL

b¼�L

wa;b I xþ a; y þ bð Þ � l x; yð Þ½ �2
vuut

estimate the local mean and contrast, respec-

tively, where w¼ wa;bja¼�K;…;K;b¼�L;…;L
� �

is a 2D circularly-symmetric Gaussian weighting

function sampled out to three standard devia-

tions and rescaled to unit volume.

In addition to MSCN coefficients, we also

extract the products of adjacent MSCN co-

efficient pairs as features. Specifically, we

extract four products along horizontal, vertical,

and diagonal orientations: q x;yð Þq x;yþ1ð Þ;
q x;yð Þq xþ1;yð Þ;q x;yð Þ q xþ1;yþ1ð Þ;and q x;yð Þ
q xþ1;y�1ð Þ.

Research has shown that an image’s multi-

scale and multiorientation filtering responses

are useful for NR-IQA tasks.12 For the multiscale

and multiorientation filter, we adopt the Gabor

filter. A 2D Gabor filter has a real component

and an imaginary component, which we can

define as

ge x; yð Þ ¼ exp �1

2

x
02

r2
þ y

02

crð Þ2

 ! !
cos

2/
k

x
0

� �

go x; yð Þ ¼ exp �1

2

x02

r2
þ y02

crð Þ2

 ! !
sin

2p
k

x0
� �

where x0 ¼ xcoshþ y sinh;y0 ¼ �x sinhþ y cosh,

k is the wavelength of the sinusoid factor, h is

the orientation of the normal to the parallel

stripes of the Gabor function, r is the standard

deviation of the Gaussian envelop, and c is its

aspect ratio.

Given an image patch P, the modulus of its

response to the Gabor filter g x; y; k; hð Þ can be

written as

G x; y; k; hð Þ ¼ abs P x; yð Þ � g x; y; k; hð Þð Þ:

Then, we use the mean and a variance of

G x; y; k; hð Þf g x;yð Þ2P as the features for P. To cap-

ture the multiscale image properties, we use

Gabor filters with S different wavelengths and J

different orientations. Thus, for each patch P,

we can generate a feature vector that is 2� S� J

long.

For a given image, we sample from it n

patches of size M �N. For each patch P 2 RM�N ,

after we compute and vectorize its MSCN coeffi-

cients, its four products of adjacent MSCN

coefficient pairs, and Gabor-based features, we

can obtain a patch-level feature vector as

f ¼ p1; p2; …; pM�N� 1þ4ð ÞþJ�S�2

� �T
. Therefore,

each image can be represented by a set of

descriptor vectors F ¼ f1; f2; …; fn½ �, where

each f i is a local descriptor vector and n is the

number of patches sampled.

Constructing a Quality-Aware Filter Dictionary

Unsupervised feature learning can be effective

in training representations that perform well

on classification tasks, such as image, video,

and audio classification. In our approach, we

treat the patch-level quality estimation as a

classification problem. After we classify each

patch-level feature into one category, we can

obtain an image-level feature for regression.

The key to this implementation is the construc-

tion of a QAF dictionary.

First, we randomly sample a collection of

image patches from unlabeled training images

that suffer from quality distortions at different

degrees. For each patch, a corresponding local

descriptor is extracted (as described in the last

section). Thus, we can obtain a set of local

descriptors Y ¼ y1; y2;…; yk½ �, where Y 2 Rd�k, d

is the dimension of each local descriptor, and k

is the number of patches. Then, we initialize a

filter dictionary X 2 Rv�d with random small

values, where v is the number of filters that we

aim to learn. Finally, the objective of sparse fil-

tering can be formulated as

bX ¼ arg min
X

XX

i¼1
u Zj j;

where Z ¼ XY, X is the number of entries in Z

and j�j represents the soft-absolute operation

defined as

Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eþ Z2

p
;

where e is a small constant and u stands for the

operation of performing twice normalization

on Zj j by rows and by columns using l2 norm,

respectively.

An off-the-shelf L-BFGS17 package can be

used to optimize this objective function until

convergence. Because the normalization opera-

tion introduces competition,1 some values in

u Zj j must be large while the others are small

(close to 0) after optimization. Each row of X

only gives a strong response to certain kinds of

quality-aware features. This turns X into the

QAF dictionary that we need. (For more imple-

mentation details and a theoretical proof of

sparse filtering, please refer to earlier work.1)

To make the filter dictionary more stable, we

repeat this process u times, and after we get a fil-

ter collection of v � u filters, we perform aIE
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K-means clustering on them to get the final fil-

ter set C 2 Rc�d, consisting of c filters.

Local Descriptor Encoding and

Feature Pooling

As we described in the “Extracting Local

Descriptors” section, in our approach, each

image is first represented by a set of local

descriptors F ¼ f1; f2;…; fn½ � 2 Rd�n, where f i

represents a patch-level descriptor and n is the

number of sampled patches.

To obtain a quality-aware feature vector for

each image, we need to use the trained filter dic-

tionary C to encode F. At first, we apply a soft

absolute on G ¼ CF 2 Rc�n and in turn normal-

ize G by rows and by columns. G has c rows and

n columns, where c is the number of filters in C.

Then, we apply max pooling to matrix G to get

the final feature vector. Typically, there are two

types of pooling strategies: average and max. In

our experiment, we find that max pooling can

achieve better results. Specifically, for each col-

umn gj ¼ h1; h2;…; hcð ÞT j ¼ 1;2;…;nð Þ in G, the

max pooling performed on gj can be written as

hi ¼
1; if hi ¼max h1; h2; h3;…; hcð Þ
0; else

	
;

i ¼ 1;2;…; c:

Then, image level feature can be obtained by

summing up all the columns, which can be

expressed as

g� ¼ g1 þ g2þ;…;þgn;

where g� 2 Rc�1.

For any given image, after applying the

aforementioned operations, we can obtain a

quality-aware feature vector g� to represent it,

and the prediction of its perceptual quality will

be based on g�.

Regression

Given a set of training images Iif g with quality

distortions at various levels and their corre-

sponding subjective scores sif g, we can treat

NR-IQA as a regression problem. Specifically, at

the training stage, we first obtain a set of qual-

ity-aware feature vectors g�i
� �

from Iif g using

the schemes we have described here. Then,

g�i
� �

and its corresponding scores sif g are used

to construct a regression model M. At the test

stage, a feature vector t is extracted from the

test image, and then we feed t into the trained

regression model M to predict its quality score.

For regression, most existing NR-IQA

approaches use SVM for simplicity.3–5,7 However,

in subjective IQA experiments, the ultimate

quality score is obtained by averaging the evalu-

ation from different subjects. Inspired by this

fact, we adopted the random forest,2 the training

and test procedures of which are similar to the

subjective IQA process, as the regression model

in our QAF approach. This method combines

the “bagging” theory and the random selection

of features. In our experiments, we found that

the random forest achieved significantly better

results than a SVM in our framework.

Experimental Results and Discussion
In our experiments, we attempted to validate

QAF’s performance in terms of its ability to pre-

dict the perceptual quality of a given image. To

do so, we used three widely used IQA datasets:

LIVE,14 CSIQ,15 and TID2013.18 These data-

bases provided us with reference images, their

distorted versions, and associated subjective

scores. Table 1 lists brief information about

each dataset.

The distortion types in the LIVE database

include JPEG2000, JPEG, white noise (WN),

Gaussian blur (BLUR), and simulated fast fading

(FF) Rayleigh channel. In the CSIQ database,

the distortion types include JPEG2000, JPEG,

WN, BLUR, global contrast decrements, and

Gaussian pink noise. The TID2013 database

consists of 24 different types of distortions at

five levels.

To evaluate the performance of the IQA met-

rics, we adopted two correlation coefficients:

the Spearman rank order correlation coefficient

(SROCC), which is related to the prediction

monotonicity, and the Pearson linear correla-

tion coefficient (PLCC), which is related to the

prediction linearity and can be considered a

measure of prediction accuracy. A value close to

1 for SROCC or PLCC indicates a good quality

prediction performance.

For comparison, we used five opinion-aware

approaches—BIQI,3 BRISQUE,8 BLIINDS-II,7

Table 1. Benchmark IQA image datasets.

Dataset

No. of

reference images

No. of

distorted images

No. of

distortion types

LIVE 29 779 5

CSIQ 30 866 6

TID2013 25 3,000 24
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DIIVINE,4 and CORNIA9—and two opinion-

unaware approaches—NIQE13 and QAC.11

NIQE and QAC did not require training, so we

reported their results on test images only to

ensure a fair comparison across methods. The

codes for these methods were provided by their

authors, and we tuned the parameters to

achieve the best results.

Implementation Details

The proposed framework contains a number of

parameters that can be tuned and that may

greatly impact the results of our approach:

� N is number of patches sampled from each

image;

� M and N are width and height of the raw

patch, respectively;

� S and J are the number of center frequen-

cies and orientations, respectively;

� u� v is total number of filters trained

through sparse filtering;

� c is number of QAFs (the size of the filter

dictionary);

� ntree is number of trees constructed; and

� mtry is the number of variables to split on

at each node.

The two most important parameters used in

the random forest are ntree and mtry. In our

experiment, we set n ¼ 10;000, M ¼ N ¼ 7, S ¼
5 1;1=

ffiffiffi
2
p

;1=2;1=2
ffiffiffi
2
p

; and1=4

 �

, J ¼ 4 0�;45�;ð
90�; and135�Þ, c ¼ 10;000, ntree ¼ 1;500 and

mtry ¼ 250. There are no explicit constraints on

the number of u � v, however, empirically, it

should not be smaller than 100,000.

Performance Evaluation on a Single Database

In the current literature, most NR-IQA algo-

rithms are only evaluated on the LIVE IQA data-

base using the experimental strategy described

in earlier work.4,7–9 For the training-based algo-

rithms, 23 reference images along with their

distorted images are randomly selected for

training, and the remaining six reference

images along with their degraded versions are

used for testing. Such an experimental strategy

mainly has some deficiencies. Specifically, the

LIVE database only contains 779 distorted

images, so the size of the test image set is only

approximately 150 779� 0:2ð Þ, which is too

small to elicit definitive conclusions. However,

with a large training set, over-fitting is likely to

occur, so we cannot properly evaluate the gen-

eralization ability of the algorithms.

Therefore, in this article, we adopted a differ-

ent experimental strategy similar to the one

proposed in earlier work.11 Specifically, we

present the training-based method results

under three partition settings: 80, 50, and 10

percent of the reference images are used for

training and the remainders are used for test-

ing. The partition was randomly conducted

1,000 times, and we report the median result.

Tables 2, 3, and 4 present the performance

results for QAF and the other NR-IQA methods

for the LIVE, CSIQ, and TID2013 datasets, respec-

tively. The results show that QAF outperforms its

counterparts under different partition ratios in

the training samples. Additionally, although the

performance of most existing NR-IQA methods

decreases rapidly as the number of training

Table 2. Performance evaluation on LIVE.

80% partition ratio 50% partition ratio 10% partition ratio

Method SROCC PLCC SROCC PLCC SROCC PLCC

BIQI 0.825 0.840 0.739 0.764 0.547 0.623

BRISUQE 0.933 0.931 0.917 0.919 0.806 0.816

BLIIDNS-II 0.924 0.927 0.901 0.901 0.836 0.834

DIIVINE 0.884 0.893 0.858 0.866 0.695 0.701

CORNIA 0.940 0.944 0.933 0.934 0.893 0.894

NIQE 0.908 0.908 0.905 0.904 0.905 0.903

QAC 0.874 0.868 0.869 0.864 0.866 0.86

QAF 0.948 0.953 0.949 0.949 0.942 0.945
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samples decreases, QAF seems to be robust to

the number of training samples.

Cross-Database Evaluation

We also performed a more comprehensive per-

formance evaluation by training on LIVE data-

set and testing on the CSIQ and TID2013

datasets. For the five opinion-aware NR-IQA

methods, the original authors provided their

quality prediction models trained on the entire

LIVE dataset. Thus, we directly use them for

testing on CSIQ and TID2013.

Tables 5 and 6 show the experimental

results. We can see that QAF performs signifi-

cantly better than all the other state-of-the-art

NR-IQA algorithms, indicating that QAF has a

better generalization capability than the other

methods.

Table 3. Performance evaluation on CSIQ.

80% partition ratio 50% partition ratio 10% partition ratio

Method SROCC PLCC SROCC PLCC SROCC PLCC

BIQI 0.092 0.237 0.092 0.396 0.020 0.311

BRISQUE 0.775 0.817 0.736 0.781 0.545 0.596

BLIIDNS-II 0.780 0.832 0.749 0.806 0.628 0.688

DIIVINE 0.757 0.795 0.652 0.716 0.441 0.492

CORNIA 0.714 0.781 0.678 0.754 0.638 0.732

NIQE 0.627 0.725 0.626 0.716 0.624 0.714

QAC 0.486 0.654 0.494 0.706 0.490 0.707

QAF 0.786 0.847 0.771 0.815 0.742 0.755

Table 4. Performance evaluation on TID2013.

80% partition ratio 50% partition ratio 10% partition ratio

Method SROCC PLCC SROCC PLCC SROCC PLCC

BIQI 0.349 0.366 0.332 0.332 0.199 0.25

BRISQUE 0.573 0.651 0.563 0.645 0.513 0.587

BLIIDNS-II 0.536 0.628 0.458 0.48 0.402 0.447

DIIVINE 0.549 0.654 0.503 0.602 0.330 0.391

CORNIA 0.549 0.613 0.573 0.652 0.508 0.603

NIQE 0.317 0.426 0.317 0.42 0.313 0.398

QAC 0.390 0.495 0.390 0.489 0.372 0.435

QAF 0.589 0.662 0.581 0.660 0.564 0.641

Table 5. Evaluation results when trained on

LIVE and tested on CSIQ.

Method SROCC PLCC

BIQI 0.619 0.695

BRISQUE 0.557 0.742

BLIIDNS-II 0.577 0.724

DIIVINE 0.596 0.697

CORNIA 0.663 0.764

NIQE 0.627 0.716

QAC 0.490 0.708

QAF 0.710 0.720

Table 6. Evaluation results when trained on

LIVE and tested on TID2013.

Method SROCC PLCC

BIQI 0.394 0.468

BRISQUE 0.367 0.475

BLIIDNS-II 0.393 0.470

DIIVINE 0.355 0.545

CORNIA 0.429 0.575

NIQE 0.311 0.398

QAC 0.372 0.437

QAF 0.440 0.593
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Choosing the Random Forest as the

Regression Model

To validate our decision to use the random for-

est as a regression model, we tested against a

SVM in the context of QAF. We denote the

method using SVM as a regression model as

QAFSVM and the method using random forest as

a regression model as QAFRF. The experimental

protocol used here is the same as we used in the

last section.

Table 7 summarizes the results. We can

clearly see that the random forest performs

much better than the SVM as a regression

model when embedded in the QAF framework,

especially when the number of training samples

decreases.

Future Work
We will continue our future work on NR-IQA in

two directions. First, we will try to find more

powerful methods for extracting quality-ware

features. Second, we will make efforts to devise

more suitable regression models for the NR-IQA

problem. MM
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